C=RANY

THE SUPERCOMPUTER COMPANY

Practical Examples for Efficient 1/O on Cray

XT Systems

Jeff Larkin
<larkin@cray.com>

Motivation:
1/0 is hard.

EEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEE

1/0 is hard...

Interpreting 1/0 results is harder.

CRANY

THE SUPERCOMPUTER COMPANY

|/O: Don't over do it.
* Countless techniques for doing 1/0O oo e b of vrer
operations o f“\
* Varying difficulty T
» Varying efficiency S
g o O *
. : 15000 - -
e All techniques suffer from the 5
same phenomenon, eventually it -l
will turn over. s e
{ leitEd D|Sk BandWidth " 2000 1000 5000 Numjo‘;ocﬁem w00 12000 1400 16000
e Limited Interconnect FPP Write (MB/s)
Bandwidth 35000
B .] 30000 -
e Limited Filesystem Parallelism 25000 ? \\
e Respect the limits or suffer the 20000 \
consequences. 15000
10000
5000
0 T T T T 1

0 2000 4000 6000 8000 10000

Lustre Striping

e Lustre is parallel, not paranormal

e Striping is critical and often
overlooked

e \Writing many-to-one requires a
large stripe count

e Writing many-to-many requires a
single stripe

16

14

12

10

C=RA0Y

THE SUPERCOMPUTER COMPANY

Default Stripe

Stripe All

Lustre Striping: Howto do it

Files inherit the striping of the parent
directory

Input directory must be striped
before copying in data

Output directory must be striped
before running

May also “touch” a file using the Ifs
command

e An API to stripe afile

programmatically is often requested,
here’s how to do it.

Call from only one processor
New support in xt-mpt for striping
hints

striping_factor

striping_size

C=RA0Y

THE SUPERCOMPUTER COMPANY

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <lustre/lustre user.h>
int open_ striped(char *filename,

int mode, int stripe size,
int stripe offset, int stripe count)

int £d;

struct lov_user md opts = {0};
opts.lmm magic = LOV_USER MAGIC;
opts.lmm stripe size = stripe size;
opts.lmm stripe offset = stripe offset;
opts.lmm stripe count = stripe_ count;

fd = opené64 (filename, O _CREAT | O_EXCL
O_LOV_DELAY CREATE | mode, 0644);
if (£d >= 0)

ioctl (£d, LL IOC_LOV_SETSTRIPE,

&opts) ;

}

return £d;

e TR T

- .
Lustre Striping: Picking a Stripe Size

—

e We know that large writes
perform better so we buffer 4MB 4MB 4MB
e \We can control our buffer size
) 5MB 5MB
e We can ALSO control our stripe
Size
e Misaligning Buffer and Stripe sizes
can hurt your performance

Memory Alignment: An Interesting Side Effect

e |norder to use O DIRECT, data
buffers must be aligned to page
boundaries

e O DIRECT is rarely a good idea
e Memory alignment can be done
by:
e C: posix_memalign instead of
malloc
* FORTRAN: over-allocation and
the loc function
e Aligning I/O buffers on page
boundaries can improve /O
performance.

40

35

30

25

20

15

10

CRANY

THE SUPERCOMPUTER COMPANY

) —
5000 10000 15000

epmShared «l=Shared Aligned

File-per-process

e This method is simple to
implement and can utilize > 160
OST limit

e This method is also very stressful
on the FS and inconvenient with
thousands of clients

* Too many opens at once floods
the MDS

e Too many concurrent writers
can stress the OSTs

e Too small writes kills
performance

* Too many files stresses user

CRANY

THE SUPERCOMPUTER COMPANY

File-per-process

Performance Results

—

40

35

30

25

20

15

10

/

5000

10000

15000

9

8

7

Open Time

CRANY

THE SUPERCOMPUTER COMPANY

/

)
N\

5000

10000 15000

CRANY

THE SUPERCOMPUTER COMPANY

POSIX Shared File & Fortran Direct Access

e Slightly more difficult to
implement than fpp

o still fairly easy

e Generally slightly less efficient
than fpp

e More convenient than many files

e Nicer to the MDS? Maybe
marginally.

e Still can overload OSTs from many
writers

e Try to make sure that two
processors don’t need to write to
same stripe

C=RA0Y

THE SUPERCOMPUTER COMPANY

POSIX Shared File & Fortran Direct Access: The Pseudo-Code

POSIX Shared Fortran Direct

fd = open64d ("test.dat", mode, 0644);

