
CUG 2009 Proceedings 1 of 10

Cray XT Programming

Environment’s Implementation of

Dynamic Shared Libraries

Geir Johansen, Cray Inc.

Barb Mauzy, Cray Inc.

ABSTRACT: The Cray XT Programming Environment will support the implementation

of dynamic shared libraries in future Cray XT CLE releases. The Cray XT

implementation will provide the flexibility to allow specific library versions to be chosen

at both link and run times. The implementation of dynamic shared libraries allows

dynamically linked executables built with software other than the Cray Programming

Environment to be run on the Cray XT.

KEYWORDS: Cray XT, Programming Environment

CUG 2009 Proceedings 2 of 10

1.0 Introduction

The goal of this paper is provide application analysts

a description of Cray XT Programming Environment‟s

implementation of dynamic shared libraries. Topics

covered include the building of dynamic shared library

programs, configuring the version of dynamic shared

libraries to be used at execution time, and the execution of

a dynamically linked program not built with the Cray XT

Programming Environment. While a brief description of

the Cray XT system implementation of dynamic shared

libraries will be given, the Cray XT system architecture

and system administration issues of dynamic shared

libraries are not the focus of this paper. An important

caveat to this paper is that the Cray XT implementation of

dynamic shared libraries has not been released and some

of the information provided is likely to change.

2.0 Motivation for Supporting Dynamic

Shared Libraries

The implementation of dynamic shared libraries on

the Cray XT provides users with a more comprehensive

application runtime environment. The support of this

feature will allow more types of applications to be

executed on the Cray XT. This section will describe the

advantages of using dynamic shared libraries along with

some of its disadvantages.

2.1 Advantages of Dynamic Libraries

 The main benefit of supporting dynamic shared

libraries is that it significantly increases the number of

applications that can execute on the Cray XT. Several

independent software vendors (ISVs) only provide

dynamically linked executables of their software, so the

support of dynamic shared libraries will now allow many

of these applications to run on the Cray XT. With

dynamic shared library support, applications do not need

to be built with the Cray XT Programming Environment

to execute on the Cray XT.

 In addition to dynamically linked applications, the

support of dynamic shared libraries allows for

dynamically linked utilities to be executed on Cray XT

compute nodes. For example, the Python interpreter can

now be executed on Cray XT compute nodes. This is

important as Python becomes an increasingly used tool

for parallel computing. Other utilities that can now be

executed on Cray XT compute nodes are the compilers.

A user can now use the Cray XT compute nodes to

decrease the time to compile large codes.

 Dynamic shared libraries have an advantage over

static libraries in that they are shared libraries. A shared

library will have only one copy of its read-only

information in physical memory that can be shared among

multiple processes. This feature potentially reduces the

memory allocated for a program on a compute node. This

advantage becomes more important as the number of

available cores increases.

 Another advantage of dynamically linked executables

is that the system libraries can be upgraded and take effect

without the need to relink applications. The ability to

install library changes without having to rebuild a program

is a significant advantage in quickly addressing problems,

such as a security issue with a library code. The

experiences of system administrators have shown that

codes using dynamic shared libraries are more resilient to

system upgrades than codes using static libraries [1].

The support of dynamic linking allows codes that use

dynamic linking routines, such as dlopen, to execute on a

Cray XT. Dynamic linking allows users to add

functionality to a program without access to the source

code. Pluggable authentication modules (PAM) are an

example of the use of dynamic linking.

A benefit of the Cray XT implementing dynamic

shared libraries is that the medium memory model can now

be supported on the Cray XT. The AMD Opteron medium

memory model feature allows executables to address a

statically allocated memory space greater than 2 gigabytes.

The medium memory model is enabled by using the

compilers‟ -mcmodel=medium option. A statically linked

executable can only support the medium memory model if

and only if all the libraries it uses were also compiled with

the medium memory model option. The Cray XT

Programming Environment does not provide static versions

of libraries built with the medium memory model.

Dynamic shared libraries are not required to be built with

the -mcmodel=medium option to support this feature, so

this feature can be used in applications that are

dynamically linked.

