

I/O is hard.

Interpreting I/O results is harder.

 Countless techniques for doing I/O
operations

 Varying difficulty

 Varying efficiency

 All techniques suffer from the
same phenomenon, eventually it
will turn over.

 Limited Disk Bandwidth

 Limited Interconnect
Bandwidth

 Limited Filesystem Parallelism

 Respect the limits or suffer the
consequences.

0

5000

10000

15000

20000

25000

30000

35000

0 2000 4000 6000 8000 10000

FPP Write (MB/s)

0

2

4

6

8

10

12

14

16

Default Stripe Stripe All

 Lustre is parallel, not paranormal

 Striping is critical and often
overlooked

 Writing many-to-one requires a
large stripe count

 Writing many-to-many requires a
single stripe

 Files inherit the striping of the parent
directory

 Input directory must be striped
before copying in data

 Output directory must be striped
before running

 May also “touch” a file using the lfs
command

 An API to stripe a file
programmatically is often requested,
here’s how to do it.

 Call from only one processor

 New support in xt-mpt for striping
hints

 striping_factor

 striping_size

#include <unistd.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <lustre/lustre_user.h>

int open_striped(char *filename,

int mode, int stripe_size,

int stripe_offset, int stripe_count)

{

int fd;

struct lov_user_md opts = {0};

opts.lmm_magic = LOV_USER_MAGIC;

opts.lmm_stripe_size = stripe_size;

opts.lmm_stripe_offset = stripe_offset;

opts.lmm_stripe_count = stripe_count;

fd = open64(filename, O_CREAT | O_EXCL

| O_LOV_DELAY_CREATE | mode, 0644);

if (fd >= 0)

ioctl(fd, LL_IOC_LOV_SETSTRIPE,

&opts);

return fd;

}

 We know that large writes
perform better so we buffer

 We can control our buffer size

 We can ALSO control our stripe
size

 Misaligning Buffer and Stripe sizes
can hurt your performance

5MB 5MB

5MB 5MB

4MB 4MB 4MB

4MB 4MB 4MB

4MB 4MB 4MB

4MB 4MB 4MB

 In order to use O_DIRECT, data
buffers must be aligned to page
boundaries

 O_DIRECT is rarely a good idea

 Memory alignment can be done
by:

 C: posix_memalign instead of
malloc

 FORTRAN: over-allocation and
the loc function

 Aligning I/O buffers on page
boundaries can improve I/O
performance.

0

5

10

15

20

25

30

35

40

0 5000 10000 15000

Shared Shared Aligned

 This method is simple to
implement and can utilize > 160
OST limit

 This method is also very stressful
on the FS and inconvenient with
thousands of clients

 Too many opens at once floods
the MDS

 Too many concurrent writers
can stress the OSTs

 Too small writes kills
performance

 Too many files stresses user

Performance Results Open Time

0

1

2

3

4

5

6

7

8

9

0 5000 10000 15000

0

5

10

15

20

25

30

35

40

0 5000 10000 15000

 Slightly more difficult to
implement than fpp

 still fairly easy

 Generally slightly less efficient
than fpp

 More convenient than many files

 Nicer to the MDS? Maybe
marginally.

 Still can overload OSTs from many
writers

 Try to make sure that two
processors don’t need to write to
same stripe

POSIX Shared Fortran Direct

fd = open64("test.dat", mode, 0644);

/* Seek to start place for rank */

ierr64 = lseek64(fd, commrank*iosize,

SEEK_SET);

remaining = iosize;

/* Write by buffers to the file */

while (remaining > 0)

{

i = (remaining < buffersize) ?

remaining : buffersize;

/* Copy from data to buffer */

memcpy(tmpbuf, dbuf, i);

ierr = write(fd, tmpbuf, i);

if (ierr >= 0) {

remaining -= ierr;

dbuf += ierr;

} else

{

MPI_Abort(MPI_COMM_WORLD, ierr);

}

}

close(fd);

! Establish Sizes

reclength = 8*1024*1024

iosize = reclength * 10

! Starting Record For Rank

recnum = (iosize * myrank)/reclength

recs = iosize/8

numwords = recs/10

open(fid, file='output/test.dat',

status='replace', form='unformatted',

access='direct', recl=reclength,

iostat=ierr)

! Write a record at a time to the file

do i=1,recs,numwords

write(fid, rec=recnum, iostat=ierr)

writebuf(i:i+numwords-1)

recnum = recnum + 1

end do

close(fid)

Performance Results Open Time

0

1

2

3

4

5

6

7

8

9

0 5000 10000 15000

Shared FPP
0

5

10

15

20

25

30

0 5000 10000 15000

 I/O Scaling Limitations

 Turns over above some number of clients

 Shared files are limited to 160 OSTs, but some filesystems have more

 Can we use this knowledge to improve I/O performance?

 Aggregate I/O via sub-grouping to

 Reduce number of clients using the FS

 Aggregate into larger I/O buffers

 Potentially cover > 160 OSTs via multiple shared files

 We can do this

 Via MPI-IO Collective Buffering

 By hand (many different ways)

 MPI-IO provides a way to handle buffering and grouping behind the scenes

 Advantage: Little or No code changes

 Disadvantage: Little or No knowledge of what’s actually done

 Use Collective file access

 MPI_File_write_all – Specify file view first

 MPI_File_write_at_all – Calculate offset for each write

 Set the cb_* hints

 cb_nodes – number of I/O aggregators

 cb_buffer_size – size of collective buffer

 romio_cb_write – enable/disable collective buffering

 No need to split comms, gather data, etc.

Yes! See
Mark Pagel’s

Talk.

 Lose ease-of-use, gain control

 Countless methods to implement

 Simple gathering

 Serialized Sends within group

 Write token

 Double Buffered

 Bucket Brigade

 …

 Look for existing groups in your code

 Even the simplest solutions often
seem to work.

 Try to keep the pipeline full

 Always be doing I/O

 Now we can think about multiple
shared files!

I find your lack of faith in
ROMIO disturbing.

 Every code uses these very
differently

 Follow as many of the same rules
as possible

 It is very possible to get good
results, but also possible to get
bad

 Because Parallel HDF5 is written
over MPI-IO, it’s possible to use
hints

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000 4000 6000 8000 10000

IOR: Shared File Writes

POSIX MPIIO HDF5

Related CUG Talks/Papers

 Performance Characteristics of the
Lustre File System on the Cray XT5
with Regard to Application I/O
Patterns, Lonnie Crosby

 Petascale I/O Using The Adaptable
I/O System, Jay Lofstead, Scott
Klasky, et al.

 Scaling MPT and Other Features,
Mark Pagel

 MPI-IO Whitepaper, David Knaak,
ftp://ftp.cray.com/pub/pe/downlo
ad/MPI-IO_White_Paper.pdf

 Lonnie Crosby, UT/NICS

 Mark Fahey, UT/NICS

 Scott Klasky, ORNL/NCCS

 Mike Booth, Lustre COE

 Galen Shipman, ORNL

 David Knaak, Cray

 Mark Pagel, Cray

Thank You

ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf
ftp://ftp.cray.com/pub/pe/download/MPI-IO_White_Paper.pdf

