

CUG 2009 Proceedings 1 of 10

An Accelerator Programming Model for Multicore

Brent Leback, Steven Nakamoto, and Michael Wolfe,
The Portland Group (PGI)

ABSTRACT: We have previously introduced the kernels programming model for
accelerators such as GPUs, where a kernel roughly corresponds to tightly nested
parallel loops with rectangular limits. We have designed directives for C and Fortran
programs to target this model, similar in design to the well-known and widely used
OpenMP parallel directives, and are implementing the directives and program model in
the PGI C and Fortran compilers. This paper explores using the kernels programming
model and directives on a multicore target. We attempt to answer two questions: whether
the model can target a multicore processor, and whether it’s a good idea.

The paper briefly reviews the kernels programming model, where a kernel can include
both MIMD (doall) and SIMD (vector) parallelism, explicitly or implicitly. The paper
describes the directives used to program to the model, focusing on those important for a
multicore target. The compiler implementation is presented in some detail, including the
required analysis and code generation; differences from the implementation for an
accelerator target are highlighted. An important feature of the implementation is the
compiler feedback, which tells users the details of the generated code, allowing them to
tune their program. The final section evaluates the model, comparing it to other parallel
programming models such as OpenMP and automatic parallelization and vectorization.

KEYWORDS: Compiler, Accelerator, Multicore, Parallelization, Vectorization

1. Introduction
We can break current methods to program multicore

processors into five broad categories:

• Use a parallel-optimized library. This can be and has
been a very successful way to take advantage of any new
architectural features. This was the motivation behind the
Basic Linear Algebra Subroutine (BLAS) library, for
instance. If the library is ported and optimized for a new
machine with new features, then (hopefully) any
application written using the library will get the benefit of
those features with no more work than perhaps rebuilding
with the new library.

• Use a parallelizing compiler. This has been the dream
of many compiler research groups for well over 30 years.
Great strides have been made in this realm, though it’s far
from solving the whole problem.

• Use a parallel language (such as Cilk) or parallel
extensions to an existing language (OpenMP). This
allows the programmer to expose parallelism beyond

what a compiler can (re)discover, and perhaps with more
granularity or locality control than is available using a
library.

• Use MPI. This ignores the multicore aspect of the
processor, treating it like a network of nodes. This has the
advantage that the program will port to clusters and larger
machines, but it doesn’t use the multicore as efficiently as
possible.

• Use low level parallelism, such as POSIX threads,
directly. This allows very efficient thread control and
synchronization, but can require truly heroic
programming effort for larger applications.

In this paper, we discuss (yet) another method.

Previously, we described the kernels programming model,
targeting accelerators in general, and GPUs in
particular[19]. A kernel roughly corresponds to a tightly
nested loop. We described directive-based extensions to
C and Fortran to target this model, where the directives
are similar in design and scope to the OpenMP directives.
Here, we discuss using the kernels programming model to
program multicore processors, similar to treating the

CUG 2009 Proceedings 2 of 10

multicore as an accelerator. The goal of the work
described in this paper is to explore whether the kernels
programming model can target a multicore processor and
how to implement a compiler to do so, and whether such
an effort is worthwhile.

We start by describing the goals that drove us to
develop our programming model and directives in Section
2; we look at the success of the dominant method to
program vector computers over the past 30 years. The
kernels programming model is described in Section 3; the
model is clearly inspired by today’s GPUs, but there are
several general concepts that map well onto multicores.
Section 4 briefly describes our directives, focusing on
those relevant for multicore targets. We give a possible
compiler implementation in Section 5, comparing it to
autoparallelizing compilers, OpenMP compilers, and our
accelerator compiler implementation. An important
feature of this programming method is effective compiler
feedback; we discuss this in Section 6. We evaluate our
proposed design and implementation against other
methods and against our goals in Section 7. We conclude
by discussing how we think the model and
implementation will evolve.

2. Vector Programming
The first vector computers were the Texas

Instrument’s Advanced Scientific Computer (ASC),
Control Data STAR100, and Burroughs Illiac IV, in the
late 1960s and early 1970s. The TI ASC came with an
aggressive vectorizing Fortran compiler[17]. The first
commercially successful vector computer was the Cray-1;
the primary programming mechanism was its vectorizing
compiler, the Cray Fortran Translator (CFT). Here we
focus on the success of vectorizing compilers, and CFT in
particular.

The Cray-1 was not only a very fast vector processor;
a great deal of its success was because it was the fastest
scalar processor in the world at the time. With an 80MHz
clock, it was twice the speed of the Control Data 7600,
the machine it was to replace in many installations; many
programs immediately ran quite a bit faster on the Cray.
However, certain loops could achieve another factor of 5-
10 speedup by using the vector instruction set.