The implementation of dynamic shared libraries will

allow tools that assume the use of dynamic executables to

be able to be used on the Cray XT. An example would be

the Valgrind suite of debugging and analysis tools.

Finally, an advantage of dynamically linked

executables is that they are smaller in size than statically

linked executables, so they will use less disk space.

2.2 Disadvantages of Dynamic Libraries

The main disadvantage of dynamic shared libraries is

the runtime performance costs of dynamic linking. Every

time the program is executed it has to perform a large part

of its linking process. The lookup of symbols in a dynamic

shared library is much less efficient than in static libraries.

The loading of a dynamic shared library during an

application‟s execution may result in a “jitter” effect where

a single process holds up the forward progress of other

processes of the application while it is loading a library.

CUG 2009 Proceedings 3 of 10

The use of dynamically linked executables has a

significant disadvantage in that they are not supported by

the CrayPat 5.0 performance tool. Support of analyzing

dynamically linked executables is a planned feature that

will be implemented in a future release of CrayPat.

An advantage of statically linked executables is that

they are guaranteed to run the same library code across all

systems. This helps prevents the behavior of an

application changing when a system is upgraded. This

feature of static libraries is helpful for sites that have a

certification process for their applications.

3.0 Cray XT DVS Shared Root Solution

The Cray XT implementation of dynamic shared

libraries will use Cray Data Virtualization Service (DVS)

to allow compute nodes to access a shared root filesystem

that contains the dynamic shared libraries. The DVS

server will access the shared root from the system‟s boot

node. Multiple DVS servers will run on dedicated Cray

XT nodes that will be used to serve a DVS client running

on the compute nodes. Using multiple DVS servers will

provide scalability and also failover capability. Figure 1

shows a diagram of the DVS shared root solution.

 Figure 1. DVS Shared Root Solution

 The shared root is read-only mounted via DVS to a

mount point on the compute node (e.g. /mnt). The parts

of the root filesystem required to be writable, such as /tmp

and /proc, are bind mounted from the compute node‟s

RAM/boot filesystem An application‟s access to the

shared root is coordinated by ALPS during the launch of

the application. When the aprun command is initiated,

ALPS will perform the following functions to launch the

application on the compute node:

1. fork

2. chroot to the shared root filesystem

3. setgid, setuid

4. chdir to the launch directory

5. exec the application

Figure 2 shows an illustration of the launch of an

application that uses the shared root.

 Figure 2. Startup of an Application

4.0 Implementation of Dynamic Shared

Libraries

The Cray XT Programming Environment

implementation of dynamic shared libraries will support

the building and executing of dynamically linked code. It

will also provide attributes of the current Cray XT

Programming Environment. Specifically, Cray XT users

will continue to be able to choose from several versions of

programming environment libraries for each of the

compiler environments.

4.1 Building a Dynamically Linked Executable

Creating a dynamically linked executable is very

similar to the existing Cray XT compilation process. The

use of programming environment modulefiles initializes

the build environment, which is used by compiler scripts to

link in the appropriate versions of the libraries. The

compiler scripts provided in the xt-asyncpe 2.5 product

will support the building of dynamically linked executables

and the building of dynamic shared libraries. The same

options for dynamic linking are used for all the compiler

programming environments supported by the Cray XT.

Note that Cray Compiler Environment (CCE) versions 7.0

and 7.1 will not support the building of dynamically linked

code. This feature is planned for a future release of CCE.

The following list shows the versions of Cray XT

Programming Environment components that provide

dynamic shared versions of their libraries:

 MPT 3.2 – Cray XT implementation of MPICH2 and

SHMEM libraries

 LibSci 10.3.4 – Cray Scientific libraries

CUG 2009 Proceedings 4 of 10

 FFTW 3.2.1 – MIT FFTW library

 ACML 4.0 – AMD Core Math Library

 PETSc 3.0.0.2 – ANL PETSc library

 hdf5_netcdf 1.2 – HDF5 1.8.2 and netCDF 4.0.0

dynamic shared libraries are provided. The Parallel

HDF5 and netCDF Parallel HDF5 builds do not

provide support for dynamic libraries.

