Cray XT Programming Environment's
Implementation of Dynamic
Shared Libraries

Geir Johansen
May 6, 2009

Goals of the Presentation

e Present how dynamic share libraries are implemented
in the Cray XT Programming Environment

* How to build a dynamically linked executable

e How to execute a dynamically linked executable

e How to run an executable not built using the Cray XT
Programming Environment

e The Cray XT system design used for supporting dynamic
libraries is briefly discussed, but not in great detail

5/6/2009 5

Outline

5/6/2009

Advantages/disadvantages of dynamic shared libraries

Brief description of the Cray XT system implementation of
dynamic shared libraries

Building an executable with dynamic shared libraries
Executing a dynamically linked program

Executing a program not built with the Cray XT Programming
Environment

Creating a dynamic shared library

Advantages of Dynamic Shared Libraries — ™

e Significantly increase the number of applications that can run
of the Cray XT

e Many ISVs only release executables

e Dynamically linked utilities can run on compute nodes
e Python
e Compilers

e Libraries can be upgraded without rebuilding applications
e Linux provides method for backward compatibility

5/6/2009

Advantages of Dynamic Shared Libraries

5/6/2009

HHHHHHHHHHHHHHHHHHHHHHH

Dynamic shared libraries are shared in physical memory
across processes

e More important as the number of cores increases

Medium memory model is supported
e Allows data sections to be larger than 2 gigabytes

Use of dynamic linking routines (dlopen) supported
Support of more tools, such as Valgrind
Dynamically linked executables are smaller in size

CCRRASY

THE SUPERCOMPUTER COMP,

Disadvantages of Dynamic Shared Libraries

e Performance versus statically linked codes
e Linking process performed on every run
e Looking up symbols in dynamic library is less efficient
e Potential “jitter” from loading a library
e CrayPat 5.0 analysis tool does not currently support dynamic
shared libraries
e Feature is planned for a future release

e Statically linked executables are guaranteed to run the same
library code across all systems.

5/6/2009 6

Cray XT DVS Shared Root Solution e —
Shared Boot Node
Root NFS server
NFS client NFS client NFS client
DVS server DVSserver| 77777 DVS server

74 WD U B |

CN|CN|----CN| CN|CN|----CN| CN|CN|----CN|

5/6/2009 7

Compute Node Application Startup

ALPS

fork
chroot
setuid
chdir

exec

5/6/2009

CRRANY

THE SUPERCOMPUTER COMPANY

RAM/Boot root

Mount via DVS
-mount point (e.g. /mnt)
-read only

Bind mounts:
ltmp

Ivar

/proc

/dev

/sys

/lustre/*, [dvs/*

Shared Root

Application

Goal of the Cray PE DSO Implementation

e Support both the existing Cray Programming Environment
model and the Linux model of handling libraries

e Continue to allow library versions to be chosen at build
time
e Provide accessibility to many library versions

* Provide specific Programming Environment libraries for
each compiler.

* Allow library versions to be easily chosen at execution time

* Simple process for running non-Cray XT built executables
on the Cray XT.

5/6/2009 9

Building a Dynamically Linked Executable

5/6/2009

Same process is used for all Cray XT Programming
Environments: PGlI, Pathscale, GCC
The compiler scripts in xt-asyncpe 2.5 support:

e Building a dynamically linked executable

e Building a dynamic shared library

Use of modulefiles determine your build environment

Cray Compiler Environment (CCE) 7.1 will not support
dynamic libraries

* Feature is planned for a future release

HHHHHHHHHHHHHHHHHHHHHHH

10

HHHHHHHHHHHHHHHHHHHHHHH

Cray XT Library Releases Supporting DSOs

e MPT 3.2

e LibSci 10.3.4
e FFTW 3.2.1

e ACMLA.0

e PETSc3.0.0.2

e Hdf5_netcdf 1.2 - HDF5 1.8.2, netCDF 4.0.0

e Parallel HDF5 and netCDF Parallel HDF5 do not provide a
build for dynamic libraries

e Libfast_ mv 1.0.3

5/6/2009 11

THE SUPERCOMPUTER COMPANY

Linking a Dynamically Linked Executable

5/6/2009

Compiler script —dynamic option:
e S ftn —dynamic hello_world.f

The —dynamic option uses the ld =rpath option to add the
exact location of the libraries to the program’s ELF header