Some loops would vectorize and achieve this speedup
right away; most of the time, some programmer
intervention was required. Even so, using the vectorizing
compiler had some significant advantages over other
vector programming styles.

• No new language was needed. The only extensions
were a few built-in routines and some vectorization
directives (such as CDIR$ IVDEP). The modified
program could usually still be compiled and tested or run

on workstations or other computers.
• It was incremental. Only innermost loops needed to

be modified or rewritten to vectorize. The analysis was
usually limited to that loop, or perhaps that routine. Each
loop could be analyzed and rewritten in isolation, without
coordinating as to how the rest of the program was being
optimized.

• The compiler gave feedback as to its success or
failure in vectorizing loops. In particular, it could be very
precise about what statement, or what array reference in
which statement prevented vectorization. This allowed
programmers to focus their modifications to get the de-
sired vector performance.

• The programming style was portable as well. As
vector processors were developed by Convex, Fujitsu,
Hitachi, IBM, NEC, and others, programs that would
vectorize for the Cray would also vectorize for these other
machines.

Successful vector programming required work from
both the programmer and the compiler; essentially, the
optimization effort was divided between the application
developer and the compiler writer. Because of the
vectorizing compiler, the application developer didn’t
have to learn a new language or maintain several versions
of the program, and didn’t have to dive into assembly
language. The compiler writer could focus on getting
good performance from the vectorizable subset of the
language; the compiler didn’t have to attempt heroic
whole program analysis because it could always give up
and tell the programmer where it needed help. The work
division and cooperation was then and continues today to
be successful. We designed our kernels programming
model to benefit from the four advantages listed above.

3. The Kernels Model
Many parallel programming models have been

proposed and implemented. A threads model creates a
number of processing threads, where each thread has
some private memory and all threads share a global
memory; through structured or unstructured
synchronization, the threads can cooperate on a parallel
program. Cooperating Sequential Processes (CSP)[5] is a
threads model. OpenMP[14] currently uses a threads
model, based loosely on POSIX threads[4].

A tasks model creates a number of tasks in a task
queue or container; some number of actors (such as
threads) dequeue or remove a task and execute it, which
may add more tasks to the queue or container. Some
models have multiple or nested queues. Cilk[3] uses a

CUG 2009 Proceedings 3 of 10

tasks model.
High Performance Fortran[10] was designed to use an

implicit parallelism model with distributed data;
conceptually, there was one thread of computation
implemented with multiple processes executing on many
processors, with redundant execution on replicated data
and parallel execution on distributed data.

Here we describe what we call the kernels
programming model. In this model, a program is a
sequence of parallel kernels launched or invoked by a
master thread. Each kernel is invoked and executed in
parallel on a multidimensional domain. Essentially, the
kernel is a multidimensional parallel loop, with the body
of the loop comprising the kernel code, and the parallel
loops describing the domain. The model allows for two
types of parallelism; in the domain, each dimension can
be designated as either a MIMD or a SIMD dimension.
These can be modeled by two types of parallel loop:
doparallel (MIMD) and dovector (SIMD). No
synchronization is supported or allowed between kernel
instances executing across different indices in a
doparallel dimension. Kernel instances with the same
doparallel indices but with different dovector indices can
synchronize at a barrier[9]; this may be required for an
accelerator, but is not required for multicore. These
groups of kernel instances will have the same rank and
size.

Each kernel is executed to completion before the next
kernel is initiated; parallelism is exploited between the it-
erations of each kernel, not between multiple kernels.
Using an accelerator, the host thread can execute
asynchronously in parallel with the kernels, or to wait for
some particular kernel to complete. On a multicore, it is
expected the host thread takes part in the kernel
computation.

The kernels parallelism model is clearly inspired by
GPUs, CUDA[13], and OpenCL[12]. For NVIDIA GPU
targets, dovector loops map to a thread block, and the
doparallel loops map to the grid of thread blocks. We
separate the model from the implementation so we can
develop a programming style that targets the model, and a
compiler that starts from the model to compile down to
the target accelerator.

The architectural concepts required to support the ker-
nels model are quite common. In particular, the two levels
of parallelism, MIMD and SIMD, map pretty directly
onto multicore (MIMD) processors with packed (SIMD)
instructions. The compiler can map doparallel loops onto
OpenMP style parallelism, and dovector loops onto the
packed or SIMD instructions of a single core.

An important characteristic of accelerators is that they
can perform fast context switches, which means for peak
performance it is important to generate many more

doparallel iterations than there are actual hardware
processing elements. In this way, memory latency can be
hidden, and the effective memory bandwidth increased.