 libfast_mv 1.0.3 - Fast_mv high performance math

library

The Cray XT compiler scripts use the –dynamic

compiler option to specify that dynamic shared libraries

should be used. When performing a dynamic link, the

compiler scripts will use the ld –rpath option for each of

the programming environment libraries. The –rpath

option adds the library‟s directory to the executable‟s ELF

header, which allows these specific libraries to be used at

runtime. The following example shows a Fortran program

being built with dynamic shared libraries:

$ cat hello_world.f90

program hello_world

 implicit none

 include "mpif.h"

 integer :: rank, ierr

 call MPI_INIT(ierr)

 call MPI_COMM_RANK(MPI_COMM_WORLD, &

 rank, ierr)

 print *, 'Hello World from rank ', rank

 call MPI_FINALIZE(ierr)

end program hello_world

$ ftn -dynamic hello_world.f90 –o hello_world

/opt/cray/xt-asyncpe/2.5/bin/ftn: INFO: linux target is

being used

$

 The compiler scripts also support the –static option to

explicitly specify the use of static libraries. The use of

static libraries is the default behavior of the compiler

scripts; however, it is possible that this will change in

future releases of CLE. The environment variable

XTPE_LINK_TYPE can be set to „dynamic‟ or „static‟ to

create a default setting for the user‟s environment.

The ldd utility is a useful tool to print out the shared

libraries required by an executable. The output shows the

dynamic shared libraries that a program will use when

executed. Any “file not found” messages indicate

libraries that could cause execution failures and will need

path definition using the LD_LIBRARY_PATH

environment variable. Appendix A shows the output of

ldd on the Fortran program example.

The dynamic shared library information contained in

the executable‟s ELF header can be shown by using the

readelf utility. The readelf –d option shows the

programming environment library directories placed in

the ELF header at link time. Appendix B shows the output

of readelf –d on the Fortran program example.

4.2 Executing a Dynamically Linked Executable

The process of executing a dynamically linked

executable on a Cray XT is similar to executing a statically

linked executable. A program built with dynamic shared

libraries provides the opportunity for the user to choose

which versions of the dynamic libraries that will be used at

run time. To better understand the execution of

dynamically linked code, it is important for the user to be

aware of the search order the dynamic linker uses when

loading a dynamic shared library:

1) The value of the environment variable

LD_LIBRARY_PATH

2) The value of the DT_RUNPATH dynamic section of

the executable. This is set by the linker with the use of

the ld –rpath option.

3) The contents of the cache file /etc/ld.so.cache.

4) The default path of /lib, and then /usr/lib.

A critical feature of the Cray XT Programming

Environment is that the programming environment

modulefiles modify the LD_LIBRARY_PATH

environment variable. The loading of a programming

environment modulefile will prepend the appropriate

library directory to LD_LIBRARY_PATH. The use of

modulefiles provides the user with an interface for

choosing the programming environment libraries at

runtime. Conversely, in order to ensure that the build time

libraries are executed; the programming environment

modulefiles need to be unloaded, or the environment

variable LD_LIBRARY_PATH needs to be unset.

The following shows the Fortran example being

executed with the libraries used at build time. The

command module purge unloads all modulefiles and

consequently clears out the value of the

LD_LIBRARY_PATH environment variable. The

program output shows that the build time version of the

MPICH2 library (3.1.2) is being used:

$ module swap xt-mpt xt-mpt/3.1.2

$ ftn –dynamic hello_world.f90 -o hello_world

/opt/cray/xt-asyncpe/2.5.4/bin/ftn: INFO: linux target is

being used

$ module purge

$ echo $LD_LIBRARY_PATH

$ export MPICH_VERSION_DISPLAY=1

$ aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.1.2 (ANL

base 1.0.6)

BUILD INFO : Built Mon Mar 16 10:55:48 2009 (svn rev

7308)

