
Geir Johansen
May 6, 2009

 Present how dynamic share libraries are implemented
in the Cray XT Programming Environment

 How to build a dynamically linked executable

 How to execute a dynamically linked executable

 How to run an executable not built using the Cray XT
Programming Environment

 The Cray XT system design used for supporting dynamic
libraries is briefly discussed, but not in great detail

5/6/2009 2

 Advantages/disadvantages of dynamic shared libraries

 Brief description of the Cray XT system implementation of
dynamic shared libraries

 Building an executable with dynamic shared libraries

 Executing a dynamically linked program

 Executing a program not built with the Cray XT Programming
Environment

 Creating a dynamic shared library

5/6/2009 3

 Significantly increase the number of applications that can run
of the Cray XT

 Many ISVs only release executables

 Dynamically linked utilities can run on compute nodes

 Python

 Compilers

 Libraries can be upgraded without rebuilding applications

 Linux provides method for backward compatibility

5/6/2009 4

 Dynamic shared libraries are shared in physical memory
across processes

 More important as the number of cores increases

 Medium memory model is supported

 Allows data sections to be larger than 2 gigabytes

 Use of dynamic linking routines (dlopen) supported

 Support of more tools, such as Valgrind

 Dynamically linked executables are smaller in size

5/6/2009 5

 Performance versus statically linked codes

 Linking process performed on every run

 Looking up symbols in dynamic library is less efficient

 Potential “jitter” from loading a library

 CrayPat 5.0 analysis tool does not currently support dynamic
shared libraries

 Feature is planned for a future release

 Statically linked executables are guaranteed to run the same
library code across all systems.

5/6/2009 6

Shared

Root

NFS client

DVS server

Boot Node

NFS server

NFS client

DVS server

NFS client

DVS server
…...…

CN CN CN…. CN CN CN….CN CN CN….

5/6/2009 7

RAM/Boot root

ALPS

Application

Shared Root

fork

chroot

setuid

chdir

exec

Mount via DVS

-mount point (e.g. /mnt)

-read only

Bind mounts:

/tmp

/var

/proc

/dev

/sys

/lustre/*, /dvs/*

5/6/2009 8

 Support both the existing Cray Programming Environment
model and the Linux model of handling libraries

 Continue to allow library versions to be chosen at build
time

 Provide accessibility to many library versions

 Provide specific Programming Environment libraries for
each compiler.

 Allow library versions to be easily chosen at execution time

 Simple process for running non-Cray XT built executables
on the Cray XT.

5/6/2009 9

 Same process is used for all Cray XT Programming
Environments: PGI, Pathscale, GCC

 The compiler scripts in xt-asyncpe 2.5 support:

 Building a dynamically linked executable

 Building a dynamic shared library

 Use of modulefiles determine your build environment

 Cray Compiler Environment (CCE) 7.1 will not support
dynamic libraries

 Feature is planned for a future release

5/6/2009 10

 MPT 3.2

 LibSci 10.3.4

 FFTW 3.2.1

 ACML 4.0

 PETSc 3.0.0.2

 Hdf5_netcdf 1.2 - HDF5 1.8.2, netCDF 4.0.0

 Parallel HDF5 and netCDF Parallel HDF5 do not provide a
build for dynamic libraries

 Libfast_mv 1.0.3

5/6/2009 11

 Compiler script –dynamic option:

 $ ftn –dynamic hello_world.f

 The –dynamic option uses the ld –rpath option to add the
exact location of the libraries to the program’s ELF header

