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Roadmap for this Talk

¾ Describe the problem of programming an x64+GPU system

¾ Describe the PGI Accelerator “Kernels” programming model

¾ Describe directives used to program to the model

¾ Show how the directives are compiled to an accelerator target

¾ Project how the directives could be applied to x64

¾ Discuss the generality and limitations of the model
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Abstracted x64+Accelerator Architecture
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PGI Accelerator Model Design
� Based on two successful models: Vector Programming 

and OpenMP
� Vector Programming:

� No new language was needed
� It was incremental
� The compiler gave feedback
� The programming model was portable

� OpenMP
� Layered atop an underlying technology (pthreads in this case)
� Directive-based, accessible for most developers
� Sufficiently expressive to solve most problems
� Code still works without the directives
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!$acc region
do j = 1, m

do i = 1, n
do k = 1,p
a(i,j) = a(i,j) + b(i,k)*c(k,j) 

enddo
enddo

enddo
!$acc end region

Simple Fortran Matrix Multiply 
for an x64 Host, accelerated
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extern "C" __global__ void
mmkernel( float* a,float* b,float* c,

int la,int lb,int lc,int n, 
int m,int p ) 

{
int i = blockIdx.x*64+threadIdx.x;
int j = blockIdx.y;

float sum = 0.0;
for( int k = 0; k < p; ++k ) 
sum += b[i+lb*k] * c[k+lc*j];

a[i+la*j] = sum;
}

Basic CUDA C Matrix Multiply Kernel 
for an NVIDIA GPU
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extern "C" __global__ void
mmkernel( float* a, float* b, float* c, int la, int lb, int lc, int n, int m, int p ) 
{

int tx = threadIdx.x;
int i = blockIdx.x*128 + tx;  int j = blockIdx.y*4;
__shared__ float cb0[128], cb1[128], cb2[128], cb3[128];

float sum0 = 0.0, sum1 = 0.0, sum2 = 0.0, sum3 = 0.0;
for( int ks = 0; ks < p; ks += 128 ){

cb0[tx] = c[ks+tx+lc*j];     cb1[tx] = c[ks+tx+lc*(j+1)];
cb2[tx] = c[ks+tx+lc*(j+2)]; cb3[tx] = c[ks+tx+lc*(j+3)];
__syncthreads();
for( int k = 0; k < 128; k+=4 ){

float rb = b[i+lb*(k+ks)];
sum0 += rb * cb0[k];   sum1 += rb * cb1[k];
sum2 += rb * cb2[k];   sum3 += rb * cb3[k];

rb = b[i+lb*(k+ks+1)];
sum0 += rb * cb0[k+1]; sum1 += rb * cb1[k+1];
sum2 += rb * cb2[k+1]; sum3 += rb * cb3[k+1];

rb = b[i+lb*(k+ks+2)];
sum0 += rb * cb0[k+2]; sum1 += rb * cb1[k+2];
sum2 += rb * cb2[k+2]; sum3 += rb * cb3[k+2];

rb = b[i+lb*(k+ks+3)];
sum0 += rb * cb0[k+3]; sum1 += rb * cb1[k+3];
sum2 += rb * cb2[k+3]; sum3 += rb * cb3[k+3];

}
__syncthreads();

}
a[i+la*j] = sum0;     a[i+la*(j+1)] = sum1;
a[i+la*(j+2)] = sum2; a[i+la*(j+3)] = sum3;

}

Optimized
CUDA C 
Matrix
Multiply
Kernel
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Host-side CUDA C Matrix Multiply 
GPU Control Code

cuModuleLoad( &module, binfile );
cuModuleGetFunction( &func, module, "mmkernel" );

cuMemAlloc( &bp, memsize );
cuMemAlloc( &ap, memsize );
cuMemAlloc( &cp, memsize );

cuMemcpyHtoD( bp, b, memsize );
cuMemcpyHtoD( cp, c, memsize );
cuMemcpyHtoD( ap, a, memsize );

dim3 threads( 128 );
dim3 blocks( matsize/128, matsize/4 );
mmkernel<<<blocks,threads>>>(ap,bp,cp,nsize,nsize,

nsize,matsize,matsize,matsize);

cuMemcpyDtoH( a, ap, memsize );
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What is a “Kernels”
Programming Model?