In the future, if and when hyperthreading technologies
mature, oversubscribing X64 cores using this model may
potentially be a way to optimize for worsening memory
bandwidth issues that were described last year[20].

4. The Directives
OpenMP serves as a higher level programming style for

threads programming than POSIX threads[4]. OpenMP
has not replaced pthreads, but is sufficiently expressive
and efficient for many applications, and is more
accessible for most developers. We designed a directive-
based programming language to do for accelerator
computing (exemplified by CUDA and OpenCL) what
OpenMP has done for threads programming. We use
directive syntax similar to OpenMP, in that we use a
sentinel (stylized comment) in Fortran and #pragma
syntax in C.

We propose two basic directives. The first defines a
region of code containing loops, where each inner loop
body is intended to map onto a kernel and the loop
iterations map to the kernel domain. This directive can
have additional clauses to describe the data locality and
access restrictions. The accelerator region is delimited in
Fortran by region and end region directives, as:

!$acc region
...

!$acc end region

In C we use a region pragma immediately followed by
a
structured block.

#pragma acc region
{

...
}

Optional clauses on the region directive can include
copyin or copyout, which name arrays or array
sections that should be allocated on the accelerator and
uploaded from or downloaded to the host; these are not
relevant on a multicore, where all the cores share global
memory.

We use another directive to describe the mapping of the
program loop-level parallelism; specifically, the model
provides MIMD parallelism (called doparallel here) and
SIMD parallelism (called dovector). A programmer can
map a loop to parallel mode or vector mode, or specify

CUG 2009 Proceedings 4 of 10

that a loop should be strip-mined[2] with different
execution modes for the resulting outer and inner loops.
We show by example:

! Example 1:
!$acc region
 !$acc do parallel
 do j = 2,m-1
 !$acc do vector
 do i = 2,n-1
 r(i-1,j-1) = 0.25*(s(i-1,j) + s(i+1,j) &
 + s(i,j-1) + s(i,j+1))
 enddo
 enddo
!$acc end region

Here the do directives tell the compiler to run the
outer loop in parallel and the inner loop in vector mode.
Each vector of m −2 elements requires 3 ×m−4 elements
of the input matrix s and m − 2 stores of r for 4 × (m −
2) operations, giving a compute intensity (operations per
operand) of about 1.

A more data-efficient or cache-efficient approach is to
tile the loops; this is specified using our directives as:

! Example 2:
!$acc region copyin(s(1:n,1:m)) copyout(r)
 !$acc do parallel,vector(8)
 do j = 2,m-1
 !$acc do parallel,vector(8)
 do i = 2,n-1
 r(i-1,j-1) = 0.25*(s(i-1,j) + s(i+1,j) &
 + s(i,j-1) + s(i,j+1))
 enddo
 enddo
!$acc end region

The do directives here tells the compiler to strip-mine
each loop with the inner loops running in vector mode on
an 8 × 8 tile, and the outer loops running in parallel. Each
tile requires a 10 × 10 submatrix of s and 8 × 8 stores for
r for 4 × 8 × 8 operations, for a compute intensity of
256/164 or about 1.5, which should make more efficient
use of the cache memory.

Other loop mapping clauses specify sequential
execution within a kernel. In the absence of loop-mapping
clauses, the compiler will analyze the parallelism and data
access patterns to determine a mapping.

A third, optional set of directives and clauses allow
the user to have finer control over data locality. This may
be either to specify resident data across kernel
invocations, or hints on use of different levels of the
memory hierarchy within a kernel. As an example of the
first case, consider the above code with another array,
which is resident on the accelerator:

! Example 3:
!$acc device data(t)

!$acc region

!$acc do parallel
 do j = 2,m-1
 !$acc do vector
 do i = 2,n-1
 r(i-1,j-1) = 2.0 * t(i,j) - &
 0.25*(s(i-1,j) + s(i+1,j) &
 + s(i,j-1) + s(i,j+1))
 enddo
 enddo
!$acc end region

!$acc region
 < another kernel that uses t >
!$acc end region

!$acc end device data region

Targeting an accelerator, there are important
decisions to be made between the compiler and user
regarding data which is to stay resident on the device
through kernel invocations, data which is to be moved to
and from the device at each invocation, data that is
private, cached, shared, etc. Similarly, we have shown in
previous papers[20] that even on x64 multicore systems,
large performance differences can result from a compiler
and/or user knowing where data resides, and using the
proper prefetch, load, and store instructions which
optimize for the best data transfer efficiencies. At this
point, it is unclear whether there will be one general
model a user can adhere to which can cleanly specify the
distance between the expected data location at kernel
invocation and the actual processing elements, and that
proves effective on all targets.

