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ABSTRACT: We have previously introduced the kernels programming model for 
accelerators such as GPUs, where a kernel roughly corresponds to tightly nested 
parallel loops with rectangular limits.  We have designed directives for C and Fortran 
programs to target this model, similar in design to the well-known and widely used 
OpenMP parallel directives, and are implementing the directives and program model in 
the PGI C and Fortran compilers. This paper explores using the kernels programming 
model and directives on a multicore target. We attempt to answer two questions: whether 
the model can target a multicore processor, and whether it’s a good idea. 

The paper briefly reviews the kernels programming model, where a kernel can include 
both MIMD (doall) and SIMD (vector) parallelism, explicitly or implicitly. The paper 
describes the directives used to program to the model, focusing on those important for a 
multicore target. The compiler implementation is presented in some detail, including the 
required analysis and code generation; differences from the implementation for an 
accelerator target are highlighted. An important feature of the implementation is the 
compiler feedback, which tells users the details of the generated code, allowing them to 
tune their program. The final section evaluates the model, comparing it to other parallel 
programming models such as OpenMP and automatic parallelization and vectorization. 
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1. Introduction 
We can break current methods to program multicore 

processors into five broad categories: 
 

• Use a parallel-optimized library. This can be and has 
been a very successful way to take advantage of any new 
architectural features. This was the motivation behind the 
Basic Linear Algebra Subroutine (BLAS) library, for 
instance. If the library is ported and optimized for a new 
machine with new features, then (hopefully) any 
application written using the library will get the benefit of 
those features with no more work than perhaps rebuilding 
with the new library. 

• Use a parallelizing compiler. This has been the dream 
of many compiler research groups for well over 30 years.  
Great strides have been made in this realm, though it’s far 
from solving the whole problem. 

• Use a parallel language (such as Cilk) or parallel 
extensions to an existing language (OpenMP). This 
allows the programmer to expose parallelism beyond 

what a compiler can (re)discover, and perhaps with more 
granularity or locality control than is available using a 
library. 

• Use MPI. This ignores the multicore aspect of the 
processor, treating it like a network of nodes. This has the 
advantage that the program will port to clusters and larger 
machines, but it doesn’t use the multicore as efficiently as 
possible. 

• Use low level parallelism, such as POSIX threads, 
directly.  This allows very efficient thread control and 
synchronization, but can require truly heroic 
programming effort for larger applications. 

 
In this paper, we discuss (yet) another method. 

Previously, we described the kernels programming model, 
targeting accelerators in general, and GPUs in 
particular[19].  A kernel roughly corresponds to a tightly 
nested loop. We described directive-based extensions to 
C and Fortran to target this model, where the directives 
are similar in design and scope to the OpenMP directives. 
Here, we discuss using the kernels programming model to 
program multicore processors, similar to treating the 
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multicore as an accelerator.  The goal of the work 
described in this paper is to explore whether the kernels 
programming model can target a multicore processor and 
how to implement a compiler to do so, and whether such 
an effort is worthwhile.   

We start by describing the goals that drove us to 
develop our programming model and directives in Section 
2; we look at the success of the dominant method to 
program vector computers over the past 30 years. The 
kernels programming model is described in Section 3; the 
model is clearly inspired by today’s GPUs, but there are 
several general concepts that map well onto multicores. 
Section 4 briefly describes our directives, focusing on 
those relevant for multicore targets.  We give a possible 
compiler implementation in Section 5, comparing it to 
autoparallelizing compilers, OpenMP compilers, and our 
accelerator compiler implementation. An important 
feature of this programming method is effective compiler 
feedback; we discuss this in Section 6. We evaluate our 
proposed design and implementation against other 
methods and against our goals in Section 7. We conclude 
by discussing how we think the model and 
implementation will evolve. 

 

2.  Vector Programming  
The first vector computers were the Texas 

Instrument’s Advanced Scientific Computer (ASC), 
Control Data STAR100, and Burroughs Illiac IV, in the 
late 1960s and early 1970s. The TI ASC came with an 
aggressive vectorizing Fortran compiler[17]. The first 
commercially successful vector computer was the Cray-1; 
the primary programming mechanism was its vectorizing 
compiler, the Cray Fortran Translator (CFT). Here we 
focus on the success of vectorizing compilers, and CFT in 
particular.  