 The –static option can be used to explicitly specify a static build

 Default behavior is static, but could change in the future

 The environment variable XTPE_LINK_TYPE can be set to
dynamic or static to create a default setting for the shell

 ldd utility shows the shared libraries required by the
executable

 readelf –d a.out shows the libraries used to build the
executable

5/6/2009 12

$ ldd a.out

libportals.so.1 => /opt/cray/portals/2.2-1.0000.16519.93.1/lib64/libportals.so.1 (0x00002b3e36273000)

libcr.so.0 => /opt/cray/blcr/0.7.3-1.0000.191.9.3/lib64/libcr.so.0 (0x00002b3e3637c000)

libdl.so.2 => /lib64/libdl.so.2 (0x00002b3e3649d000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00002b3e365a1000)

libsci.so => /opt/xt-libsci/10.3.3/pgi/snos64/lib/libsci.so (0x00002b3e366b8000)

libsma.so => /opt/mpt/3.1.2/xt/sma/lib/libsma.so (0x00002b3e4786e000)

libmpichf90.so.1.1 => /opt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpichf90.so.1.1 (0x00002b3e47997000)

libmpich.so.1.1 => /opt/mpt/3.1.2/xt/mpich2-pgi/lib/libmpich.so.1.1 (0x00002b3e47a99000)

librt.so.1 => /lib64/librt.so.1 (0x00002b3e47d49000)

libpmi.so => /opt/mpt/3.1.2/xt/pmi/lib/libpmi.so (0x00002b3e47e52000)

libalpslli.so.0 => /opt/mpt/3.1.2/xt/util/lib/libalpslli.so.0 (0x00002b3e47f65000)

libalpsutil.so.0 => /opt/mpt/3.1.2/xt/util/lib/libalpsutil.so.0 (0x00002b3e48068000)

libm.so.6 => /lib64/libm.so.6 (0x00002b3e4816b000)

libc.so.6 => /lib64/libc.so.6 (0x00002b3e482c0000)

/lib64/ld-linux-x86-64.so.2 (0x00002b3e36157000)

$

5/6/2009 13

 The dynamic linker searches for a library in the
following order:

1. The value of the environment variable
LD_LIBRARY_PATH

2. The value of the DT_RUNPATH dynamic section of
the executable. This is set by the linker with the
use of the ld –rpath option

3. The contents of the cache file /etc/ld.so.cache

4. The default path of /lib, and then /usr/lib

5/6/2009 14

 * The Cray Programming Environment modulefiles initialize
the LD_LIBRARY_PATH environment variable *

 To execute using the build libraries, unload PrgEnv module
and/or unset LD_LIBRARY_PATH

 To choose runtime library versions, load appropriate PrgEnv
module

 Need to know compiler used to build the application. If built
with PGI, then module load PrgEnv-pgi

 For batch jobs, the PrgEnv modulefile needs to be loaded in
the batch script, or the batch job needs to be submitted with
the qsub –V option

 Dynamic linker environment variables

 LD_BIND_NOW - Load all dynamic libraries at startup

 LD_DEBUG -Set LD_DEBUG=help for a list of options
5/6/2009 15

$ module swap xt-mpt xt-mpt/3.1.2

$ ftn –dynamic hello_world.f90 -o hello_world

/opt/cray/xt-asyncpe/2.5.4/bin/ftn: INFO: linux target is being used

$ module purge

$echo $LD_LIBRARY_PATH

$ export MPICH_VERSION_DISPLAY=1

$ aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.1.2 (ANL base 1.0.6)

BUILD INFO : Built Mon Mar 16 10:55:48 2009 (svn rev 7308)

Hello World from rank 0

Application 2466916 resources: utime 0, stime 0

$

5/6/2009 16

$ module load Base-Opts PrgEnv -pgi

$ module swap xt-mpt xt-mpt/3.2.0

$ echo $LD_LIBRARY_PATH

/opt/xt-pe/2.1.50HD_PS06/lib:/opt/mpt/3.2.0.1/xt/mpich2-
pgi/lib:/opt/mpt/3.2.0.1/xt/util/lib:/opt/mpt/3.2.0.1/xt/pmi/lib:/opt/mpt/3
.2.0.1/xt/sma/lib:/opt/xt-libsci/10.3.4/pgi/lib:/opt/pgi/8.0.5/linux86-
64/8.0/libso:/opt/pgi/8.0.5/linux86-64/8.0/lib:/opt/xt-
os/2.1.50HD_PS06/lib:/opt/xt-libc/2.1.50HD_PS06/amd64/lib y/xt-
asyncpe/2.5.4/bin/ftn: INFO: linux target is being used

