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Goals of the Presentation

e Present how dynamic share libraries are implemented
in the Cray XT Programming Environment

* How to build a dynamically linked executable

e How to execute a dynamically linked executable

e How to run an executable not built using the Cray XT
Programming Environment

e The Cray XT system design used for supporting dynamic
libraries is briefly discussed, but not in great detail
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Outline
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Advantages/disadvantages of dynamic shared libraries

Brief description of the Cray XT system implementation of
dynamic shared libraries

Building an executable with dynamic shared libraries
Executing a dynamically linked program

Executing a program not built with the Cray XT Programming
Environment

Creating a dynamic shared library



Advantages of Dynamic Shared Libraries — ™

e Significantly increase the number of applications that can run
of the Cray XT

e Many ISVs only release executables

e Dynamically linked utilities can run on compute nodes
e Python
e Compilers

e Libraries can be upgraded without rebuilding applications
e Linux provides method for backward compatibility
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Advantages of Dynamic Shared Libraries
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Dynamic shared libraries are shared in physical memory
across processes

e More important as the number of cores increases

Medium memory model is supported
e Allows data sections to be larger than 2 gigabytes

Use of dynamic linking routines (dlopen) supported
Support of more tools, such as Valgrind
Dynamically linked executables are smaller in size
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Disadvantages of Dynamic Shared Libraries

e Performance versus statically linked codes
e Linking process performed on every run
e Looking up symbols in dynamic library is less efficient
e Potential “jitter” from loading a library
e CrayPat 5.0 analysis tool does not currently support dynamic
shared libraries
e Feature is planned for a future release

e Statically linked executables are guaranteed to run the same
library code across all systems.
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Cray XT DVS Shared Root Solution e —
Shared Boot Node
Root NFS server
NFS client NFS client NFS client
DVS server DVSserver| 77777 DVS server
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Compute Node Application Startup

ALPS

fork
chroot
setuid
chdir

exec
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RAM/Boot root

Mount via DVS
-mount point (e.g. /mnt)
-read only

Bind mounts:
ltmp

Ivar

/proc

/dev

/sys

/lustre/*, [dvs/*

Shared Root

Application




Goal of the Cray PE DSO Implementation

e Support both the existing Cray Programming Environment
model and the Linux model of handling libraries

e Continue to allow library versions to be chosen at build
time
e Provide accessibility to many library versions

* Provide specific Programming Environment libraries for
each compiler.

* Allow library versions to be easily chosen at execution time

* Simple process for running non-Cray XT built executables
on the Cray XT.
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Building a Dynamically Linked Executable
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Same process is used for all Cray XT Programming
Environments: PGlI, Pathscale, GCC
The compiler scripts in xt-asyncpe 2.5 support:

e Building a dynamically linked executable

e Building a dynamic shared library

Use of modulefiles determine your build environment

Cray Compiler Environment (CCE) 7.1 will not support
dynamic libraries

* Feature is planned for a future release
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Cray XT Library Releases Supporting DSOs

e MPT 3.2

e LibSci 10.3.4
e FFTW 3.2.1

e ACMLA.0

e PETSc3.0.0.2

e Hdf5_netcdf 1.2 - HDF5 1.8.2, netCDF 4.0.0

e Parallel HDF5 and netCDF Parallel HDF5 do not provide a
build for dynamic libraries

e Libfast_ mv 1.0.3
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Linking a Dynamically Linked Executable
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Compiler script —dynamic option:
e S ftn —dynamic hello_world.f

The —dynamic option uses the ld =rpath option to add the
exact location of the libraries to the program’s ELF header

The =static option can be used to explicitly specify a static build
e Default behavior is static, but could change in the future

The environment variable XTPE_LINK_TYPE can be set to
dynamic or static to create a default setting for the shell