The programming model and the directives to
implement them are still evolving; more details are
available at the PGI website
www.pgroup.com/accelerate.

5. Compiler Implementation
We are implementing the kernels programming

model using the proposed directives in the PGI Fortran
(PGFortran) and PGI C (PGCC) compilers. Initially, these
compilers target 64-bit x86 processors with an attached
NVIDIA GPU or Tesla card[19]. This section describes a
design for an implementation to target a multicore
processor.

The steps within the compiler to analyze an
accelerator region for a multicore are:

• Identify linear induction variables and compute loop
trip counts[6].

• Detect loop-level parallelism, using classical data
dependence analysis.

• Identify loop private scalars, using classical data-flow
analysis.

• Identify loop private arrays, using array section
analysis.

CUG 2009 Proceedings 5 of 10

• Map or schedule the loop level parallelism onto the
multicore processor.

• Compile parallel loops as if using OpenMP or auto-
detected parallelism.

• Compile inner vector loops for the SSE instruction
set.

• Add a barrier synchronization at the end of the
accelerator region.

• Give feedback to the programmer with details about
the generated code.

These steps can run as a phase fairly early in the com-
piler. Details follow, in particular comparing compiling
for a multicore to compiling for an accelerator like a
GPU.

5.1 Validation
When targeting an accelerator, the compiler must first

validate the operations in the accelerator region as
feasible on the target. For instance, some accelerators
may only support single precision, or may not support the
full math library. This is less of a concern when targeting
a multicore, since each core is as capable as any other,
and in particular as capable as the “host.”

5.2 Parallelism Detection
The kernels model depends on loop-level

multidimensional parallelism. We use classical data
dependence analysis[1, 18] and parallelism identification.
The analysis is augmented by user directives, and
distinguishes between fully parallel (doall) and vector
parallel loops, where a fully parallel loop has no loop-
carried dependences and a vector parallel loop has no
lexically-backward dependences.

On a multicore, vector operations are implemented
with packed or vector instructions on a single core, so no
synchronization is necessary. This contrasts with the
explicit synchronization required between synchronous
iteration thread groups on a GPU, for instance.

With both packed instruction sets and with today’s
accelerators, there is a big performance disadvantage if
the data fetches and stores are not contiguous (stride-1) in
memory. Also, in both cases there is a limited size to the
vector iteration set. On the NVIDIA GPUs, the maximum
size for a thread group (synchronous iteration group) is
256; the 256 threads in a thread group can be organized in
a 1-D, 2-D or 3-D manner. On today’s X64 multicore, the
SSE instruction set has an effective vector length of 2
(double precision) or 4 (single precision); there is no
hardware support for multidimensional vector operations.
Software can emulate larger and multidimensional vector

operations, or can simply scalarize the appropriate loops.

5.3 Scalar Analysis
We use classical scalar def-use and live variable

analysis to find scalars live into and out of each loop. In
particular, this allows the compiler to easily identify
scalars that can be or should be privatized. For an
accelerator, scalars live-in to the region and loop need to
be identified to be explicitly copied over to the device
memory; this is unnecessary for a multicore.

5.4 Array Section Analysis
We use a simple implementation of regular section

analysis that finds rectangular array sections[8] used and
modified in each statement and loop. This allows the
compiler to privatize arrays or subarrays; a loop-private
array is one where the addresses do not depend on the
loop iteration, each array element fetch in the loop is
dominated by an assignment to that element earlier in the
loop, and the array is not used after the loop. The
accelerator compiler uses array section analysis to
manage data allocation on the device memory, and data
movement between the device and the host, all of which
is unnecessary on the multicore.

5.5 Parallelism Mapping
The parallelism mapping step is key to the final

performance, and must be tuned for each target. For an
accelerator, the mapping step is responsible for
optimizing use of the limited resources, such as any
software-managed cache memory or synchronous
iteration thread group size. For a multi-core, the mapping
step tries to find enough vector parallelism to utilize the
vector instruction set effectively, and enough large-grain
loop-level parallelism to implement efficiently with OS-
managed threads. For accelerators, we have an initial
implementation of an automatic mapper, which we call
the planner, but in many cases efficient code requires
users to insert mapping directives.

This step is key to meeting one of our hoped-for
advantages; for the programming style to be considered
portable, either the mapping must be automated and tuned
for each target, or the same mapping directives must
apply to different targets. We discuss this in more detail
in Section 7.

5.6 Code Generation
Code generation for a multicore should be relatively

easy, since this is built within a single-core compiler with
OpenMP features. In particular, since there is only one
instruction set, other program development tools (linker,

CUG 2009 Proceedings 6 of 10

debugger) will work without customization.
The doparallel loops can be compiled into OpenMP-

style parallel execution. For nested parallel loops,
OpenMP uses either loop collapsing or nested parallel
regions. Nested parallel regions have additional overhead,
so we avoid them and use loop collapsing.