 Hello World from rank 0

CUG 2009 Proceedings 5 of 10

Application 2466916 resources: utime 0, stime 0

$

When using the programming environment

modulefiles to configure the run time versions of the

libraries, it is important that the modulefiles that are

loaded match the compiler that was used to build the

program. For example, if the Pathscale compiler was

used to build an application, then a module load PrgEnv-

pathscale must be performed when setting the

environment to execute the application. For programs

that are run in batch jobs, the appropriate programming

environment modulefile must be loaded in the batch

script, or the qsub –V option needs to be used to pass the

user‟s environment variables to the batch job. The

following shows how modulefiles can be used to change

the Fortran example from using the build time MPICH2

library (3.1.2) to a newer run time MPICH2 library

(3.2.0):

$ module load Base-Opts PrgEnv-pgi

$ module swap xt-mpt xt-mpt/3.2.0 Updates env.

 variable LD_LIBRARY_PATH

$ export MPICH_VERSION_DISPLAY=1

$ aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.2.0

(ANL base 1.0.6)

BUILD INFO : Built Tue Apr 7 13:24:56 2009 (svn rev

7351)

 Hello World from rank 0

Application 2452158 resources: utime 0, stime 0

$

The dynamic linker supports several environment

options to alter behavior or provide information of a

program‟s dynamic linking. One useful environment

variable is LD_BIND_NOW, which instructs the dynamic

linker to load all the dynamic libraries at startup. Another

helpful environment variable is LD_DEBUG, which

displays information about the dynamic linking process

during the execution of a program. Setting

LD_DEBUG=help provides a list of the types of

information that can be displayed.

4.3 Executing an ISV code

One of the main goals of supporting dynamic shared

libraries is to run ISV applications that are only released

as executables. When running an ISV application, it is

important to know the build compiler, so that the

appropriate programming environment modules can be

loaded. Programming environment libraries written in

Fortran and C++ are compiler specific, so they must

match the application‟s compile time environment, Also,

Fortran codes need to be able to find the appropriate

Fortran run time libraries; such as libpgftnrtl.so for PGI

codes, libgfortran.so for GCC gfortran codes, and

libpathfortran.so for Pathscale codes.

The application may come with its own dynamic

shared libraries that are needed by the application. If so,

these libraries can be placed in a compute node readable

location, such as a Lustre filesystem. When executing the

application, the LD_LIBRARY_PATH environment

variable needs to be modified to point to the location of the

application‟s dynamic shared libraries.

The applications CD-adapco STAR-CD and Exa

Powerflow have been executed on a Cray XT using

executables provided by the vendors. Both of the

applications were built using an MPICH1 library, which is

not compatible with the MPICH2 library that runs on the

Cray XT. In both cases, the vendors needed to provide

special versions of the applications built with a MPICH2

library. Once the vendors provided the applications linked

with a MPICH2 library, the applications were able to

successfully run on the Cray XT.

The DVS shared root solution has the side benefit for

the Cray XT of now fully supporting the “getpw” routines

(i.e. getpwuid, getpwnam). Prior to the shared root

solution, the getpw routines only got the limited

/etc/passwd information found on the compute node RAM

root filesystem.

4.4 Building a dynamic shared library

The Cray XT compiler scripts support the building of

dynamic shared libraries. The scripts pass the –shared

option to the linker to indicate that a dynamic shared

library is being built. It is important to clarify that both

static and dynamic libraries can be used in the same

executable. A user program that links in dynamic versions

of Cray XT programming environment libraries does not

have to link in dynamic shared versions of any libraries

that the program creates. Existing applications do not have

to convert their application‟s libraries to be dynamic shared

libraries in order to dynamically link with the

programming environment dynamic shared libraries.

Dynamic shared libraries that are created by a user

need be placed in directory that can be read by compute

nodes, such as a Lustre filesystem. The user may elect to

use –rpath to store the library‟s directory location in the

application‟s ELF header, or require that the environment

variable LD_LIBRARY_PATH be modified to point to the

location of the library. The following shows an example of

building a dynamic shared library on the Cray XT. Note

that all the compilers of the Cray XT will accept either

–fpic or -fPIC as options to build position independent

code that is required for dynamic shared libraries.