� Kernel – a multidimensional parallel loop, where the 
body of the loop is the kernel code and the loops define 
the index set or domain

� Program – a sequence of kernels, where each kernel 
executes to completion over its index set before the next 
kernel can start 

� Parallelism is exploited between iterations of a kernel, 
not between multiple kernels executing in parallel
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dopar j = 1, m
dopar is = 1, n, 64

dovec i = is, is+63
sum = 0.0
doseq k = 1, p

sum += b(i,k) * c(k,j)
enddo
a(i,j) = sum

enddo
enddo

enddo

Kernels Model Pseudo-code for 
Simple Matrix Multiply
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#pragma acc region
{

for(int opt = 0; opt < optN; opt++){
float S = h_StockPrice[opt],

X = h_OptionStrike[opt],
T = h_OptionYears[opt];

float sqrtT = sqrtf(T);
float d1 = (logf(S/X) +

(Riskfree + 0.5 * Volatility * Volatility) * T)
/ (Volatility * sqrtT);

float    d2 = d1 - Volatility * sqrtT;
float cndd1 = CND(d1);
float cndd2 = CND(d2);
float expRT = expf(- Riskfree * T);
h_CallResult[opt] = (S*cndd1-X*expRT*cndd2);
h_PutResult[opt] = (X*expRT*(1.0-cndd2)-S*(1.0-cndd1));

}
}

Same Basic Model for C - pragmas
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How did we make Vectors Work?
Compiler-to-Programmer Feedback – a classic “Virtuous Cycle”

HPC
Code

CFT

Cray

Vectorization
Listing

Trace

Performance

Profiler

HPC
User

Directives, Options, Restructuring

This Feedback Loop
Unique to Compilers!

We can use this same methodology to enable effective
migration of applications to Multi-core and Accelerators
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Compiler-to-Programmer Feedback

HPC
Code

PGI 
Compiler

x64

CCFF

Trace PGPROF

HPC
User

Acc
+

Directives, Options, RESTRUCTURING

Restructuring for
Accelerators will 
be More Difficult

Performance
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Common Compiler Feedback Format

Source 
File

Object 
File

.CCFF

Executable 
File

.CCFF

Compiler Linker pgextract

pgprof

pgprof.out
File

CCFF
File

run 
program

http://www.pgroup.com/resources/ccff.htm



15

Types of Compiler Feedback

� How the function was compiled
� Inter-procedural optimizations
� Profile-feedback runtime data

¾ Block execution counts
¾ Loop counts, range of counts

� Compiler optimizations, missed opportunities
¾ Vectorization, parallelization
¾ Altcode, re-ordering of loops, inlining
¾ X64+GPU code generation, GPU kernel mapping, data movement

� Compute intensity – important for GPUs & Multi-core
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% pgf95 -fast -ta=nvidia -Minfo mm.F90
mm1:

4, Generating copyin(c(1:m,1:m))
Generating copyin(b(1:m,1:m))
Generating copy(a(1:m,1:m))

5, Loop is parallelizable
6, Loop carried dependence of a prevents parallelization

Loop carried backward dependence of a prevents vectorization
Cached references to size [16x16] block of b
Cached references to size [16x16] block of c

7, Loop is parallelizable
Kernel schedule is 5(parallel), 7(parallel), 6(strip), 

5(vector(16)), 7(vector(16)), 6(seq(16))
Parallel read/write of a

Compiler-to-User Feedback
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!$acc region copyin(b(1:n,1:p),c(1:p,1:m))
!$acc&       copy(a(1:n,1:m)) local(i,j,k)

do j = 1, m
do k = 1, p

do i = 1, n
a(i,j) = a(i,j) + b(i,k)*c(k,j)

enddo
enddo

enddo
!$acc end region

Clauses for Tuning Data Movement
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!$acc region copyin(b(1:n,1:p),c(1:p,1:m))
!$acc&       copy(a(1:n,1:m)) local(i,j,k)
!$acc do parallel

do j = 1, m
do k = 1, p

!$acc       do parallel, vector(64)
do i = 1, n

a(i,j) = a(i,j) + b(i,k)*c(k,j)
enddo

enddo
enddo

!$acc end region

Directives for Tuning Kernel Mapping
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!$acc device data(t) 
. . .
!$acc region 
do j = 2,m-1 

do i = 2,n-1 
r(i-1,j-1) = 2.0 * t(i,j) - 0.25*(s(i-1,j) + & 

s(i+1,j) + s(i,j-1) + s(i,j+1)) 
enddo

enddo
!$acc end region
. . .
!$acc region 
< another kernel that uses t > 
!$acc end region 
!$acc end device data region 