The dovector loops can be compiled into vector code
for the SSE instructions, using existing compiler phases.
The compiler need not emulate long vector operations;
instead, it can optimize for register and memory locality,
using loop unrolling or loop, choosing the most
advantageous vector loop for actual SSE instructions.

6. Compiler Feedback
As we mentioned in Section 2, one of the keys to

making mature vectorizing compilers successful in the
past was the compiler feedback. The simplicity of the
interface and division of work between tool and user
enabled a generation of software engineers to become
successful at performance tuning.

Today, most modern compilers discover and generate
a wealth of information about what the compiler did in
optimizing the code, what optimizations could not be
implemented (and why), how data is accessed,
relationships between procedures, and much more. PGI
compilers include the ability to save this information into
the compiled object and/or executable file for later
extraction and review. The Common Compiler Feedback
Format (CCFF) is a draft standard published by PGI that
defines what compiler information is stored and how the
information is formatted. Using CCFF, HPC tools
providers can enhance their products to offer better
information about optimizing performance.

Using PGI compilers, compiler feedback is generated
by using the –Minfo option, and CCFF is generated by
using –Minfo=ccff. CCFF information can be viewed
along with a source browser and post-mortem
performance data in the PGI PGPROF profiling tool.
Plans are to eventually incorporate it into IDEs.

Given the previous example 2 loop:

! Example 2:
!$acc region copyin(s(1:n,1:m)) copyout(r)
 !$acc do parallel,vector(8)
 do j = 2,m-1
 !$acc do parallel,vector(8)
 do i = 2,n-1
 r(i-1,j-1) = 0.25*(s(i-1,j) + s(i+1,j) &
 + s(i,j-1) + s(i,j+1))
 enddo
 enddo
!$acc end region

The compiler generates the following information:

10, Generating copyin(s(:n,:m))
 Generating copyout(r(1:n-2,1:m-2))
12, Loop is parallelizable
14, Loop is parallelizable
 Accelerator kernel generated
 12, !$acc do parallel, vector(8)
 14, !$acc do parallel, vector(8)
 Cached references to size [10x10]
 block of s

If we change some of the right-hand-side references of
s, to instead access r in the vertical dimension, we can see
that the compiler detects and reports dependencies in the
loop:

12, Loop is parallelizable
14, Loop carried dependence of r prevents
 parallelization
 Loop carried backward dependence of r
 prevents vectorization
 Accelerator kernel generated

On an x86 platform, it is clear that users expect the
compiler to continue and generate correct code even if it
is unable to vectorize and/or parallelize the loops. On an
accelerator, it is not so clear; if a directive is given to
explicitly parallelize and vectorize a loop, and the
compiler cannot do that due to either programmer error or
compiler inadequacies, what is the right course of action?
Should the compilation fail? Is compiler feedback
enough? These are considerations we are currently
working on with our early adopters. Currently, on an
accelerator, for the above example, we will just generate a
very inefficient kernel.

7. Evaluation
We evaluate our design by comparing it to OpenMP,

to autoparallelism, to our goals, and to other portable
approaches.

7.1 OpenMP
Does this programming model and compiler have any

advantages or disadvantages compared to an equivalent
OpenMP compiler? We see several differences:

• The OpenMP execution model is strictly threads-
based, which has both advantages and disadvantages.

• OpenMP only addresses MIMD parallelism, leaving
SIMD or vector parallelism to the programmer and
compiler.

• OpenMP is much more general than the kernels
model.

• OpenMP doesn’t apply to accelerators.

CUG 2009 Proceedings 7 of 10

We address these in more detail below.
OpenMP parallelism is defined in terms of threads. A

certain number of threads are created, and some or all of
these threads are active during parallel execution. Tasks,
such as loop iterations or groups of loop iterations, are
divided among the threads. In some cases, the mapping is
explicit, such as the OpenMP static loop schedule,
which maps a well-defined subset of iterations to each of
the threads in a particular order. Such a mapping has the
advantage of allowing a user to optimize for locality
between parallel regions or between parallel loops, by
scheduling loop iterations that access the same data onto
the same thread. Unless the operating system reschedules
that thread onto a different core or processor, the program
can benefit from cache locality between parallel loops or
regions. This is pretty low-level programming, and while
it can be quite effective, it requires more changes than
just adding loop directives. For instance, if we take our
Example 2 program, the tiled Jacobi iteration, and
implement it in OpenMP, the resulting program would
require the tiling to be explicit:

! Example 2 - OpenMP:
!$omp parallel
!$omp do collapse(2)
do jt = 2,m-1,8
 do it = 2,n-1,8
 do j = jt,min(m-1,jt+7)
 do i = it,min(n-1,it+7)
 r(i-1,j-1) = 0.25*(s(i-1,j)+s(i+1,j)&
 + s(i,j-1)+s(i,j+1))
 enddo
 enddo
 enddo
enddo
!$omp end parallel

Vector code generation for the inner loop is implicit here.
If we want multiple levels of tiling, we must add another
pair of loops.