The =static option can be used to explicitly specify a static build
e Default behavior is static, but could change in the future

The environment variable XTPE_LINK_TYPE can be set to
dynamic or static to create a default setting for the shell

Idd utility shows the shared libraries required by the
executable

readelf —d a.out shows the libraries used to build the
executable

12

CRANY

THE SUPERCOMPUTER COMPANY

Sample |dd output

5/6/2009

S Idd a.out

libportals.so.1 => /opt/cray/portals/2.2-1.0000.16519.93.1/lib64/libportals.so.1 (0x00002b3e36273000)
libcr.so.0 => /opt/cray/blcr/0.7.3-1.0000.191.9.3/lib64/libcr.so0.0 (0x00002b3e3637c000)

libdl.s0.2 => /lib64/libdl.so0.2 (0x00002b3e3649d000)

libpthread.so.0 => /lib64/libpthread.so0.0 (0x00002b3e365a1000)

libsci.so => /opt/xt-libsci/10.3.3/pgi/snos64/lib/libsci.so (0x00002b3e366b8000)

libsma.so => /opt/mpt/3.1.2/xt/sma/lib/libsma.so (0x00002b3e4786e000)

libmpichf90.s0.1.1 => Jopt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpichf90.s0.1.1 (0x00002b3e47997000)
libmpich.so.1.1 => /opt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpich.so.1.1 (0x00002b3e47a99000)
librt.so.1 => /lib64/librt.so.1 (0x00002b3e47d49000)

libpmi.so => /opt/mpt/3.1.2/xt/pmi/lib/libpmi.so (0x00002b3e47e52000)

libalpslli.so.0 => /opt/mpt/3.1.2/xt/util/lib/libalpslli.s0.0 (0x00002b3e47f65000)

libalpsutil.s0.0 => /opt/mpt/3.1.2/xt/util/lib/libalpsutil.s0.0 (0x00002b3e48068000)

libm.so.6 => /lib64/libm.so.6 (0x00002b3e4816b000)

libc.so.6 => /lib64/libc.so.6 (0x00002b3e482c0000)

/lib64/1d-linux-x86-64.s50.2 (0x00002b3e36157000)

13

Dynamic Shared Library Search Order

e The dynamic linker searches for a library in the
following order:
1. The value of the environment variable
LD LIBRARY_PATH

2. The value of the DT_RUNPATH dynamic section of
the executable. This is set by the linker with the
use of the Ild —rpath option

3. The contents of the cache file /etc/Id.so.cache
4. The default path of /lib, and then /usr/lib

5/6/2009 14

Running a Dynamically Linked Executable

e * The Cray Programming Environment modaulefiles initialize
the LD_LIBRARY_PATH environment variable *

e To execute using the build libraries, unload PrgEnv module
and/or unset LD_LIBRARY_PATH

e To choose runtime library versions, load appropriate PrgEnv
module
* Need to know compiler used to build the application. If built
with PGI, then module load PrgEnv-pgi
* For batch jobs, the PrgEnv modulefile needs to be loaded in
the batch script, or the batch job needs to be submitted with
the gsub -V option
* Dynamic linker environment variables
* LD_BIND_NOW - Load all dynamic libraries at startup
* LD_DEBUG -Set LD _DEBUG=help for a list of options

5/6/2009 15

C=RA0Y

THE SUPERCOMPUTER COMPANY

Case 1: Using the build libraries

S module swap xt-mpt xt-mpt/3.1.2

S ftn —dynamic hello_world.f90 -o hello_world
Jopt/cray/xt-asyncpe/2.5.4/bin/ftn: INFO: linux target is being used
S module purge

$echo SLD_LIBRARY_PATH

S export MPICH_VERSION_DISPLAY=1

S aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.1.2 (ANL base 1.0.6)
BUILD INFO : Built Mon Mar 16 10:55:48 2009 (svn rev 7308)

Hello World from rank 0
Application 2466916 resources: utime 0, stime O
S

5/6/2009 16

C=RA0Y

THE SUPERCOMPUTER COMPANY

Case 2: Configuring library versions at runtime

S module load Base-Opts PrgEnv -pgi
S module swap xt-mpt xt-mpt/3.2.0
S echo SLD_LIBRARY_PATH

