

I/O is hard.

Interpreting I/O results is harder.

 Countless techniques for doing I/O
operations

 Varying difficulty

 Varying efficiency

 All techniques suffer from the
same phenomenon, eventually it
will turn over.

 Limited Disk Bandwidth

 Limited Interconnect
Bandwidth

 Limited Filesystem Parallelism

 Respect the limits or suffer the
consequences.

0

5000

10000

15000

20000

25000

30000

35000

0 2000 4000 6000 8000 10000

FPP Write (MB/s)

0

2

4

6

8

10

12

14

16

Default Stripe Stripe All

 Lustre is parallel, not paranormal

 Striping is critical and often
overlooked

 Writing many-to-one requires a
large stripe count

 Writing many-to-many requires a
single stripe

 Files inherit the striping of the parent
directory

 Input directory must be striped
before copying in data

 Output directory must be striped
before running

 May also “touch” a file using the lfs
command

 An API to stripe a file
programmatically is often requested,
here’s how to do it.

 Call from only one processor

 New support in xt-mpt for striping
hints

 striping_factor

 striping_size

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <lustre/lustre_user.h>

int open_striped(char *filename,

int mode, int stripe_size,

int stripe_offset, int stripe_count)

{

int fd;

struct lov_user_md opts = {0};

opts.lmm_magic = LOV_USER_MAGIC;

opts.lmm_stripe_size = stripe_size;

opts.lmm_stripe_offset = stripe_offset;

opts.lmm_stripe_count = stripe_count;

fd = open64(filename, O_CREAT | O_EXCL

| O_LOV_DELAY_CREATE | mode, 0644);

if (fd >= 0)

ioctl(fd, LL_IOC_LOV_SETSTRIPE,

&opts);

return fd;

}

 We know that large writes
perform better so we buffer

 We can control our buffer size

 We can ALSO control our stripe
size

 Misaligning Buffer and Stripe sizes
can hurt your performance

5MB 5MB

5MB 5MB

4MB 4MB 4MB

4MB 4MB 4MB

4MB 4MB 4MB

4MB 4MB 4MB

 In order to use O_DIRECT, data
buffers must be aligned to page
boundaries

 O_DIRECT is rarely a good idea

 Memory alignment can be done
by:

 C: posix_memalign instead of
malloc

 FORTRAN: over-allocation and
the loc function

 Aligning I/O buffers on page
boundaries can improve I/O
performance.

0

5

10

15

20

25

30

35

40

0 5000 10000 15000

Shared Shared Aligned

 This method is simple to
implement and can utilize > 160
OST limit

 This method is also very stressful
on the FS and inconvenient with
thousands of clients

 Too many opens at once floods
the MDS

 Too many concurrent writers
can stress the OSTs

 Too small writes kills
performance

 Too many files stresses user

Performance Results Open Time

0

1

2

3

4

5

6

7

8

9

0 5000 10000 15000

0

5

10

15

20

25

30

35

40

0 5000 10000 15000

 Slightly more difficult to
implement than fpp

 still fairly easy

 Generally slightly less efficient
than fpp

 More convenient than many files

 Nicer to the MDS? Maybe
marginally.

 Still can overload OSTs from many
writers

 Try to make sure that two
processors don’t need to write to
same stripe

POSIX Shared Fortran Direct

fd = open64("test.dat", mode, 0644);

/* Seek to start place for rank */

ierr64 = lseek64(fd, commrank*iosize,

SEEK_SET);

remaining = iosize;

/* Write by buffers to the file */

while (remaining > 0)

{

i = (remaining < buffersize) ?

remaining : buffersize;

/* Copy from data to buffer */

memcpy(tmpbuf, dbuf, i);

ierr = write(fd, tmpbuf, i);

if (ierr >= 0) {

remaining -= ierr;

dbuf += ierr;

} else

{

MPI_Abort(MPI_COMM_WORLD, ierr);

}

}

close(fd);

! Establish Sizes

reclength = 8*1024*1024

iosize = reclength * 10

! Starting Record For Rank

recnum = (iosize * myrank)/reclength

recs = iosize/8

numwords = recs/10

open(fid, file='output/test.dat',

status='replace', form='unformatted',

access='direct', recl=reclength,

iostat=ierr)

! Write a record at a time to the file

do i=1,recs,numwords

write(fid, rec=recnum, iostat=ierr)

writebuf(i:i+numwords-1)

recnum = recnum + 1

end do

close(fid)

Performance Results Open Time

0

1

2

3

4

5

6

7

8

9

0 5000 10000 15000

Shared FPP
0

5

10

15

20

25

30

0 5000 10000 15000

 I/O Scaling Limitations

 Turns over above some number of clients

 Shared files are limited to 160 OSTs, but some filesystems have more

 Can we use this knowledge to improve I/O performance?

 Aggregate I/O via sub-grouping to

 Reduce number of clients using the FS

 Aggregate into larger I/O buffers

 Potentially cover > 160 OSTs via multiple shared files

 We can do this

 Via MPI-IO Collective Buffering

 By hand (many different ways)

 MPI-IO provides a way to handle buffering and grouping behind the scenes

 Advantage: Little or No code changes

 Disadvantage: Little or No knowledge of what’s actually done

 Use Collective file access

 MPI_File_write_all – Specify file view first

 MPI_File_write_at_all – Calculate offset for each write

 Set the cb_* hints

 cb_nodes – number of I/O aggregators

 cb_buffer_size – size of collective buffer

 romio_cb_write – enable/disable collective buffering

 No need to split comms, gather data, etc.

Yes! See
Mark Pagel’s

Talk.

 Lose ease-of-use, gain control

 Countless methods to implement

 Simple gathering

 Serialized Sends within group

 Write token

 Double Buffered

 Bucket Brigade

 …

 Look for existing groups in your code

 Even the simplest solutions often
seem to work.

 Try to keep the pipeline full

 Always be doing I/O

 Now we can think about multiple
shared files!

I find your lack of faith in
ROMIO disturbing.

 Every code uses these very
differently

 Follow as many of the same rules
as possible

 It is very possible to get good
results, but also possible to get
bad

 Because Parallel HDF5 is written
over MPI-IO, it’s possible to use
hints

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000 4000 6000 8000 10000

IOR: Shared File Writes

POSIX MPIIO HDF5

Related CUG Talks/Papers

 Performance Characteristics of the
Lustre File System on the Cray XT5
with Regard to Application I/O
Patterns, Lonnie Crosby

 Petascale I/O Using The Adaptable
I/O System, Jay Lofstead, Scott
Klasky, et al.

 Scaling MPT and Other Features,
Mark Pagel

 MPI-IO Whitepaper, David Knaak,
ftp://ftp.cray.com/pub/pe/downlo
ad/MPI-IO_White_Paper.pdf

 Lonnie Crosby, UT/NICS

 Mark Fahey, UT/NICS

 Scott Klasky, ORNL/NCCS

 Mike Booth, Lustre COE

 Galen Shipman, ORNL

 David Knaak, Cray

 Mark Pagel, Cray

Thank You

ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf

