
1

An Accelerator Programming
Model for Multicore

Brent Leback, Steven Nakamoto,
and Michael Wolfe

PGI

May 6, 2009

2

Roadmap for this Talk

¾ Describe the problem of programming an x64+GPU system

¾ Describe the PGI Accelerator “Kernels” programming model

¾ Describe directives used to program to the model

¾ Show how the directives are compiled to an accelerator target

¾ Project how the directives could be applied to x64

¾ Discuss the generality and limitations of the model

3

Abstracted x64+Accelerator Architecture

4

PGI Accelerator Model Design
� Based on two successful models: Vector Programming

and OpenMP
� Vector Programming:

� No new language was needed
� It was incremental
� The compiler gave feedback
� The programming model was portable

� OpenMP
� Layered atop an underlying technology (pthreads in this case)
� Directive-based, accessible for most developers
� Sufficiently expressive to solve most problems
� Code still works without the directives

5

!$acc region
do j = 1, m

do i = 1, n
do k = 1,p
a(i,j) = a(i,j) + b(i,k)*c(k,j)

enddo
enddo

enddo
!$acc end region

Simple Fortran Matrix Multiply
for an x64 Host, accelerated

6

extern "C" __global__ void
mmkernel(float* a,float* b,float* c,

int la,int lb,int lc,int n,
int m,int p)

{
int i = blockIdx.x*64+threadIdx.x;
int j = blockIdx.y;

float sum = 0.0;
for(int k = 0; k < p; ++k)
sum += b[i+lb*k] * c[k+lc*j];

a[i+la*j] = sum;
}

Basic CUDA C Matrix Multiply Kernel
for an NVIDIA GPU

7

extern "C" __global__ void
mmkernel(float* a, float* b, float* c, int la, int lb, int lc, int n, int m, int p)
{

int tx = threadIdx.x;
int i = blockIdx.x*128 + tx; int j = blockIdx.y*4;
__shared__ float cb0[128], cb1[128], cb2[128], cb3[128];

float sum0 = 0.0, sum1 = 0.0, sum2 = 0.0, sum3 = 0.0;
for(int ks = 0; ks < p; ks += 128){

cb0[tx] = c[ks+tx+lc*j]; cb1[tx] = c[ks+tx+lc*(j+1)];
cb2[tx] = c[ks+tx+lc*(j+2)]; cb3[tx] = c[ks+tx+lc*(j+3)];
__syncthreads();
for(int k = 0; k < 128; k+=4){

float rb = b[i+lb*(k+ks)];
sum0 += rb * cb0[k]; sum1 += rb * cb1[k];
sum2 += rb * cb2[k]; sum3 += rb * cb3[k];

rb = b[i+lb*(k+ks+1)];
sum0 += rb * cb0[k+1]; sum1 += rb * cb1[k+1];
sum2 += rb * cb2[k+1]; sum3 += rb * cb3[k+1];

rb = b[i+lb*(k+ks+2)];
sum0 += rb * cb0[k+2]; sum1 += rb * cb1[k+2];
sum2 += rb * cb2[k+2]; sum3 += rb * cb3[k+2];

rb = b[i+lb*(k+ks+3)];
sum0 += rb * cb0[k+3]; sum1 += rb * cb1[k+3];
sum2 += rb * cb2[k+3]; sum3 += rb * cb3[k+3];

}
__syncthreads();

}
a[i+la*j] = sum0; a[i+la*(j+1)] = sum1;
a[i+la*(j+2)] = sum2; a[i+la*(j+3)] = sum3;

}

Optimized
CUDA C
Matrix
Multiply
Kernel

8

Host-side CUDA C Matrix Multiply
GPU Control Code

cuModuleLoad(&module, binfile);
cuModuleGetFunction(&func, module, "mmkernel");

cuMemAlloc(&bp, memsize);
cuMemAlloc(&ap, memsize);
cuMemAlloc(&cp, memsize);

cuMemcpyHtoD(bp, b, memsize);
cuMemcpyHtoD(cp, c, memsize);
cuMemcpyHtoD(ap, a, memsize);

dim3 threads(128);
dim3 blocks(matsize/128, matsize/4);
mmkernel<<<blocks,threads>>>(ap,bp,cp,nsize,nsize,

nsize,matsize,matsize,matsize);

cuMemcpyDtoH(a, ap, memsize);

9

What is a “Kernels”
Programming Model?