The Cray-1 was not only a very fast vector processor; 
a great deal of its success was because it was the fastest 
scalar processor in the world at the time. With an 80MHz 
clock, it was twice the speed of the Control Data 7600, 
the machine it was to replace in many installations; many 
programs immediately ran quite a bit faster on the Cray. 
However, certain loops could achieve another factor of 5-
10 speedup by using the vector instruction set.  

Some loops would vectorize and achieve this speedup 
right away; most of the time, some programmer 
intervention was required. Even so, using the vectorizing 
compiler had some significant advantages over other 
vector programming styles.  

•  No new language was needed. The only extensions 
were a few built-in routines and some vectorization 
directives (such as CDIR$ IVDEP). The modified 
program could usually still be compiled and tested or run 

on workstations or other computers.  
•  It was incremental. Only innermost loops needed to 

be modified or rewritten to vectorize. The analysis was 
usually limited to that loop, or perhaps that routine. Each 
loop could be analyzed and rewritten in isolation, without 
coordinating as to how the rest of the program was being 
optimized.  

•  The compiler gave feedback as to its success or 
failure in vectorizing loops. In particular, it could be very 
precise about what statement, or what array reference in 
which statement prevented vectorization. This allowed 
programmers to focus their modifications to get the de-
sired vector performance.  

•  The programming style was portable as well. As 
vector processors were developed by Convex, Fujitsu, 
Hitachi, IBM, NEC, and others, programs that would 
vectorize for the Cray would also vectorize for these other 
machines.  
 

Successful vector programming required work from 
both the programmer and the compiler; essentially, the 
optimization effort was divided between the application 
developer and the compiler writer. Because of the 
vectorizing compiler, the application developer didn’t 
have to learn a new language or maintain several versions 
of the program, and didn’t have to dive into assembly 
language. The compiler writer could focus on getting 
good performance from the vectorizable subset of the 
language; the compiler didn’t have to attempt heroic 
whole program analysis because it could always give up 
and tell the programmer where it needed help. The work 
division and cooperation was then and continues today to 
be successful. We designed our kernels programming 
model to benefit from the four advantages listed above.  

3. The Kernels Model 
Many parallel programming models have been 

proposed and implemented. A threads model creates a 
number of processing threads, where each thread has 
some private memory and all threads share a global 
memory; through structured or unstructured 
synchronization, the threads can cooperate on a parallel 
program. Cooperating Sequential Processes (CSP)[5] is a 
threads model. OpenMP[14] currently uses a threads 
model, based loosely on POSIX threads[4].  

A tasks model creates a number of tasks in a task 
queue or container; some number of actors (such as 
threads) dequeue or remove a task and execute it, which 
may add more tasks to the queue or container. Some 
models have multiple or nested queues. Cilk[3] uses a 



 
 

CUG 2009 Proceedings 3 of 10 
 

tasks model.  
High Performance Fortran[10] was designed to use an 

implicit parallelism model with distributed data; 
conceptually, there was one thread of computation 
implemented with multiple processes executing on many 
processors, with redundant execution on replicated data 
and parallel execution on distributed data.  

Here we describe what we call the kernels 
programming model. In this model, a program is a 
sequence of parallel kernels launched or invoked by a 
master thread. Each kernel is invoked and executed in 
parallel on a multidimensional domain. Essentially, the 
kernel is a multidimensional parallel loop, with the body 
of the loop comprising the kernel code, and the parallel 
loops describing the domain. The model allows for two 
types of parallelism; in the domain, each dimension can 
be designated as either a MIMD or a SIMD dimension. 
These can be modeled by two types of parallel loop: 
doparallel (MIMD) and dovector (SIMD). No 
synchronization is supported or allowed between kernel 
instances executing across different indices in a 
doparallel dimension. Kernel instances with the same 
doparallel indices but with different dovector indices can 
synchronize at a barrier[9]; this may be required for an 
accelerator, but is not required for multicore. These 
groups of kernel instances will have the same rank and 
size.  