$ cat test.f

 subroutine shared_lib_test

 print *,'In libtest version 0.0'

 endsubroutine

CUG 2009 Proceedings 6 of 10

$ ftn -c -fpic test.f

/opt/cray/xt-asyncpe/2.5.4/bin/ftn: INFO: linux target is

being used

$ ftn –shared -Wl,-soname=libtest.so.0 -o libtest.so.0.0

test.o
/opt/cray/xt-asyncpe/2.5.4/bin/ftn: INFO: linux target is

being used

$ /sbin/ldconfig –n .

$ ln -s libtest.so.0.0 libtest.so

$ cat main.f

 program test

 call shared_lib_test()

 endprogram

$ ftn –dynamic -L<library-directory> -ltest

-Wl,-rpath=<library-directory> main.f

/opt/cray/xt-asyncpe/2.5.4/bin/ftn: INFO: linux target is

being used

$ aprun –n 1 ./a.out

In libtest version 0.0

$

4.4 Differences from Linux Implementation

The Cray XT Programming Environment

implementation of dynamic shared libraries differs than

the usual method dynamic shared libraries are typically

installed on Linux systems. The Linux model is that

dynamic shared libraries are installed in only a handful of

directories and that only the latest version of a library‟s

major release is kept on the system. One reason that the

Cray XT uses separate directories for each version of the

programming environment libraries is that separate

versions are required for each of the compilers supported

on the Cray XT. For example, a separate Cray Scientific

Library libsci.so is required for the PGI, Pathscale, and

GCC compilers. Also, Cray XT users are accustomed to

having multiple version levels of programming

environment libraries available on the system, so a library

is not automatically removed when a newer version of

that library is installed on the system.

The Cray XT Programming Environment also differs

in its use of the LD_LIBARY_PATH and the –rpath

option. These features of the dynamic linker are not

commonly used by applications running on Linux. The

Cray XT Programming Environment uses these features

in order to provide the flexibility of either using the build

time libraries or being able to easily choose other versions

to use as the run time libraries.

5.0 Future Opportunities

The support of dynamic shared libraries on the Cray

XT is in the initial part of its development, so there are

several issues that can be further investigated to enhance

the use of dynamic shared libraries with the Cray XT

programming environment.

5.1 Performance of Dynamically Linked Applications

 It is generally accepted that statically linked

applications will perform slightly better than dynamically

linked applications [1][3]. The performance differences of

dynamically linked code versus statically linked code

needs to be measured and investigated, so that guidance

can be provided to the user on how to optimize the

execution of their application. Also, there are strategies on

the optimization of dynamic shared libraries that may be

able to be applied to the Cray XT programming

environment libraries [2][4].

5.2 Default versions of the Cray XT Programming

Environment Libraries

 The current implementation uses the application‟s ELF

header or the value of LD_LIBRARY_PATH to provide

the location of the programming environment dynamic

shared libraries. Further testing can determine the viability

of providing default versions of programming environment

libraries in a single directory location. For example, it may

be possible that the GCC version of the MPICH2 library

libmpich.so is sufficient to use with the majority of

applications, even those applications not compiled with

GCC. If so, this version of libmpich.so could be moved to

a default directory location and this directory name would

be added to the file /etc/ld.so.conf. This action would

allow applications that require the libmpich.so library to

execute without having the directory of the library in the

applications ELF header or included in the

LD_LIBRARY_PATH environment variable.

 The /etc/ld.so.conf file could also be used to add the

location of the compiler‟s run time libraries. For example,

when the latest PGI compiler is installed, the installation

process would add the location of its run time libraries (i.e.

libpgftnrtl.so) to /etc/ld.so.conf, and then proceed to run

ldconfig to initialize /etc/ld.so.cache. Many Cray XT sites

have a testing period before making a compiler version the

default on the system, so the installation procedure would

need to account for this case.

5.3 User and Application Provided Dynamic Shared

Libraries

Users and applications will want to install dynamic

libraries so that they can be used by other users. One

solution is to use a directory, such as /usr/local/lib64, for

these types of libraries. The procedure used to solve this

issue will need to be determined and documented.