Idd utility shows the shared libraries required by the
executable

readelf —d a.out shows the libraries used to build the
executable
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Sample |dd output
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S Idd a.out

libportals.so.1 => /opt/cray/portals/2.2-1.0000.16519.93.1/lib64/libportals.so.1 (0x00002b3e36273000)
libcr.so.0 => /opt/cray/blcr/0.7.3-1.0000.191.9.3/lib64/libcr.so0.0 (0x00002b3e3637c000)

libdl.s0.2 => /lib64/libdl.so0.2 (0x00002b3e3649d000)

libpthread.so.0 => /lib64/libpthread.so0.0 (0x00002b3e365a1000)

libsci.so => /opt/xt-libsci/10.3.3/pgi/snos64/lib/libsci.so (0x00002b3e366b8000)

libsma.so => /opt/mpt/3.1.2/xt/sma/lib/libsma.so (0x00002b3e4786e000)

libmpichf90.s0.1.1 => Jopt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpichf90.s0.1.1 (0x00002b3e47997000)
libmpich.so.1.1 => /opt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpich.so.1.1 (0x00002b3e47a99000)
librt.so.1 => /lib64/librt.so.1 (0x00002b3e47d49000)

libpmi.so => /opt/mpt/3.1.2/xt/pmi/lib/libpmi.so (0x00002b3e47e52000)

libalpslli.so.0 => /opt/mpt/3.1.2/xt/util/lib/libalpslli.s0.0 (0x00002b3e47f65000)

libalpsutil.s0.0 => /opt/mpt/3.1.2/xt/util/lib/libalpsutil.s0.0 (0x00002b3e48068000)

libm.so.6 => /lib64/libm.so.6 (0x00002b3e4816b000)

libc.so.6 => /lib64/libc.so.6 (0x00002b3e482c0000)

/lib64/1d-linux-x86-64.s50.2 (0x00002b3e36157000)
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Dynamic Shared Library Search Order

e The dynamic linker searches for a library in the
following order:
1. The value of the environment variable
LD LIBRARY_PATH

2. The value of the DT_RUNPATH dynamic section of
the executable. This is set by the linker with the
use of the Ild —rpath option

3. The contents of the cache file /etc/Id.so.cache
4. The default path of /lib, and then /usr/lib
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Running a Dynamically Linked Executable

e * The Cray Programming Environment modaulefiles initialize
the LD_LIBRARY_PATH environment variable *

e To execute using the build libraries, unload PrgEnv module
and/or unset LD_LIBRARY_PATH

e To choose runtime library versions, load appropriate PrgEnv
module
* Need to know compiler used to build the application. If built
with PGI, then module load PrgEnv-pgi
* For batch jobs, the PrgEnv modulefile needs to be loaded in
the batch script, or the batch job needs to be submitted with
the gsub -V option
* Dynamic linker environment variables
* LD_BIND_NOW - Load all dynamic libraries at startup
* LD_DEBUG -Set LD _DEBUG=help for a list of options
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Case 1: Using the build libraries

S module swap xt-mpt xt-mpt/3.1.2

S ftn —dynamic hello_world.f90 -o hello_world
Jopt/cray/xt-asyncpe/2.5.4/bin/ftn: INFO: linux target is being used
S module purge

$echo SLD_LIBRARY_PATH

S export MPICH_VERSION_DISPLAY=1

S aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.1.2 (ANL base 1.0.6)
BUILD INFO : Built Mon Mar 16 10:55:48 2009 (svn rev 7308)

Hello World from rank 0
Application 2466916 resources: utime 0, stime O
S
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Case 2: Configuring library versions at runtime

S module load Base-Opts PrgEnv -pgi
S module swap xt-mpt xt-mpt/3.2.0
S echo SLD_LIBRARY_PATH