Each kernel is executed to completion before the next 
kernel is initiated; parallelism is exploited between the it-
erations of each kernel, not between multiple kernels. 
Using an accelerator, the host thread can execute 
asynchronously in parallel with the kernels, or to wait for 
some particular kernel to complete.  On a multicore, it is 
expected the host thread takes part in the kernel 
computation. 

The kernels parallelism model is clearly inspired by 
GPUs, CUDA[13], and OpenCL[12]. For NVIDIA GPU 
targets, dovector loops map to a thread block, and the 
doparallel loops map to the grid of thread blocks. We 
separate the model from the implementation so we can 
develop a programming style that targets the model, and a 
compiler that starts from the model to compile down to 
the target accelerator.  

The architectural concepts required to support the ker-
nels model are quite common. In particular, the two levels 
of parallelism, MIMD and SIMD, map pretty directly 
onto multicore (MIMD) processors with packed (SIMD) 
instructions. The compiler can map doparallel loops onto 
OpenMP style parallelism, and dovector loops onto the 
packed or SIMD instructions of a single core.  

An important characteristic of accelerators is that they 
can perform fast context switches, which means for peak 
performance it is important to generate many more 

doparallel iterations than there are actual hardware 
processing elements.  In this way, memory latency can be 
hidden, and the effective memory bandwidth increased.   

In the future, if and when hyperthreading technologies 
mature, oversubscribing X64 cores using this model may 
potentially be a way to optimize for worsening memory 
bandwidth issues that were described last year[20]. 

 

4. The Directives 
OpenMP serves as a higher level programming style for 

threads programming than POSIX threads[4]. OpenMP 
has not replaced pthreads, but is sufficiently expressive 
and efficient for many applications, and is more 
accessible for most developers. We designed a directive-
based programming language to do for accelerator 
computing (exemplified by CUDA and OpenCL) what 
OpenMP has done for threads programming. We use 
directive syntax similar to OpenMP, in that we use a 
sentinel (stylized comment) in Fortran and #pragma 
syntax in C.  

We propose two basic directives. The first defines a 
region of code containing loops, where each inner loop 
body is intended to map onto a kernel and the loop 
iterations map to the kernel domain. This directive can 
have additional clauses to describe the data locality and 
access restrictions. The accelerator region is delimited in 
Fortran by region and end region directives, as:  

 
!$acc region 
... 

!$acc end region 
 
In C we use a region pragma immediately followed by 
a 
structured block. 
 

#pragma acc region 
{ 

... 
} 
 

Optional clauses on the region directive can include 
copyin or copyout, which name arrays or array 
sections that should be allocated on the accelerator and 
uploaded from or downloaded to the host; these are not 
relevant on a multicore, where all the cores share global 
memory.  

We use another directive to describe the mapping of the 
program loop-level parallelism; specifically, the model 
provides MIMD parallelism (called doparallel here) and 
SIMD parallelism (called dovector). A programmer can 
map a loop to parallel mode or vector mode, or specify 
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that a loop should be strip-mined[2] with different 
execution modes for the resulting outer and inner loops. 
We show by example:  

 
! Example 1: 
!$acc region 
 !$acc do parallel 
 do j = 2,m-1 
  !$acc do vector 
  do i = 2,n-1 
   r(i-1,j-1) = 0.25*(s(i-1,j) + s(i+1,j) & 
                    + s(i,j-1) + s(i,j+1)) 
  enddo 
 enddo 
!$acc end region 
 

Here the do directives tell the compiler to run the 
outer loop in parallel and the inner loop in vector mode. 
Each vector of m −2 elements requires 3 ×m−4 elements 
of the input matrix s and m − 2 stores of r for 4 × (m − 
2) operations, giving a compute intensity (operations per 
operand) of about 1.  

A more data-efficient or cache-efficient approach is to 
tile the loops; this is specified using our directives as:  
 
! Example 2: 
!$acc region copyin(s(1:n,1:m)) copyout(r) 
 !$acc do parallel,vector(8) 
 do j = 2,m-1 
  !$acc do parallel,vector(8) 
  do i = 2,n-1 
   r(i-1,j-1) = 0.25*(s(i-1,j) + s(i+1,j) &  
                    + s(i,j-1) + s(i,j+1)) 
  enddo 
 enddo 
!$acc end region 
 

The do directives here tells the compiler to strip-mine 
each loop with the inner loops running in vector mode on 
an 8 × 8 tile, and the outer loops running in parallel. Each 
tile requires a 10 × 10 submatrix of s and 8 × 8 stores for 
r for 4 × 8 × 8 operations, for a compute intensity of 
256/164 or about 1.5, which should make more efficient  
use of the cache memory.  