Jopt/xt-pe/2.1.50HD_PS06/lib:/opt/mpt/3.2.0.1/xt/mpich2-
pgi/lib:/opt/mpt/3.2.0.1/xt/util/lib:/opt/mpt/3.2.0.1/xt/pmi/lib:/opt/mpt/3
.2.0.1/xt/sma/lib:/opt/xt-libsci/10.3.4/pgi/lib:/opt/pgi/8.0.5/linux86-
64/8.0/libso:/opt/pgi/8.0.5/linux86-64/8.0/lib:/opt/xt-
0s/2.1.50HD_PS06/lib:/opt/xt-libc/2.1.50HD_PS06/amd64/lib y/xt-
asyncpe/2.5.4/bin/ftn: INFO: linux target is being used

S aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.2.0-pre (ANL base 1.0.6)
BUILD INFO : Built Mon Apr 6 18:24:16 2009 (svn rev 7351)

Hello World from rank 0

Application 2466917 resources: utime 0, stime O

S

5/6/2009 17

Running an ISV executable

e Determine the build compiler, then load the appropriate
PrgEnv modulefile

* Fortran and C++ libraries are compiler specific

e For Fortran, need to find the compiler’s run time libraries
e PGl example: libpgftnrtl.so
e GCC gfortran example: libgfortran.so
e Pathscale example: libpathfortran.so

e |f a batch job, either the modulefile needs to be loaded in the
batch script or the job must be submitted with gsub —V option

e Set the LD LIBRARY_PATH to point to any dynamic libraries
included with the application.

5/6/2009 18

Real life ISV Examples

e CD-adapco STAR-CD and Exa Powerflow have been executed
on a Cray XT using executables provided by the vendor.

e Both of the applications were built with MPICH1, so both of
the vendors needed to provide a special version of the
application built with a MPICH?2 library.

e The DVS shared root solution had the benefit of fully
supporting the getpw routines (getpwuid, getpwnam) that
were used by the applications.

5/6/2009 19

Building a Dynamic Shared Library

® Program can contain both dynamic and shared libraries.
* Don’t need to convert existing application libraries
e Cray XT compilers support both the —fpic and —fPIC options.

e Compiler scripts support the —shared option for creating a
dynamic shared libraries

e Library should be placed in a compute node accessible
directory (i.e. lustre).

e Set LD LIBRARY_PATH to point to the library directory at
runtime, or use Id —rpath option to store library directory in
executable

5/6/2009 20

CRANY”

THE SUPERCOMPUTER COMPANY

Building a Dynamic Shared Library

S cc -c -fpic test.c

/opt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used
S cc -shared test.o -WI,-soname=libtest.so0.0 -o libtest.s0.0.0
Jopt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used
S /sbin/ldconfig -n .

S In -s libtest.so0.0.0 libtest.so

S cc —dynamic —L<library-directory> -Itest ~WI,-rpath=<library-directory>
main.c

Jopt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used
S

5/6/2009 21

Differences from Linux model support of DSOs

e Libraries not placed in one directory location

e Cray PE libraries have a version for each supported
compiler. For example, there is a separate libmpich.so for
the PGI, Pathscale, and GCC compilers.

e Linux usually only keeps the latest major version of each
library; Cray makes multiple versions available

e The library versions used during the build process are
preserved in the executable’s ELF header

e The use of modulefiles provides an easy interface to modify
the LD _LIBRARY_PATH environment variable

5/6/2009 29

Open Opportunities

e Measure the performance differences of statically linked and
dynamically linked codes.
e Provide default versions of Programming Environment libraries

e Possibility that the GCC version of the libmpich.so library is
sufficient to use with the majority of applications.

» Use of the /etc/Id.so.conf file and Idconfig command to
point to Cray XT Programming Environment dynamic shared
libraries.

® Procedure for supporting user and application provided
dynamic shared libraries (i.e. /usr/local/lib)

e Support of common Linux cluster dynamic shared libraries
(MPICH1, HP-MPI)

5/6/2009 23

CRANY

THE SUPERCOMPUTER COMPANY

Conclusion

e The Cray XT Programming Environment implementation of
dynamic shared libraries provides support for building and

executing dynamically linked codes. It also has the following
features:

« Allows the user to run the executable with the build time
programming environment libraries

« Supports specific programming environment libraries for
each of the compilers

« Provides a method to easily choose a version of the
programming environment libraries at runtime

5/6/2009 24

CRANY

THE SUPERCOMPUTER COMPANY