Jopt/xt-pe/2.1.50HD_PS06/lib:/opt/mpt/3.2.0.1/xt/mpich2-
pgi/lib:/opt/mpt/3.2.0.1/xt/util/lib:/opt/mpt/3.2.0.1/xt/pmi/lib:/opt/mpt/3
.2.0.1/xt/sma/lib:/opt/xt-libsci/10.3.4/pgi/lib:/opt/pgi/8.0.5/linux86-
64/8.0/libso:/opt/pgi/8.0.5/linux86-64/8.0/lib:/opt/xt-
0s/2.1.50HD_PS06/lib:/opt/xt-libc/2.1.50HD_PS06/amd64/lib y/xt-
asyncpe/2.5.4/bin/ftn: INFO: linux target is being used

S aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.2.0-pre (ANL base 1.0.6)
BUILD INFO : Built Mon Apr 6 18:24:16 2009 (svn rev 7351)

Hello World from rank 0

Application 2466917 resources: utime 0, stime O

S
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Running an ISV executable

e Determine the build compiler, then load the appropriate
PrgEnv modulefile

* Fortran and C++ libraries are compiler specific

e For Fortran, need to find the compiler’s run time libraries
e PGl example: libpgftnrtl.so
e GCC gfortran example: libgfortran.so
e Pathscale example: libpathfortran.so

e |f a batch job, either the modulefile needs to be loaded in the
batch script or the job must be submitted with gsub —V option

e Set the LD LIBRARY_PATH to point to any dynamic libraries
included with the application.
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Real life ISV Examples

e CD-adapco STAR-CD and Exa Powerflow have been executed
on a Cray XT using executables provided by the vendor.

e Both of the applications were built with MPICH1, so both of
the vendors needed to provide a special version of the
application built with a MPICH?2 library.

e The DVS shared root solution had the benefit of fully
supporting the getpw routines (getpwuid, getpwnam) that
were used by the applications.
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Building a Dynamic Shared Library

® Program can contain both dynamic and shared libraries.
* Don’t need to convert existing application libraries
e Cray XT compilers support both the —fpic and —fPIC options.

e Compiler scripts support the —shared option for creating a
dynamic shared libraries

e Library should be placed in a compute node accessible
directory (i.e. lustre).

e Set LD LIBRARY_PATH to point to the library directory at
runtime, or use Id —rpath option to store library directory in
executable
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Building a Dynamic Shared Library

S cc -c -fpic test.c

/opt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used
S cc -shared test.o -WI,-soname=libtest.so0.0 -o libtest.s0.0.0
Jopt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used
S /sbin/ldconfig -n .

S In -s libtest.so0.0.0 libtest.so

S cc —dynamic —L<library-directory> -Itest ~WI,-rpath=<library-directory>
main.c

Jopt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used
S
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Differences from Linux model support of DSOs

e Libraries not placed in one directory location

e Cray PE libraries have a version for each supported
compiler. For example, there is a separate libmpich.so for
the PGI, Pathscale, and GCC compilers.

e Linux usually only keeps the latest major version of each
library; Cray makes multiple versions available

e The library versions used during the build process are
preserved in the executable’s ELF header

e The use of modulefiles provides an easy interface to modify
the LD _LIBRARY_PATH environment variable
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Open Opportunities

e Measure the performance differences of statically linked and
dynamically linked codes.
e Provide default versions of Programming Environment libraries

e Possibility that the GCC version of the libmpich.so library is
sufficient to use with the majority of applications.

» Use of the /etc/Id.so.conf file and Idconfig command to
point to Cray XT Programming Environment dynamic shared
libraries.

® Procedure for supporting user and application provided
dynamic shared libraries (i.e. /usr/local/lib)

e Support of common Linux cluster dynamic shared libraries
(MPICH1, HP-MPI)
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Conclusion

e The Cray XT Programming Environment implementation of
dynamic shared libraries provides support for building and

executing dynamically linked codes. It also has the following
features:

« Allows the user to run the executable with the build time
programming environment libraries

« Supports specific programming environment libraries for
each of the compilers

« Provides a method to easily choose a version of the
programming environment libraries at runtime
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