Other loop mapping clauses specify sequential 
execution within a kernel. In the absence of loop-mapping 
clauses, the compiler will analyze the parallelism and data 
access patterns to determine a mapping.  

A third, optional set of directives and clauses allow 
the user to have finer control over data locality.  This may 
be either to specify resident data across kernel 
invocations, or hints on use of different levels of the 
memory hierarchy within a kernel.  As an example of the 
first case, consider the above code with another array, 
which is resident on the accelerator: 

 
! Example 3: 
!$acc device data(t) 
 
!$acc region  

!$acc do parallel 
 do j = 2,m-1 
  !$acc do vector 
  do i = 2,n-1 
   r(i-1,j-1) = 2.0 * t(i,j)   -          & 
                0.25*(s(i-1,j) + s(i+1,j) &  
                    + s(i,j-1) + s(i,j+1)) 
  enddo 
 enddo 
!$acc end region 
 
!$acc region  
   < another kernel that uses t > 
!$acc end region 
 
!$acc end device data region 

Targeting an accelerator, there are important 
decisions to be made between the compiler and user 
regarding data which is to stay resident on the device 
through kernel invocations, data which is to be moved to 
and from the device at each invocation, data that is 
private, cached, shared, etc.  Similarly, we have shown in 
previous papers[20] that even on x64 multicore systems, 
large performance differences can result from a compiler 
and/or user knowing where data resides, and using the 
proper prefetch, load, and store instructions which 
optimize for the best data transfer efficiencies.  At this 
point, it is unclear whether there will be one general 
model a user can adhere to which can cleanly specify the 
distance between the expected data location at kernel 
invocation and the actual processing elements, and that 
proves effective on all targets. 

The programming model and the directives to 
implement them are still evolving; more details are 
available at the PGI website 
www.pgroup.com/accelerate.  

5. Compiler Implementation 
We are implementing the kernels programming 

model using the proposed directives in the PGI Fortran 
(PGFortran) and PGI C (PGCC) compilers. Initially, these 
compilers target 64-bit x86 processors with an attached 
NVIDIA GPU or Tesla card[19]. This section describes a 
design for an implementation to target a multicore 
processor.  

The steps within the compiler to analyze an 
accelerator region for a multicore are:  

•  Identify linear induction variables and compute loop 
trip counts[6].  

• Detect loop-level parallelism, using classical data 
dependence analysis.  

• Identify loop private scalars, using classical data-flow 
analysis.  

• Identify loop private arrays, using array section 
analysis.  
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• Map or schedule the loop level parallelism onto the 
multicore processor.  

• Compile parallel loops as if using OpenMP or auto-
detected parallelism.  

• Compile inner vector loops for the SSE instruction 
set.  

• Add a barrier synchronization at the end of the 
accelerator region.  

• Give feedback to the programmer with details about 
the generated code.  
 

These steps can run as a phase fairly early in the com-
piler. Details follow, in particular comparing compiling 
for a multicore to compiling for an accelerator like a 
GPU.  

5.1 Validation 
When targeting an accelerator, the compiler must first 

validate the operations in the accelerator region as 
feasible on the target. For instance, some accelerators 
may only support single precision, or may not support the 
full math library. This is less of a concern when targeting 
a multicore, since each core is as capable as any other, 
and in particular as capable as the “host.”  

5.2 Parallelism Detection  
The kernels model depends on loop-level 

multidimensional parallelism. We use classical data 
dependence analysis[1, 18] and parallelism identification. 
The analysis is augmented by user directives, and 
distinguishes between fully parallel (doall) and vector 
parallel loops, where a fully parallel loop has no loop-
carried dependences and a vector parallel loop has no 
lexically-backward dependences.  

On a multicore, vector operations are implemented 
with packed or vector instructions on a single core, so no 
synchronization is necessary. This contrasts with the 
explicit synchronization required between synchronous 
iteration thread groups on a GPU, for instance.  