5.3 Support of Common Linux Cluster Dynamic Shared

Libraries

The experience of running ISV provided application

executables has shown that additional libraries may need to

be supported to further increase the number of available

ISV applications that can run on the Cray XT. Both the

STAR-CD and Powerflow applications required a

CUG 2009 Proceedings 7 of 10

MPICH1 library. A possible solution is to provide header

files and libraries that map the MPICH1 functions to the

MPICH2 functions currently available in the Cray XT

Programming Environment. The HP-MPI library is

another library that would be helpful to make available on

the Cray XT.

6.0 Conclusion

The Cray XT Programming Environment

implementation of dynamic shared libraries provides

support for building and executing dynamically linked

codes. As part of it implementation, it also provides the

following features:

 Capability to run the executable with the build time

versions of the programming environment libraries.

 Supports compiler specific programming

environment libraries that can be configured at run

time.

 Provides an interface to easily choose specific

versions of the programming environment libraries to

use at run time.

The Cray XT Programming Environment

implementation of dynamic shared libraries is in its early

stages of its development process and will continue to

evolve to enhance the Cray XT application runtime

environment.

Acknowledgments

 The authors thank Cray software development and

the Cray performance team for valuable technical

information and consultation. Specifically, we would like

to thank Wayne Ohlrich, Ting-Ting Zhu, and David

Whitaker.

About the Authors

Geir Johansen works in Software Product Support,

Cray Inc. He is responsible for support of Cray

Programming Environment software for the Cray X1,

Cray XT, Cray X2, and Cray XMT platforms. He can be

reached at Cray Inc., 1340 Mendota Heights Road,

Mendota Heights, MN 55120, USA; Email:

geir@cray.com

Barb Mauzy works in Software Development for

Cray Inc. She develops compiler drivers and other parts

of the Cray Programming Environment interconnect for

all Cray platforms. She can be reached at Cray Inc., 1340

Mendota Heights Road, Mendota Heights, MN 55120,

USA; Email: bam@cray.com

References

[1] Levine, John R.. Linkers and Loaders. Morgan-

Kauffman, 1999.

[2] Drepper, Ulrich. “How to Write Shared Libraries”,

http://people.redhat.com/drepper/dsohowto.pdf , 2006.

[3] Wheeler, David A.. Program Library HOWTO,

http://tldp.org/HOWTO/Program-Library-

HOWTO/index.html , 2003.

[4] Dynamic Library Programming Topics.

http://developer.apple.com/documentation/DeveloperTools

/Conceptual/DynamicLibraries/Dynamic_Libraries.pdf ,

Apple Inc., 2009.

mailto:geir@cray.com
mailto:bam@cray.com
http://people.redhat.com/drepper/dsohowto.pdf
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://developer.apple.com/documentation/DeveloperTools/Conceptual/DynamicLibraries/Dynamic_Libraries.pdf
http://developer.apple.com/documentation/DeveloperTools/Conceptual/DynamicLibraries/Dynamic_Libraries.pdf

CUG 2009 Proceedings 8 of 10

 Appendix A

 Example Output of ldd Utility

$ ldd hello_world

 libportals.so.1 => /opt/cray/portals/2.2-1.0000.16519.93.1/lib64/libportals.so.1 (0x00002b3e36273000)

 libcr.so.0 => /opt/cray/blcr/0.7.3-1.0000.191.9.3/lib64/libcr.so.0 (0x00002b3e3637c000)

 libdl.so.2 => /lib64/libdl.so.2 (0x00002b3e3649d000)

 libpthread.so.0 => /lib64/libpthread.so.0 (0x00002b3e365a1000)

 libsci.so => /opt/xt-libsci/10.3.3/pgi/snos64/lib/libsci.so (0x00002b3e366b8000)

 libsma.so => /opt/mpt/3.1.2/xt/sma/lib/libsma.so (0x00002b3e4786e000)

 libmpichf90.so.1.1 => /opt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpichf90.so.1.1 (0x00002b3e47997000)

 libmpich.so.1.1 => /opt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpich.so.1.1 (0x00002b3e47a99000)

 librt.so.1 => /lib64/librt.so.1 (0x00002b3e47d49000)

 libpmi.so => /opt/mpt/3.1.2/xt/pmi/lib/libpmi.so (0x00002b3e47e52000)

 libalpslli.so.0 => /opt/mpt/3.1.2/xt/util/lib/libalpslli.so.0 (0x00002b3e47f65000)

 libalpsutil.so.0 => /opt/mpt/3.1.2/xt/util/lib/libalpsutil.so.0 (0x00002b3e48068000)

 libm.so.6 => /lib64/libm.so.6 (0x00002b3e4816b000)

 libc.so.6 => /lib64/libc.so.6 (0x00002b3e482c0000)

