
Geir Johansen
May 6, 2009



 Present how dynamic share libraries are implemented 
in the Cray XT Programming Environment

 How to build a dynamically linked executable

 How to execute a dynamically linked executable

 How to run an executable not built using the Cray XT 
Programming Environment

 The Cray XT system design used for supporting dynamic 
libraries is briefly discussed, but not in great detail

5/6/2009 2



 Advantages/disadvantages of dynamic shared libraries

 Brief description of the Cray XT system implementation of 
dynamic shared libraries

 Building an executable with dynamic shared libraries

 Executing a dynamically linked program

 Executing a program not built with the Cray XT Programming 
Environment

 Creating a dynamic shared library

5/6/2009 3



 Significantly increase the number of applications that can run 
of the Cray XT

 Many ISVs only release executables

 Dynamically linked utilities can run on compute nodes

 Python

 Compilers

 Libraries can be upgraded without rebuilding applications

 Linux provides method for backward compatibility

5/6/2009 4



 Dynamic shared libraries are shared in physical memory 
across processes

 More important as the number of cores increases

 Medium memory model is supported

 Allows data sections to be larger than 2 gigabytes

 Use of dynamic linking routines (dlopen) supported

 Support of more tools, such as Valgrind

 Dynamically linked executables are smaller in size

5/6/2009 5



 Performance versus statically linked codes

 Linking process performed on every run

 Looking up symbols in dynamic library is less efficient

 Potential “jitter” from loading a library

 CrayPat 5.0 analysis tool does not currently support dynamic 
shared libraries

 Feature is planned for a future release

 Statically linked executables are guaranteed to run the same 
library code across all systems.

5/6/2009 6



Shared

Root

NFS client

DVS server

Boot Node

NFS server

NFS client

DVS server

NFS client

DVS server
…...…

CN CN CN…. CN CN CN….CN CN CN….

5/6/2009 7



RAM/Boot root

ALPS

Application

Shared Root

fork

chroot

setuid

chdir

exec

Mount via DVS

-mount point (e.g. /mnt)

-read only

Bind mounts:

/tmp

/var

/proc

/dev

/sys

/lustre/*,  /dvs/*

5/6/2009 8



 Support both the existing Cray Programming Environment 
model and the Linux model of handling libraries

 Continue to allow library versions to be chosen at build 
time

 Provide accessibility to many library versions

 Provide specific Programming Environment libraries for 
each compiler.

 Allow library versions to be easily chosen at execution time

 Simple process for running non-Cray XT built executables 
on the Cray XT.

5/6/2009 9



 Same process is used for all Cray XT Programming 
Environments:  PGI, Pathscale, GCC

 The compiler scripts in xt-asyncpe 2.5 support:

 Building a dynamically linked executable

 Building a dynamic shared library

 Use of modulefiles determine your build environment

 Cray Compiler Environment (CCE) 7.1 will not support 
dynamic libraries

 Feature is planned for a future release

5/6/2009 10



 MPT 3.2 

 LibSci 10.3.4

 FFTW 3.2.1

 ACML 4.0

 PETSc 3.0.0.2

 Hdf5_netcdf 1.2 - HDF5 1.8.2, netCDF 4.0.0

 Parallel HDF5 and netCDF Parallel HDF5 do not provide a 
build for dynamic libraries

 Libfast_mv 1.0.3

5/6/2009 11



 Compiler script –dynamic option:

 $ ftn –dynamic hello_world.f

 The –dynamic option uses the ld –rpath option to add the 
exact location of the libraries to the program’s ELF header