With both packed instruction sets and with today’s 
accelerators, there is a big performance disadvantage if 
the data fetches and stores are not contiguous (stride-1) in 
memory. Also, in both cases there is a limited size to the 
vector iteration set. On the NVIDIA GPUs, the maximum 
size for a thread group (synchronous iteration group) is 
256; the 256 threads in a thread group can be organized in 
a 1-D, 2-D or 3-D manner. On today’s X64 multicore, the 
SSE instruction set has an effective vector length of 2 
(double precision) or 4 (single precision); there is no 
hardware support for multidimensional vector operations. 
Software can emulate larger and multidimensional vector 

operations, or can simply scalarize the appropriate loops.  

5.3 Scalar Analysis  
We use classical scalar def-use and live variable 

analysis to find scalars live into and out of each loop. In 
particular, this allows the compiler to easily identify 
scalars that can be or should be privatized. For an 
accelerator, scalars live-in to the region and loop need to 
be identified to be explicitly copied over to the device 
memory; this is unnecessary for a multicore.  

5.4 Array Section Analysis  
We use a simple implementation of regular section 

analysis that finds rectangular array sections[8] used and 
modified in each statement and loop. This allows the 
compiler to privatize arrays or subarrays; a loop-private 
array is one where the addresses do not depend on the 
loop iteration, each array element fetch in the loop is 
dominated by an assignment to that element earlier in the 
loop, and the array is not used after the loop. The 
accelerator compiler uses array section analysis to 
manage data allocation on the device memory, and data 
movement between the device and the host, all of which 
is unnecessary on the multicore.  

5.5 Parallelism Mapping  
The parallelism mapping step is key to the final 

performance, and must be tuned for each target. For an 
accelerator, the mapping step is responsible for 
optimizing use of the limited resources, such as any 
software-managed cache memory or synchronous 
iteration thread group size. For a multi-core, the mapping 
step tries to find enough vector parallelism to utilize the 
vector instruction set effectively, and enough large-grain 
loop-level parallelism to implement efficiently with OS-
managed threads. For accelerators, we have an initial 
implementation of an automatic mapper, which we call 
the planner, but in many cases efficient code requires 
users to insert mapping directives.  

This step is key to meeting one of our hoped-for 
advantages; for the programming style to be considered 
portable, either the mapping must be automated and tuned 
for each target, or the same mapping directives must 
apply to different targets. We discuss this in more detail 
in Section 7.  

5.6 Code Generation  
Code generation for a multicore should be relatively 

easy, since this is built within a single-core compiler with 
OpenMP features. In particular, since there is only one 
instruction set, other program development tools (linker, 
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debugger) will work without customization.  
The doparallel loops can be compiled into OpenMP-

style parallel execution. For nested parallel loops, 
OpenMP uses either loop collapsing or nested parallel 
regions. Nested parallel regions have additional overhead, 
so we avoid them and use loop collapsing.  

The dovector loops can be compiled into vector code 
for the SSE instructions, using existing compiler phases. 
The compiler need not emulate long vector operations; 
instead, it can optimize for register and memory locality, 
using loop unrolling or loop, choosing the most 
advantageous vector loop for actual SSE instructions.   

 

6. Compiler Feedback 
As we mentioned in Section 2, one of the keys to 

making mature vectorizing compilers successful in the 
past was the compiler feedback.  The simplicity of the 
interface and division of work between tool and user 
enabled a generation of software engineers to become 
successful at performance tuning. 

Today, most modern compilers discover and generate 
a wealth of information about what the compiler did in 
optimizing the code, what optimizations could not be 
implemented (and why), how data is accessed, 
relationships between procedures, and much more. PGI 
compilers include the ability to save this information into 
the compiled object and/or executable file for later 
extraction and review. The Common Compiler Feedback 
Format (CCFF) is a draft standard published by PGI that 
defines what compiler information is stored and how the 
information is formatted. Using CCFF, HPC tools 
providers can enhance their products to offer better 
information about optimizing performance. 