Another disadvantage is that the programmer becomes
a thread manager; he or she must be aware that there is a
mapping between tasks and threads, and make sure to
create enough threads to fill the available cores, but not so
many as to create thrashing. Tuning an OpenMP program
may require knowledge of the system parameters or the
OpenMP vendor or implementation. While OpenMP
programs are portable, a single program may need to be
tuned differently for different systems, and there is no
standard way to specify system-dependent tuning
parameters, such as parallel loop schedules.

The kernels model is defined in terms of parallel loop
iterations, essentially parallel tasks. In fact, our
implementation will use OpenMP-style threads to execute
the iterations, but the mapping between iterations and
threads is much less strict. Thread management is handled

by the compiler and its runtime library. The kernels
directives also allow specification of tiled algorithms
without changing the text of the program, and specifies
both MIMD and SIMD parallelism in a single model.
The kernels model also has tuning parameters, and the
values may depend on the target accelerator; we return to
this point in our concluding remarks.

OpenMP is much more general than the kernels model,
in that more parallel programs can be written in OpenMP
than can be written in the kernels model. While OpenMP
began as a way to standardize the concept of a parallel
loop, it also allows parallel sections, and now has
dynamic parallel tasks. The kernels model only handles
nested parallel loops; our goal is to focus on this
important subset of parallel programs and implement it
well across a range of targets.

Finally, OpenMP does not apply on today’s
accelerators. Because OpenMP is strictly shared-memory,
thread-based, with the master thread participating in the
parallel computation. With OpenMP, it is no longer the
case that the sequential program (ignoring the OpenMP
directives) is semantically the same as (gives the same
answers as) the parallel program (respecting the OpenMP
directives). Today’s accelerators do not support shared
memory with the host, do not support full thread
synchronization even among threads on the accelerator,
and do not allow participation by the master (host) thread.
Research efforts to port OpenMP programs to
accelerators only succeed when they can limit the
OpenMP programs, ignore some directives, or deliver
unacceptable performance penalties.

In summary, the kernels model is related to OpenMP,
and will use some of the same low-level implementation
details. The kernels model is more restricted in the types
of parallel constructs it allows, but it has advantages in
managing MIMD and SIMD parallelism and cache
locality through tiling in a single mechanism.

7.2 Autoparallelism
Parts of the implementation are built on automatic

parallelization, such as induction variable identification,
dependence analysis, and loop-level parallelism detection.
Could this entire process be automated, making the
directives unnecessary?

In the best world, the directives would be
unnecessary; the compiler would detect and map the
parallelism onto the hardware without any need for user
directives. However, the compile-time cost of the deep
analysis needed to make this efficient, and the potential
for a compiler to make bad choices, lead us to believe that
user-directed parallelization is more likely to lead to

CUG 2009 Proceedings 8 of 10

improved performance than depending entirely on
automatic optimization. When successful, the benefit to
parallel execution is high enough to warrant users
spending more time in tuning. As discussed in Section 6,
with performance feedback from the compiler, users can
focus their effort where it is more likely to be effective.

In addition, users may have to recast their algorithms
to take advantage of parallelism, or to avoid memory
latency or bandwidth issues or other pitfalls of the target
machine. Programmers can change a program in ways
that are far beyond what any compiler or tool can do, and
we think we have a mechanism that helps them do just
that.

7.3 Other Approaches
Other recent portable approaches to manage multicore

and accelerator parallelism are:
• Use a parallel-optimized library.
• Use a run-time code generation scheme, a la

Rapidmind.
• Use a compiler to generate multicore code for

accelerator programs, such as MCUDA.
NVIDIA delivers a GPU-enabled version of the Basic

Linear Algebra Subroutines (BLAS) with the CUDA
SDK. It can deliver very high performance for those
functions implemented in the library, and if your program
consists of BLAS calls, you can use the CUDA BLAS to
advantage. The advantage to a compiler-based approach
would be the performance feedback, but a well-tuned
library shouldn’t need to give any feedback. Our
approach is language-based, hence at a lower level than a
library. In general, if you can use a well-tuned library,
you should probably do so.