� Kernel – a multidimensional parallel loop, where the
body of the loop is the kernel code and the loops define
the index set or domain

� Program – a sequence of kernels, where each kernel
executes to completion over its index set before the next
kernel can start

� Parallelism is exploited between iterations of a kernel,
not between multiple kernels executing in parallel

10

dopar j = 1, m
dopar is = 1, n, 64

dovec i = is, is+63
sum = 0.0
doseq k = 1, p

sum += b(i,k) * c(k,j)
enddo
a(i,j) = sum

enddo
enddo

enddo

Kernels Model Pseudo-code for
Simple Matrix Multiply

11

#pragma acc region
{

for(int opt = 0; opt < optN; opt++){
float S = h_StockPrice[opt],

X = h_OptionStrike[opt],
T = h_OptionYears[opt];

float sqrtT = sqrtf(T);
float d1 = (logf(S/X) +

(Riskfree + 0.5 * Volatility * Volatility) * T)
/ (Volatility * sqrtT);

float d2 = d1 - Volatility * sqrtT;
float cndd1 = CND(d1);
float cndd2 = CND(d2);
float expRT = expf(- Riskfree * T);
h_CallResult[opt] = (S*cndd1-X*expRT*cndd2);
h_PutResult[opt] = (X*expRT*(1.0-cndd2)-S*(1.0-cndd1));

}
}

Same Basic Model for C - pragmas

12

How did we make Vectors Work?
Compiler-to-Programmer Feedback – a classic “Virtuous Cycle”

HPC
Code

CFT

Cray

Vectorization
Listing

Trace

Performance

Profiler

HPC
User

Directives, Options, Restructuring

This Feedback Loop
Unique to Compilers!

We can use this same methodology to enable effective
migration of applications to Multi-core and Accelerators

13

Compiler-to-Programmer Feedback

HPC
Code

PGI
Compiler

x64

CCFF

Trace PGPROF

HPC
User

Acc
+

Directives, Options, RESTRUCTURING

Restructuring for
Accelerators will
be More Difficult

Performance

14

Common Compiler Feedback Format

Source
File

Object
File

.CCFF

Executable
File

.CCFF

Compiler Linker pgextract

pgprof

pgprof.out
File

CCFF
File

run
program

http://www.pgroup.com/resources/ccff.htm

15

Types of Compiler Feedback

� How the function was compiled
� Inter-procedural optimizations
� Profile-feedback runtime data

¾ Block execution counts
¾ Loop counts, range of counts

� Compiler optimizations, missed opportunities
¾ Vectorization, parallelization
¾ Altcode, re-ordering of loops, inlining
¾ X64+GPU code generation, GPU kernel mapping, data movement

� Compute intensity – important for GPUs & Multi-core

16

% pgf95 -fast -ta=nvidia -Minfo mm.F90
mm1:

4, Generating copyin(c(1:m,1:m))
Generating copyin(b(1:m,1:m))
Generating copy(a(1:m,1:m))

5, Loop is parallelizable
6, Loop carried dependence of a prevents parallelization

Loop carried backward dependence of a prevents vectorization
Cached references to size [16x16] block of b
Cached references to size [16x16] block of c

7, Loop is parallelizable
Kernel schedule is 5(parallel), 7(parallel), 6(strip),

5(vector(16)), 7(vector(16)), 6(seq(16))
Parallel read/write of a

Compiler-to-User Feedback

17

!$acc region copyin(b(1:n,1:p),c(1:p,1:m))
!$acc& copy(a(1:n,1:m)) local(i,j,k)

do j = 1, m
do k = 1, p

do i = 1, n
a(i,j) = a(i,j) + b(i,k)*c(k,j)

enddo
enddo

enddo
!$acc end region

Clauses for Tuning Data Movement

18

!$acc region copyin(b(1:n,1:p),c(1:p,1:m))
!$acc& copy(a(1:n,1:m)) local(i,j,k)
!$acc do parallel

do j = 1, m
do k = 1, p

!$acc do parallel, vector(64)
do i = 1, n

a(i,j) = a(i,j) + b(i,k)*c(k,j)
enddo

enddo
enddo

!$acc end region

Directives for Tuning Kernel Mapping

19

!$acc device data(t)
. . .
!$acc region
do j = 2,m-1

do i = 2,n-1
r(i-1,j-1) = 2.0 * t(i,j) - 0.25*(s(i-1,j) + &

s(i+1,j) + s(i,j-1) + s(i,j+1))
enddo

enddo
!$acc end region
. . .
!$acc region
< another kernel that uses t >
!$acc end region
!$acc end device data region

Directives for Tuning Data Locality

20

Accelerator Directives Processing

� Live variable and array region analysis to augment information in
region directives and determine in / out datasets for the region

� Dependence and parallelism analysis to augment information in
loop directives and determine loops that can be executed in parallel

� Select mapping of loop(s) onto hardware parallelism, SIMD/vector
and MIMD/parallel dimensions, strip mining and tiling for
performance

� Extract the kernel or kernels, generate target code for each kernel

� Lots of opportunity for optimization of kernel code - loop unrolling,
software data cache usage, register lifetime management (minimize
register usage to maximize multithreading potential)

� Generate host code to drive and launch kernels, allocate GPU
memory, copy data from host to GPU, copy results back to host,
continue on host, generate host version of loop(s) OR, on multicore,
tune for data locality, prefetching, caching, etc.