Using PGI compilers, compiler feedback is generated 
by using the –Minfo option, and CCFF is generated by 
using –Minfo=ccff.  CCFF information can be viewed 
along with a source browser and post-mortem 
performance data in the PGI PGPROF profiling tool.  
Plans are to eventually incorporate it into IDEs.   

Given the previous example 2 loop: 
 
! Example 2: 
!$acc region copyin(s(1:n,1:m)) copyout(r) 
 !$acc do parallel,vector(8) 
 do j = 2,m-1 
  !$acc do parallel,vector(8) 
  do i = 2,n-1 
   r(i-1,j-1) = 0.25*(s(i-1,j) + s(i+1,j) &  
                    + s(i,j-1) + s(i,j+1)) 
  enddo 
 enddo 
!$acc end region 

 
The compiler generates the following information: 

 
10, Generating copyin(s(:n,:m)) 
    Generating copyout(r(1:n-2,1:m-2)) 
12, Loop is parallelizable 
14, Loop is parallelizable 
    Accelerator kernel generated 
    12, !$acc do parallel, vector(8) 
    14, !$acc do parallel, vector(8) 
        Cached references to size [10x10]    
           block of s 
 

If we change some of the right-hand-side references of 
s, to instead access r in the vertical dimension, we can see 
that the compiler detects and reports dependencies in the 
loop: 
 
12, Loop is parallelizable 
14, Loop carried dependence of r prevents  
      parallelization 
    Loop carried backward dependence of r    
      prevents vectorization 
    Accelerator kernel generated 
 

On an x86 platform, it is clear that users expect the 
compiler to continue and generate correct code even if it 
is unable to vectorize and/or parallelize the loops.  On an 
accelerator, it is not so clear; if a directive is given to 
explicitly parallelize and vectorize a loop, and the 
compiler cannot do that due to either programmer error or 
compiler inadequacies, what is the right course of action?  
Should the compilation fail?  Is compiler feedback 
enough?  These are considerations we are currently 
working on with our early adopters.  Currently, on an 
accelerator, for the above example, we will just generate a 
very inefficient kernel. 
 

7. Evaluation 
We evaluate our design by comparing it to OpenMP, 

to autoparallelism, to our goals, and to other portable 
approaches.  

7.1 OpenMP  
Does this programming model and compiler have any 

advantages or disadvantages compared to an equivalent 
OpenMP compiler? We see several differences:  

• The OpenMP execution model is strictly threads-
based, which has both advantages and disadvantages.  

• OpenMP only addresses MIMD parallelism, leaving 
SIMD or vector parallelism to the programmer and 
compiler.  

• OpenMP is much more general than the kernels 
model.  

• OpenMP doesn’t apply to accelerators.  
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We address these in more detail below.  
OpenMP parallelism is defined in terms of threads. A 

certain number of threads are created, and some or all of 
these threads are active during parallel execution. Tasks, 
such as loop iterations or groups of loop iterations, are 
divided among the threads. In some cases, the mapping is 
explicit, such as the OpenMP static loop schedule, 
which maps a well-defined subset of iterations to each of 
the threads in a particular order. Such a mapping has the 
advantage of allowing a user to optimize for locality 
between parallel regions or between parallel loops, by 
scheduling loop iterations that access the same data onto 
the same thread. Unless the operating system reschedules 
that thread onto a different core or processor, the program 
can benefit from cache locality between parallel loops or 
regions. This is pretty low-level programming, and while 
it can be quite effective, it requires more changes than 
just adding loop directives. For instance, if we take our 
Example 2 program, the tiled Jacobi iteration, and 
implement it in OpenMP, the resulting program would 
require the tiling to be explicit: 

 
! Example 2 - OpenMP: 
!$omp parallel 
!$omp do collapse(2) 
do jt = 2,m-1,8 
 do it = 2,n-1,8 
  do j = jt,min(m-1,jt+7) 
   do i = it,min(n-1,it+7) 
     r(i-1,j-1) = 0.25*(s(i-1,j)+s(i+1,j)& 
                      + s(i,j-1)+s(i,j+1)) 
   enddo 
  enddo 
 enddo 
enddo 
!$omp end parallel 
 
Vector code generation for the inner loop is implicit here. 
If we want multiple levels of tiling, we must add another 
pair of loops.  