/* Seek to start place for rank */ ! Establish Sizes

reclength = 8*1024*1024

ierr64 = lseek64d (fd, commrank*iosize,
SEEK_SET) ; iosize = reclength * 10
remaining = iosize; ! Starting Record For Rank
/* Write by buffers to the file */ recnum = (iosize * myrank)/reclength
while (remaining > 0) recs = iosize/8
{ numwords = recs/10
i = (remaining < buffersize) ?
remaining : buffersize; open (fid, file='output/test.dat',

/* Copy from data to buffer */
memcpy (tmpbuf, dbuf, i);

ierr = write(fd, tmpbuf, 1i);
if (ierr >= 0) {

status='replace', form='unformatted',
access='direct', recl=reclength,
iostat=ierr)

! Write a record at a time to the file

remaining -= ierr;
dbuf += ierr; do i=1, recs,numwords
} else write(fid, rec=recnum, iostat=ierr)
{ writebuf (1:1i+numwords-1)
MPI Abort (MPI COMM WORLD, ierr); recnum = recnum + 1
} end do
} close (fid)

close (fd) ;

GTo26(Lg)* —
CTo26 (LTQ)

eUug dgo

C=RA0Y

THE SUPERCOMPUTER COMPANY

POSIX Shared File & Fortran Direct Access: The Results

Performance Results Open Time

i /
6) /
N\

25

20
15 4
3
10 2 /
1 J
5
0
0 5000 10000 15000
0 T T 1

0 5000 10000 15000 —4—Shared —li=FPP

CRANY

THE SUPERCOMPUTER COMPANY

Subgrouping

|/O Scaling Limitations
e Turns over above some number of clients
e Shared files are limited to 160 OSTs, but some filesystems have more

e Can we use this knowledge to improve I/O performance?

Aggregate 1/0 via sub-grouping to
e Reduce number of clients using the FS
» Aggregate into larger 1/O buffers
e Potentially cover > 160 OSTs via multiple shared files

e We can do this
e Via MPI-10 Collective Buffering
e By hand (many different ways)

CRANY

THE SUPERCOMPUTER COMPANY

Subgrouping: MPI-10 Collective I/O

MPI-10 provides a way to handle buffering and grouping behind the scenes
e Advantage: Little or No code changes
e Disadvantage: Little or No knowledge of what’s actually done

Use Collective file access

e MPI_File_write_all — Specify file view first

e MPI_File_write_at_all — Calculate offset for each write
Set the cb_* hints

* cb_nodes— number of I/O aggregators

e cb_buffer_size — size of collective buffer

* romio_cb_write — enable/disable collective buffering

No need to split comms, gather data, etc.

Subgrouping: MPI-10 Collective I/O — Does it work? Yes! See
Mark Pagel’s

HYCOM MPI-21/0 JELS

On 5107 PEs, and by application design, a subset of the Pes(288), do the
writes. With collective buffering, this is further reduced to 22 aggregators
(cb_nodes) writing to 22 stripes. Tested on an XT5 with 5107 Pes, 8

cores/node

CRANY

THE SUPERCOMPUTER COMPANY

Subgrouping: By Hand

Lose ease-of-use, gain control

Countless methods to implement
Simple gathering
Serialized Sends within group
Write token
Double Buffered
Bucket Brigade

Look for existing groups in your code

Even the simplest solutions often
seem to work.

Try to keep the pipeline full

| find your lack of faith in
Now we can think about multiple ROMIO disturbing.

shared files!

Always be doing /0

C=RA0Y

THE SUPERCOMPUTER COMPANY

What about HDF5, NetCDF, Etc?

* Every code uses these very IOR: Shared File Writes
differently 8000

e Follow as many of the same rules 2000
as possible c000 ;;¢

e |tis very possible to get good
results, but also possible to get
bad 4000

e Because Parallel HDF5 is written 3000
over MPI-IO, it’s possible to use 2000
hints

5000

1000

0 2000 4000 6000 8000 10000

@$=POSIX «iiil=NMPIIO HDF5

Thank You

Related CUG Talks/Papers

Performance Characteristics of the
Lustre File System on the Cray XT5
with Regard to Application 1/0
Patterns, Lonnie Crosby

Petascale I/0 Using The Adaptable
I/0 System, Jay Lofstead, Scott
Klasky, et al.

Scaling MPT and Other Features,
Mark Pagel

MPI-IO Whitepaper, David Knaak,
ftp://ftp.cray.com/pub/pe/downlo

ad/MPI-I0 White Paper.pdf

CRANY

THE SUPERCOMPUTER COMPANY

Thank You

e Lonnie Crosby, UT/NICS
e Mark Fahey, UT/NICS

e Scott Klasky, ORNL/NCCS
e Mike Booth, Lustre COE
e Galen Shipman, ORNL

e David Knaak, Cray

e Mark Pagel, Cray

ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf

AN

THE SUPERCOMPUTER COMPANY