Directives for Tuning Data Locality
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Accelerator Directives Processing

� Live variable and array region analysis to augment information in 
region directives and determine in / out datasets for the region

� Dependence and parallelism analysis to augment information in 
loop directives and determine loops that can be executed in parallel

� Select mapping of loop(s) onto hardware parallelism, SIMD/vector 
and MIMD/parallel dimensions, strip mining and tiling for 
performance

� Extract the kernel or kernels, generate target code for each kernel

� Lots of opportunity for optimization of kernel code - loop unrolling, 
software data cache usage, register lifetime management (minimize 
register usage to maximize multithreading potential)

� Generate host code to drive and launch kernels, allocate GPU 
memory, copy data from host to GPU, copy results back to host, 
continue on host, generate host version of loop(s) OR, on multicore, 
tune for data locality, prefetching, caching, etc.

� Generate feedback to programmer
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PGI Accelerator Model Advantages

� Minimal changes to the language – directives/pragmas, in the 
same vein as vector or OpenMP parallel directives

� Minimal library calls – usually none
� Standard x64 toolchain – no changes to makefiles, linkers, build 

process, standard libraries, other tools
� Not a “platform” – binaries will execute on any compatible 

x64+GPU hardware system
� Performance feedback – learn from and leverage the success of 

vectorizing compilers in the 1970s and 1980s
� Incremental program migration – put migration decisions in the 

hands of developers
� PGI Unified Binary Technology – ensures continued portability to 

non GPU-enabled targets
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Is it General?
� Clearspeed – two 96-wide SIMD units (MIMD/SIMD) and separate 

memory from host
� Cell Blades – four SPEs each with packed/SIMD instructions and 

separate memory from host, SPEs have small SW-managed local 
memory.

� Larrabee – has some number of x64 cores each with 16-wide 
packed/SIMD operations and separate memory from x64 host, also 
supporting multithreading in each core

� Convey – has an x64 host with an attached multi-vector accelerator 
which could be programmed using this model as well. 

� Multicore x64 – has some number of x64 cores, each with 4-wide 
packed/SIMD operations;  no need for data movement?

…YES!
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How does this Model apply to X64 
Multicore

� Most data transfer operations and data 
movement and locality clauses turn into hints 
for data locality on x64, i.e. prefetch, temporal 
load and store code generator decisions

� Most directives for tuning kernel mapping turn 
into strip mining or tiling hints to the compiler

� Since the model is purely directive based, 
ignoring the directives or pragmas is a viable 
option
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Status and Experience so Far
� Compilers have been in the field for “Technology 

Preview” since beginning of 2009
� Compilers generate correct x64+GPU code for most 

arbitrarily-chosen simple rectangular loops
� Significant speed-ups vs 1 host core on highly compute-

intensive loops (matmul 20x – 30x, Black-Scholes 15x –
20x vs 1 host core)

� Compilers aggressively use NVIDIA Shared Memory
� Early limitations to offloading large loops (CUDA arg

limits, live-out scalars, function calls, certain intrinsic 
calls – and bugs ☺) are being addressed

� Directives / clauses complete for Rel. 1.0; more to come
� Manual inlining likely to be biggest challenge for users
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Limitations, Future Work
� Not Universal – doesn’t apply to unstructured parallelism or 

dynamic parallelism

� Interoperability – between PGI Accelerator code and CUDA 
(e.g. CUBLAS) or OpenCL

� Device resident data – between kernel invocations

� C++ – support lags C and Fortran.

� Multiple GPUs

� Multiple parallel streams – overlap computation and 
communication, pipelining large datasets

� Tuning GPU-side code generation – loop unrolling, tuning use 
of the SW-managed cache, tuning for single-issue in-order, etc



26

Conclusion: Applicability to X64

� Feasibility: - If the compiler supports OpenMP
and Vectorization, this model is not a stretch

� Portability: – A key will be whether or not this 
model can express parallelism, tiling, and data 
locality in a device-independent way

� Flexibility: - Our model is still under active 
development.  See 
http://www.pgroup.com/accelerate and give us 
your thoughts

http://www.pgroup.com/accelerate
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