� Generate feedback to programmer

21

PGI Accelerator Model Advantages

� Minimal changes to the language – directives/pragmas, in the
same vein as vector or OpenMP parallel directives

� Minimal library calls – usually none
� Standard x64 toolchain – no changes to makefiles, linkers, build

process, standard libraries, other tools
� Not a “platform” – binaries will execute on any compatible

x64+GPU hardware system
� Performance feedback – learn from and leverage the success of

vectorizing compilers in the 1970s and 1980s
� Incremental program migration – put migration decisions in the

hands of developers
� PGI Unified Binary Technology – ensures continued portability to

non GPU-enabled targets

22

Is it General?
� Clearspeed – two 96-wide SIMD units (MIMD/SIMD) and separate

memory from host
� Cell Blades – four SPEs each with packed/SIMD instructions and

separate memory from host, SPEs have small SW-managed local
memory.

� Larrabee – has some number of x64 cores each with 16-wide
packed/SIMD operations and separate memory from x64 host, also
supporting multithreading in each core

� Convey – has an x64 host with an attached multi-vector accelerator
which could be programmed using this model as well.

� Multicore x64 – has some number of x64 cores, each with 4-wide
packed/SIMD operations; no need for data movement?

…YES!

23

How does this Model apply to X64
Multicore

� Most data transfer operations and data
movement and locality clauses turn into hints
for data locality on x64, i.e. prefetch, temporal
load and store code generator decisions

� Most directives for tuning kernel mapping turn
into strip mining or tiling hints to the compiler

� Since the model is purely directive based,
ignoring the directives or pragmas is a viable
option

24

Status and Experience so Far
� Compilers have been in the field for “Technology

Preview” since beginning of 2009
� Compilers generate correct x64+GPU code for most

arbitrarily-chosen simple rectangular loops
� Significant speed-ups vs 1 host core on highly compute-

intensive loops (matmul 20x – 30x, Black-Scholes 15x –
20x vs 1 host core)

� Compilers aggressively use NVIDIA Shared Memory
� Early limitations to offloading large loops (CUDA arg

limits, live-out scalars, function calls, certain intrinsic
calls – and bugs ☺) are being addressed

� Directives / clauses complete for Rel. 1.0; more to come
� Manual inlining likely to be biggest challenge for users

25

Limitations, Future Work
� Not Universal – doesn’t apply to unstructured parallelism or

dynamic parallelism

� Interoperability – between PGI Accelerator code and CUDA
(e.g. CUBLAS) or OpenCL

� Device resident data – between kernel invocations

� C++ – support lags C and Fortran.

� Multiple GPUs

� Multiple parallel streams – overlap computation and
communication, pipelining large datasets

� Tuning GPU-side code generation – loop unrolling, tuning use
of the SW-managed cache, tuning for single-issue in-order, etc

26

Conclusion: Applicability to X64

� Feasibility: - If the compiler supports OpenMP
and Vectorization, this model is not a stretch

� Portability: – A key will be whether or not this
model can express parallelism, tiling, and data
locality in a device-independent way

� Flexibility: - Our model is still under active
development. See
http://www.pgroup.com/accelerate and give us
your thoughts

http://www.pgroup.com/accelerate

	An Accelerator Programming Model for Multicore
	Roadmap for this Talk
	Abstracted x64+Accelerator Architecture
	PGI Accelerator Model Design
	Simple Fortran Matrix Multiply �for an x64 Host, accelerated
	Basic CUDA C Matrix Multiply Kernel �for an NVIDIA GPU
	Optimized�CUDA C Matrix�Multiply�Kernel
	Host-side CUDA C Matrix Multiply GPU Control Code
	What is a “Kernels” �Programming Model?
	Kernels Model Pseudo-code for �Simple Matrix Multiply
	Same Basic Model for C - pragmas
	How did we make Vectors Work?�Compiler-to-Programmer Feedback – a classic “Virtuous Cycle”
	Compiler-to-Programmer Feedback
	Common Compiler Feedback Format
	Types of Compiler Feedback
	Compiler-to-User Feedback
	Clauses for Tuning Data Movement
	Directives for Tuning Kernel Mapping
	Directives for Tuning Data Locality
	Accelerator Directives Processing
	PGI Accelerator Model Advantages
	Is it General?
	How does this Model apply to X64 Multicore
	Status and Experience so Far
	Limitations, Future Work
	Conclusion: Applicability to X64