 The –static option can be used to explicitly specify a static build

 Default behavior is static, but could change in the future

 The environment variable XTPE_LINK_TYPE can be set to 
dynamic or static to create a default setting for the shell

 ldd utility shows the shared libraries required by the 
executable

 readelf –d a.out shows the libraries used to build the  
executable 

5/6/2009 12



$ ldd a.out

libportals.so.1 => /opt/cray/portals/2.2-1.0000.16519.93.1/lib64/libportals.so.1 (0x00002b3e36273000)

libcr.so.0 => /opt/cray/blcr/0.7.3-1.0000.191.9.3/lib64/libcr.so.0 (0x00002b3e3637c000)

libdl.so.2 => /lib64/libdl.so.2 (0x00002b3e3649d000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00002b3e365a1000)

libsci.so => /opt/xt-libsci/10.3.3/pgi/snos64/lib/libsci.so (0x00002b3e366b8000)

libsma.so => /opt/mpt/3.1.2/xt/sma/lib/libsma.so (0x00002b3e4786e000)

libmpichf90.so.1.1 => /opt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpichf90.so.1.1 (0x00002b3e47997000)

libmpich.so.1.1 => /opt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpich.so.1.1 (0x00002b3e47a99000)

librt.so.1 => /lib64/librt.so.1 (0x00002b3e47d49000)

libpmi.so => /opt/mpt/3.1.2/xt/pmi/lib/libpmi.so (0x00002b3e47e52000)

libalpslli.so.0 => /opt/mpt/3.1.2/xt/util/lib/libalpslli.so.0 (0x00002b3e47f65000)

libalpsutil.so.0 => /opt/mpt/3.1.2/xt/util/lib/libalpsutil.so.0 (0x00002b3e48068000)

libm.so.6 => /lib64/libm.so.6 (0x00002b3e4816b000)

libc.so.6 => /lib64/libc.so.6 (0x00002b3e482c0000)

/lib64/ld-linux-x86-64.so.2 (0x00002b3e36157000)

$ 

5/6/2009 13



 The dynamic linker searches for a library in the 
following order:

1. The value of the environment variable 
LD_LIBRARY_PATH

2. The value of the DT_RUNPATH dynamic section of 
the executable.  This is set by the linker with the 
use of the ld –rpath option

3. The contents of the cache file /etc/ld.so.cache

4. The default path of /lib, and then /usr/lib

5/6/2009 14



 * The Cray Programming Environment modulefiles initialize 
the LD_LIBRARY_PATH environment variable *

 To execute using the build libraries, unload PrgEnv module 
and/or unset LD_LIBRARY_PATH

 To choose runtime library versions, load appropriate PrgEnv
module

 Need to know compiler used to build the application.  If built 
with PGI, then module load PrgEnv-pgi

 For batch jobs, the PrgEnv modulefile needs to be loaded in 
the batch script, or the batch job needs to be submitted with 
the qsub –V option

 Dynamic linker environment variables

 LD_BIND_NOW - Load all dynamic libraries at startup

 LD_DEBUG -Set LD_DEBUG=help for a list of options
5/6/2009 15



$ module swap xt-mpt xt-mpt/3.1.2

$ ftn –dynamic hello_world.f90 -o hello_world

/opt/cray/xt-asyncpe/2.5.4/bin/ftn: INFO: linux target is being used

$ module purge

$echo $LD_LIBRARY_PATH

$ export MPICH_VERSION_DISPLAY=1

$ aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.1.2 (ANL base 1.0.6)

BUILD INFO  : Built Mon Mar 16 10:55:48 2009 (svn rev 7308)

Hello World from rank             0

Application 2466916 resources: utime 0, stime 0

$

5/6/2009 16



$ module load Base-Opts PrgEnv -pgi

$ module swap xt-mpt xt-mpt/3.2.0

$ echo $LD_LIBRARY_PATH

/opt/xt-pe/2.1.50HD_PS06/lib:/opt/mpt/3.2.0.1/xt/mpich2-
pgi/lib:/opt/mpt/3.2.0.1/xt/util/lib:/opt/mpt/3.2.0.1/xt/pmi/lib:/opt/mpt/3
.2.0.1/xt/sma/lib:/opt/xt-libsci/10.3.4/pgi/lib:/opt/pgi/8.0.5/linux86-
64/8.0/libso:/opt/pgi/8.0.5/linux86-64/8.0/lib:/opt/xt-
os/2.1.50HD_PS06/lib:/opt/xt-libc/2.1.50HD_PS06/amd64/lib y/xt-
asyncpe/2.5.4/bin/ftn: INFO: linux target is being used

$ aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.2.0-pre (ANL base 1.0.6)

BUILD INFO  : Built Mon Apr  6 18:24:16 2009 (svn rev 7351)

Hello World from rank             0

Application 2466917 resources: utime 0, stime 0

$
5/6/2009 17



 Determine the build compiler, then load the appropriate 
PrgEnv modulefile

 Fortran and C++ libraries are compiler specific

 For Fortran, need to find the compiler’s run time libraries
 PGI example: libpgftnrtl.so

 GCC gfortran example: libgfortran.so

 Pathscale example:  libpathfortran.so

 If a batch job, either the modulefile needs to be loaded in the 
batch script or the job must be submitted with qsub –V option

 Set the LD_LIBRARY_PATH to point to any dynamic libraries 
included with the application.

5/6/2009 18



 CD-adapco STAR-CD and Exa Powerflow have been executed 
on a Cray XT using executables provided by the vendor.

 Both of the applications were built with MPICH1, so both of 
the vendors needed to provide a special version of the 
application built with a MPICH2 library.

 The DVS shared root solution had the benefit of fully 
supporting the getpw routines (getpwuid, getpwnam) that 
were used by the applications. 

5/6/2009 19



 Program can contain both dynamic and shared libraries.

 Don’t need to convert existing application libraries 

 Cray XT compilers support both the –fpic and –fPIC options.

 Compiler scripts support the –shared option for creating a 
dynamic shared libraries

 Library should be placed in a compute node accessible 
directory (i.e. lustre).

 Set LD_LIBRARY_PATH to point to the library directory at 
runtime, or use ld –rpath option to store library directory in 
executable

5/6/2009 20



$ cc -c -fpic test.c

/opt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used

$ cc -shared test.o -Wl,-soname=libtest.so.0 -o libtest.so.0.0

/opt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used

$ /sbin/ldconfig -n .

$ ln -s libtest.so.0.0 libtest.so

$ cc –dynamic –L<library-directory> -ltest –Wl,-rpath=<library-directory> 
main.c

/opt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used

$

5/6/2009 21



 Libraries  not placed in one directory location

 Cray PE libraries have a version for each supported 
compiler.  For example, there is a separate libmpich.so for 
the PGI, Pathscale, and GCC compilers.

 Linux usually only keeps the latest major version of each 
library;  Cray makes multiple versions available

 The library versions used during the build process are 
preserved in the executable’s ELF header

 The use of modulefiles provides an easy interface to modify 
the LD_LIBRARY_PATH environment variable

5/6/2009 22



 Measure the performance differences of statically linked and 
dynamically linked codes.

 Provide default versions of Programming Environment libraries

 Possibility that the GCC version of the libmpich.so library is 
sufficient to use with the majority of applications. 

 Use of the /etc/ld.so.conf file and ldconfig command to 
point to Cray XT Programming Environment dynamic shared 
libraries.

 Procedure for supporting user and application provided 
dynamic shared libraries (i.e. /usr/local/lib)

 Support of common Linux cluster dynamic shared libraries 
(MPICH1, HP-MPI)

5/6/2009 23



 The Cray XT Programming Environment implementation of 
dynamic shared libraries provides support for building and 
executing dynamically linked codes.  It also has the following 
features:

• Allows the user to run the executable with the build time 
programming environment libraries

• Supports specific programming environment libraries for 
each of the compilers 

• Provides a method to easily choose a version of the 
programming environment libraries at runtime

5/6/2009 24