Another disadvantage is that the programmer becomes 
a thread manager; he or she must be aware that there is a 
mapping between tasks and threads, and make sure to 
create enough threads to fill the available cores, but not so 
many as to create thrashing.  Tuning an OpenMP program 
may require knowledge of the system parameters or the 
OpenMP vendor or implementation.  While OpenMP 
programs are portable, a single program may need to be 
tuned differently for different systems, and there is no 
standard way to specify system-dependent tuning 
parameters, such as parallel loop schedules. 

The kernels model is defined in terms of parallel loop 
iterations, essentially parallel tasks. In fact, our 
implementation will use OpenMP-style threads to execute 
the iterations, but the mapping between iterations and 
threads is much less strict. Thread management is handled 

by the compiler and its runtime library. The kernels 
directives also allow specification of tiled algorithms 
without changing the text of the program, and specifies 
both MIMD and SIMD parallelism in a single model.  
The kernels model also has tuning parameters, and the 
values may depend on the target accelerator; we return to 
this point in our concluding remarks. 

OpenMP is much more general than the kernels model, 
in that more parallel programs can be written in OpenMP 
than can be written in the kernels model. While OpenMP 
began as a way to standardize the concept of a parallel 
loop, it also allows parallel sections, and now has 
dynamic parallel tasks. The kernels model only handles 
nested parallel loops; our goal is to focus on this 
important subset of parallel programs and implement it 
well across a range of targets.  

Finally, OpenMP does not apply on today’s 
accelerators. Because OpenMP is strictly shared-memory, 
thread-based, with the master thread participating in the 
parallel computation. With OpenMP, it is no longer the 
case that the sequential program (ignoring the OpenMP 
directives) is semantically the same as (gives the same 
answers as) the parallel program (respecting the OpenMP 
directives). Today’s accelerators do not support shared 
memory with the host, do not support full thread 
synchronization even among threads on the accelerator, 
and do not allow participation by the master (host) thread. 
Research efforts to port OpenMP programs to 
accelerators only succeed when they can limit the 
OpenMP programs, ignore some directives, or deliver 
unacceptable performance penalties.  

In summary, the kernels model is related to OpenMP, 
and will use some of the same low-level implementation 
details. The kernels model is more restricted in the types 
of parallel constructs it allows, but it has advantages in 
managing MIMD and SIMD parallelism and cache 
locality through tiling in a single mechanism.  
 

7.2 Autoparallelism  
Parts of the implementation are built on automatic 

parallelization, such as induction variable identification, 
dependence analysis, and loop-level parallelism detection. 
Could this entire process be automated, making the 
directives unnecessary?  

In the best world, the directives would be 
unnecessary; the compiler would detect and map the 
parallelism onto the hardware without any need for user 
directives.  However, the compile-time cost of the deep 
analysis needed to make this efficient, and the potential 
for a compiler to make bad choices, lead us to believe that 
user-directed parallelization is more likely to lead to 
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improved performance than depending entirely on 
automatic optimization.  When successful, the benefit to 
parallel execution is high enough to warrant users 
spending more time in tuning.  As discussed in Section 6, 
with performance feedback from the compiler, users can 
focus their effort where it is more likely to be effective. 

In addition, users may have to recast their algorithms 
to take advantage of parallelism, or to avoid memory 
latency or bandwidth issues or other pitfalls of the target 
machine.  Programmers can change a program in ways 
that are far beyond what any compiler or tool can do, and 
we think we have a mechanism that helps them do just 
that. 

 

7.3 Other Approaches  
Other recent portable approaches to manage multicore 

and accelerator parallelism are:  
•   Use a parallel-optimized library.  
• Use a run-time code generation scheme, a la 

Rapidmind.  
• Use a compiler to generate multicore code for 

accelerator programs, such as MCUDA.  
NVIDIA delivers a GPU-enabled version of the Basic 

Linear Algebra Subroutines (BLAS) with the CUDA 
SDK. It can deliver very high performance for those 
functions implemented in the library, and if your program 
consists of BLAS calls, you can use the CUDA BLAS to 
advantage. The advantage to a compiler-based approach 
would be the performance feedback, but a well-tuned 
library shouldn’t need to give any feedback. Our 
approach is language-based, hence at a lower level than a 
library. In general, if you can use a well-tuned library, 
you should probably do so.  