$ aprun -n 1 ./hello_world

MPI VERSION : CRAY MPICH2 XT version 3.2.0-pre (ANL base 1.0.6)

BUILD INFO : Built Mon Apr 6 18:24:16 2009 (svn rev 7351)

Hello World from rank 0

Application 2466917 resources: utime 0, stime 0

$
5/6/2009 17

 Determine the build compiler, then load the appropriate
PrgEnv modulefile

 Fortran and C++ libraries are compiler specific

 For Fortran, need to find the compiler’s run time libraries
 PGI example: libpgftnrtl.so

 GCC gfortran example: libgfortran.so

 Pathscale example: libpathfortran.so

 If a batch job, either the modulefile needs to be loaded in the
batch script or the job must be submitted with qsub –V option

 Set the LD_LIBRARY_PATH to point to any dynamic libraries
included with the application.

5/6/2009 18

 CD-adapco STAR-CD and Exa Powerflow have been executed
on a Cray XT using executables provided by the vendor.

 Both of the applications were built with MPICH1, so both of
the vendors needed to provide a special version of the
application built with a MPICH2 library.

 The DVS shared root solution had the benefit of fully
supporting the getpw routines (getpwuid, getpwnam) that
were used by the applications.

5/6/2009 19

 Program can contain both dynamic and shared libraries.

 Don’t need to convert existing application libraries

 Cray XT compilers support both the –fpic and –fPIC options.

 Compiler scripts support the –shared option for creating a
dynamic shared libraries

 Library should be placed in a compute node accessible
directory (i.e. lustre).

 Set LD_LIBRARY_PATH to point to the library directory at
runtime, or use ld –rpath option to store library directory in
executable

5/6/2009 20

$ cc -c -fpic test.c

/opt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used

$ cc -shared test.o -Wl,-soname=libtest.so.0 -o libtest.so.0.0

/opt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used

$ /sbin/ldconfig -n .

$ ln -s libtest.so.0.0 libtest.so

$ cc –dynamic –L<library-directory> -ltest –Wl,-rpath=<library-directory>
main.c

/opt/cray/xt-asyncpe/2.5.4/bin/cc: INFO: linux target is being used

$

5/6/2009 21

 Libraries not placed in one directory location

 Cray PE libraries have a version for each supported
compiler. For example, there is a separate libmpich.so for
the PGI, Pathscale, and GCC compilers.

 Linux usually only keeps the latest major version of each
library; Cray makes multiple versions available

 The library versions used during the build process are
preserved in the executable’s ELF header

 The use of modulefiles provides an easy interface to modify
the LD_LIBRARY_PATH environment variable

5/6/2009 22

 Measure the performance differences of statically linked and
dynamically linked codes.

 Provide default versions of Programming Environment libraries

 Possibility that the GCC version of the libmpich.so library is
sufficient to use with the majority of applications.

 Use of the /etc/ld.so.conf file and ldconfig command to
point to Cray XT Programming Environment dynamic shared
libraries.

 Procedure for supporting user and application provided
dynamic shared libraries (i.e. /usr/local/lib)

 Support of common Linux cluster dynamic shared libraries
(MPICH1, HP-MPI)

5/6/2009 23

 The Cray XT Programming Environment implementation of
dynamic shared libraries provides support for building and
executing dynamically linked codes. It also has the following
features:

• Allows the user to run the executable with the build time
programming environment libraries

• Supports specific programming environment libraries for
each of the compilers

• Provides a method to easily choose a version of the
programming environment libraries at runtime

5/6/2009 24