Another type of library is exemplified by the
RapidMind platform[11]. This exposes a C++ class
library interface defining data types and methods with
which you rewrite your application. At runtime, the
underlying platform will generate appropriate code for the
particular high performance target on which your
program is running, be it an accelerator, GPU, or
multicore processor. Such a platform promises high
portability after a one-time rewrite to use the class library.
Our approach is directly embedded in the language and
the compiler, and so has the advantage of allowing
performance feedback and programming tuning.
However, our approach lacks a runtime code generation
and tuning component.

Another method is to start with the GPU kernel and to
compile and optimize that for multicore execution, exem-
plified by the MCUDA project[16]. If successful, it would
present a single framework for writing parallel programs
for GPUs and for multicore processors. However,

optimized GPU kernels written in CUDA or OpenCL for
today’s GPUs include many low-level details tuned for
the specific GPU. It remains to be seen whether such an
approach can successfully produce a model that can
efficiently target both the multicore and GPU.

7.4 Our Goals
We had four goals, matching the four advantages that

classical vectorizing compilers had listed in Section 2.
How well did we satisfy our goals? To recap, the four
goals were:

• Existing languages (extensions, directives allowed).
• Incremental.
• Compiler feedback.
• Portable across targets.

We designed the directives with the first goal in mind,

and we believe the model satisfies the goal.
The second goal is easier to satisfy for a multicore tar-

get than for an accelerator, because of the shared
memory. One of the keys to performance on the
accelerator is to minimize data traffic between the host
and the accelerator memory, which is communicated over
a PCI DMA channel. This means that often the
programmer will want to allocate memory on the
accelerator memory and leave it there. This can have a
global impact across the whole program, because the data
that lives on the accelerator is not accessible from the
host.

On a multicore, data doesn’t move from one memory
space to another. Adding kernels model directives can
change the execution behavior in that region, but will not
affect the rest of the program. In that sense, program
development and optimization is incremental.

We also designed the compiler with feedback as an
integral part. We firmly believe that if performance is
important, the programmer must be in the loop during
optimization. As much as we would all like to believe in a
magic compiler that will generate optimal code through
deep program analysis, we have no reason to believe that
this is any more feasible today than it was thirty years
ago.

The final goal is still open. We believe we can
certainly compile an accelerator region for a multicore,
given the design from Section 5. However, there is still
the problem of tuning the parallelism mapping. If we can
converge on automatic parallelism mapping (Section 5.5),
then we can say that we have a portable model. However,
the state today is that programmers must frequently insert
directives to map loop parallelism to accelerator hardware
parallelism; this mapping is unlikely to be optimal for a
different accelerator, or for a multicore processor.

CUG 2009 Proceedings 9 of 10

8. Concluding Remarks
From our design and analysis, we conclude that a

compiler targeting multicore processors for accelerator
regions is feasible with reasonable effort, when built on a
compiler that already supports accelerator regions and
supports parallelism (OpenMP) and vector operations
(SSE).

A key to success will be whether we can satisfy our
fourth goal, that of having a parallel programming model
that is portable across a wide variety of parallel systems.
In this case, that means portable across different
multicore processors as well as accelerators. The model
and the directive language are both still under active
development, and this question is still open. At this time,
target-specific tuning is frequently required, which is a
hindrance to true portability. Our hope is that as we gain
experience and the model and implementation matures,
we can find a way to specify the parallelism and desired
mapping in a way that abstracts enough about the
program that the right information is available for each
different target.

As mentioned, the model and directives are under
active development. Currently, the model is limited in
many ways; some of these limitations could be relaxed or
extended. For instance, the model could allow for
parallelism between kernels, or pipeline parallelism
between loop iterations, or more explicit data locality
specifications. We are also looking at what items would
be required to generate tuned code for other targets, such
as other GPUs, or specialized processors like STI Cell[7]
or Intel Larrabee[15].

About the Authors
Brent Leback is an Engineering Manager for PGI.

He has worked in various positions over the last 25 years
in HPC customer support, math library development,
applications engineering and consulting at QTC, Axian,
PGI and STMicroelectronics. He can be reached by e-
mail at brent.leback@pgroup.com.

Steven Nakamoto is the Compiler Architect at PGI.
Prior to joining PGI in 1989, he worked in various
software and compiler engineering positions at Floating
Point Systems, BiiN, Mentor Graphics, and Honeywell
Information Systems. He can be reached by e-mail at
steven.nakamoto@pgroup.com.

Michael Wolfe joined PGI as a compiler engineer in
1996; he has worked on parallel compilers for over 30
years. He has published one textbook, High Performance
Compilers for Parallel Computing, and a number of

technical papers. He can be reached by e-mail at
michael.wolfe@pgroup.com.