 /lib64/ld-linux-x86-64.so.2 (0x00002b3e36157000)

$

CUG 2009 Proceedings 9 of 10

 Appendix B

 Example Output of readelf –d

$ readelf -d hello_world

Dynamic section at offset 0x49078 contains 34 entries:

 Tag Type Name/Value

 0x0000000000000001 (NEEDED) Shared library: [libsci.so]

 0x0000000000000001 (NEEDED) Shared library: [libfftw3.so.3]

 0x0000000000000001 (NEEDED) Shared library: [libfftw3f.so.3]

 0x0000000000000001 (NEEDED) Shared library: [libsma.so]

 0x0000000000000001 (NEEDED) Shared library: [libmpichf90.so.1.1]

 0x0000000000000001 (NEEDED) Shared library: [libmpich.so.1.1]

 0x0000000000000001 (NEEDED) Shared library: [librt.so.1]

 0x0000000000000001 (NEEDED) Shared library: [libpmi.so]

 0x0000000000000001 (NEEDED) Shared library: [libalpslli.so.0]

 0x0000000000000001 (NEEDED) Shared library: [libalpsutil.so.0]

 0x0000000000000001 (NEEDED) Shared library: [libpthread.so.0]

 0x0000000000000001 (NEEDED) Shared library: [libm.so.6]

 0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

 0x000000000000000f (RPATH) Library rpath: [/opt/xt-libsci/10.3.4/pgi/lib:/opt/xt-

libsci/10.3.4/pgi/snos64/lib:/opt/fftw/3.2.1/lib:/opt/mpt/3.2.0.1/xt/sma/lib:/opt/mpt/3.2.0.1/xt/util/lib:/opt/mpt/3.2.0.1/xt/pmi/li

b:/opt/pgi/8.0.5/linux86-64/8.0-5/lib]

 0x000000000000001d (RUNPATH) Library runpath: [/opt/xt-libsci/10.3.4/pgi/lib:/opt/xt-

libsci/10.3.4/pgi/snos64/lib:/opt/fftw/3.2.1/lib:/opt/mpt/3.2.0.1/xt/sma/lib:/opt/mpt/3.2.0.1/xt/util/lib:/opt/mpt/3.2.0.1/xt/pmi/li

b:/opt/pgi/8.0.5/linux86-64/8.0-5/lib]

 0x000000000000000c (INIT) 0x403490

 0x000000000000000d (FINI) 0x43b784

 0x0000000000000004 (HASH) 0x400258

 0x0000000000000005 (STRTAB) 0x401df8

 0x0000000000000006 (SYMTAB) 0x4008f8

 0x000000000000000a (STRSZ) 2804 (bytes)

 0x000000000000000b (SYMENT) 24 (bytes)

 0x0000000000000015 (DEBUG) 0x0

 0x0000000000000003 (PLTGOT) 0x5492f8

CUG 2009 Proceedings 10 of 10

 0x0000000000000002 (PLTRELSZ) 2256 (bytes)

 0x0000000000000014 (PLTREL) RELA

 0x0000000000000017 (JMPREL) 0x402bc0

 0x0000000000000007 (RELA) 0x402b30

 0x0000000000000008 (RELASZ) 144 (bytes)

 0x0000000000000009 (RELAENT) 24 (bytes)

 0x000000006ffffffe (VERNEED) 0x402ab0

 0x000000006fffffff (VERNEEDNUM) 4

 0x000000006ffffff0 (VERSYM) 0x4028ec

 0x0000000000000000 (NULL) 0x0