Another type of library is exemplified by the 
RapidMind platform[11]. This exposes a C++ class 
library interface defining data types and methods with 
which you rewrite your application. At runtime, the 
underlying platform will generate appropriate code for the 
particular high performance target on which your 
program is running, be it an accelerator, GPU, or 
multicore processor. Such a platform promises high 
portability after a one-time rewrite to use the class library. 
Our approach is directly embedded in the language and 
the compiler, and so has the advantage of allowing 
performance feedback and programming tuning. 
However, our approach lacks a runtime code generation 
and tuning component.  

Another method is to start with the GPU kernel and to 
compile and optimize that for multicore execution, exem-
plified by the MCUDA project[16]. If successful, it would 
present a single framework for writing parallel programs 
for GPUs and for multicore processors. However, 

optimized GPU kernels written in CUDA or OpenCL for 
today’s GPUs include many low-level details tuned for 
the specific GPU. It remains to be seen whether such an 
approach can successfully produce a model that can 
efficiently target both the multicore and GPU.  

7.4 Our Goals  
We had four goals, matching the four advantages that 

classical vectorizing compilers had listed in Section 2. 
How well did we satisfy our goals? To recap, the four 
goals were:  

• Existing languages (extensions, directives allowed).  
• Incremental.  
• Compiler feedback.  
• Portable across targets.  

 
We designed the directives with the first goal in mind, 

and we believe the model satisfies the goal.  
The second goal is easier to satisfy for a multicore tar-

get than for an accelerator, because of the shared 
memory. One of the keys to performance on the 
accelerator is to minimize data traffic between the host 
and the accelerator memory, which is communicated over 
a PCI DMA channel. This means that often the 
programmer will want to allocate memory on the 
accelerator memory and leave it there. This can have a 
global impact across the whole program, because the data 
that lives on the accelerator is not accessible from the 
host.  

On a multicore, data doesn’t move from one memory 
space to another. Adding kernels model directives can 
change the execution behavior in that region, but will not 
affect the rest of the program. In that sense, program 
development and optimization is incremental.  

We also designed the compiler with feedback as an 
integral part. We firmly believe that if performance is 
important, the programmer must be in the loop during 
optimization. As much as we would all like to believe in a 
magic compiler that will generate optimal code through 
deep program analysis, we have no reason to believe that 
this is any more feasible today than it was thirty years 
ago.  

The final goal is still open. We believe we can 
certainly compile an accelerator region for a multicore, 
given the design from Section 5. However, there is still 
the problem of tuning the parallelism mapping. If we can 
converge on automatic parallelism mapping (Section 5.5), 
then we can say that we have a portable model. However, 
the state today is that programmers must frequently insert 
directives to map loop parallelism to accelerator hardware 
parallelism; this mapping is unlikely to be optimal for a 
different accelerator, or for a multicore processor.  
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8. Concluding Remarks 
From our design and analysis, we conclude that a 

compiler targeting multicore processors for accelerator 
regions is feasible with reasonable effort, when built on a 
compiler that already supports accelerator regions and 
supports parallelism (OpenMP) and vector operations 
(SSE).  

A key to success will be whether we can satisfy our 
fourth goal, that of having a parallel programming model 
that is portable across a wide variety of parallel systems. 
In this case, that means portable across different 
multicore processors as well as accelerators. The model 
and the directive language are both still under active 
development, and this question is still open. At this time, 
target-specific tuning is frequently required, which is a 
hindrance to true portability. Our hope is that as we gain 
experience and the model and implementation matures, 
we can find a way to specify the parallelism and desired 
mapping in a way that abstracts enough about the 
program that the right information is available for each 
different target.  

As mentioned, the model and directives are under 
active development. Currently, the model is limited in 
many ways; some of these limitations could be relaxed or 
extended. For instance, the model could allow for 
parallelism between kernels, or pipeline parallelism 
between loop iterations, or more explicit data locality 
specifications. We are also looking at what items would 
be required to generate tuned code for other targets, such 
as other GPUs, or specialized processors like STI Cell[7] 
or Intel Larrabee[15].  
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