References
[1] ALLEN, R., AND KENNEDY, K. Optimizing

Compilers for Modern Architectures. Morgan
Kaufman, 2002.

[2] BACON, D. F., GRAHAM, S. L., AND SHARP, O.
J. Compiler transformations for high-performance
computing. Computing Surveys (Dec. 1994), 345–420.

[3] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B.
C., LEISERSON, C. E., RANDALL, K. H., AND
ZHOU, Y. Cilk: An efficient multithreaded runtime
system. Journal of Parallel and Distributed
Computing (Aug. 1996), 55–69.

[4] BUTENHOF, D. R. Programming with POSIX
Threads. Addison-Wesley, 1997.

[5] DIJKSTRA, E. W. Cooperating sequential processes.
In The origin of concurrent programming: from
semaphores to remote procedure calls, P. B. Hansen,
Ed. Springer Verlag, New York, 2002.

[6] GERLEK, M. P., STOLTZ, E., AND WOLFE, M.
Beyond induction variables: Detecting and classifying
sequences using a demand-driven SSA form. ACM
Transactions on Programming Languages and
Systems 17, 1 (Jan. 1995), 85–122.

[7] GSCHWIND, M. The Cell Broadband Engine:
Exploiting multiple levels of parallelism in a chip
multiprocessor. International Journal of Parallel
Programming 35, 3 (June 2007).

[8] HAVLAK, P., AND KENNEDY, K. An
implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and
Distributed Systems 2, 3 (July 1991), 350–360.

[9] JORDAN, H. F. The Force. In The Characteristics of
Parallel Algorithms, L. H. Jamieson, D. B. Gannon,
and R. J. Douglass, Eds. MIT Press, 1987, pp. 395–
436.

[10] KOELBEL, C. H., LOVEMAN, D. B.,
SCHREIBER, R. S., STEELE JR., G. L., AND
ZOSEL, M. E. The High Performance Fortran
Handbook. The MIT Press, Cambridge,
Massachchusetts, 1994. Scientific and Engineering
Computation Series.

[11] MCCOOL, M. D. Data-parallel programming on the
Cell BE and the GPU using the RapidMind
development platform. In GSPx Multicore
Applications Conference (Santa Clara, Cal., Oct.
2006).

[12] NUNSHI, A., Ed. The OpenCL Specification. The
Kronos Group, Dec. 2008.

[13] NVIDIA CORP. NVIDIA CUDA Cuda Unified
Device Architecture Reference Manual, June 2008.

[14] OPENMP ARCHITECTURE REVIEW BOARD.
OpenMP Application Program Interface, 2008.

CUG 2009 Proceedings 10 of 10

[15] SEILER, L., CARMEAN, D., SPRANGLE, E.,
FORSYTH, T., ABRASH, M., DUBEY, P.,
JUNKINS, S., LAKE, A., SUGERMAN, J., CAVIN,
R., ESPASA, R., GROCHOWSKI, E., JUAN, T.,
AND HANRAHAN, P. Larrabee: a many-core x86
architecture for visual computing. In International
Conference on Computer Graphics and Interactive
Techniques (Aug. 2008), ACM Press.

[16] STRATTON, J. A., STONE, S. S., AND MEI W.
HWU, W. MCUDA: An efficient implementation of
CUDA kernels on multi-cores. IMPACT Technical
Report IMPACT-0801, University of Illinois, Center
for Reliable and High-Performance Computing, Apr.
2008.

[17] WEDEL, D. Fortran for the Texas Instruments ASC
system. SIGPLAN Notices 10, 3 (Mar. 1975), 119–
132.

[18] WOLFE, M. High Performance Compilers for
Parallel Computing. Reading, Mass.: Addison-
Wesley, 1996.

[19] WOLFE, M. Design and implementation of a high
level programming model for GPUs. In Workshop on
Exploiting Parallelism using Hardware Assisted
Methods (Seattle, Wa., Mar. 2009).

[20] LEBACK, B., DOERFLER, D., and HEROUX, M.,
Performance Analysis and Optimization of the
Trilinos Epetra Package on the Quad-Core AMD
Opteron Processor, CUG 2008 Proceedings.

	
	
	1. Introduction
	2. Vector Programming
	3. The Kernels Model
	4. The Directives
	5. Compiler Implementation
	5.1 Validation
	5.2 Parallelism Detection
	5.3 Scalar Analysis
	5.4 Array Section Analysis
	5.5 Parallelism Mapping
	5.6 Code Generation

	6. Compiler Feedback
	7. Evaluation
	7.1 OpenMP
	7.2 Autoparallelism
	7.3 Other Approaches
	7.4 Our Goals

	8. Concluding Remarks
	About the Authors
	References

