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ABSTRACT:  In 2008, Cray released its first compiler targeted at the X86 instruction 

set and over the last several months code developers have begun to test its capabilities.  

This paper will briefly review the life of the Cray compiler, how to use it, and its current 

capabilities.  We will then present performance numbers, for both some standard 

benchmarks as well as real applications.  
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1. Introduction 

Cray Inc. has had a long tradition of providing high 

performance compilers to its high performance customers.  

Dating back to the early 1980’s, Cray compilers have 

been known for their vectorization and parallelization 

capabilities while more recently, with the addition of 

cache and multi-core architectures, several techniques 

have been added to maximize the use of the cache, 

minimize memory bandwidth requirements, and minimize 

the overhead of parallel regions.  However the compiler 

had been targeted primarily at Cray’s traditional vector 

machines along with some additional RISC based 

processors.  Until recently it had never targeted a CISC 

based processor such as those produced by Intel and 

AMD. 

As part of its Cascade project, Cray began to 

investigate adding a new “back-end” to the compiler to 

generate CISC instructions.  This investigation quickly 

began to focus on an open source compiler called LLVM, 

short for Low-Level-Virtual-Machine, originally started 

out of the University of Illinois and more recently 

championed by Apple Computer. 

Initial results and the progress of combining LLVM 

with the Cray compiler were better than expected and, 

after several months of additional investigation, the 

decision was made to move forward and productize a 

Cray compiler targeting the Opteron processor in the Cray 

XT product line.  As a result the Cray Compiling 

Environment (CCE) Version 7.0 was release in December 

of 2008. 

 

Basic Components of a Compiler 

Most compilers can be broken down into 3 phases 

with perhaps stages in each phase.   

Phase 1 is often referred to as the “front end” and 

takes files written in computer languages most 

programmers are familiar with, in this case Fortran, C, 

and C++, and translates all of those into an intermediate, 

internal representation used by the next phase of the 

compiler.  The Cray Compiling Environment uses an 

internally developed Fortran front-end for all Fortran code 

and front end made by the Edison Design Group for all C 

and C++ code. 

Phase 2 is the largest, and perhaps most complicated 

phase and is where most of the code transformations takes 

place.  There can be many different names for this phase 

and its many stages but this is where dependence analysis, 

loop vectorization and parallelization, loop 

transformations, and interprocedural analysis and inlinimg 

are all done.  In CCE, almost all of the code and 

technology are from, or decendents from, the traditional 

Cray compilers from years past and can therefore take 

advantage of Cray’s considerable experience with 

vectorization and parallelization. 
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Firgure 1:  Phases and components of the compiler 

 

Phase 3 is call the “back end” and translates the 

compilers internal representation into an assembly 

language targeted as a specific processor type.  Here Cray 

has always be had to create their own back ends to targets 

its proprietary vector processors, and it is here where Cray 

might have had to create a new back end to translate to 

the CISC assembly language used in the AMD Opteron 

processor.  Instead, Cray uses the back end component  of 

LLVM, translates from the Cray to LLVM representation, 

and lets LLVM generate the assembly code.  Creating the 

links to attach these two components together was much 

less work than creating its own back end and Cray can 

take advantage or any ongoing enhancements and updates 

to the open source code. 

Using CCE 

Using the Cray Compiler Environment is simple and 

straightforward.  If it is installed on your system there 

should be a module called PrgEnv-cray.  A simple 

“module avail PrgEnv-cray” will indicate its presence.  If 

it is available simply load the module PrgEnv-cray, or if 

you already have a PrgEnv you first have to unload that 

other PrgEnv because one cannot have two different 

PrgEnvs loaded at the same time. 

At default, CCE will target a now relatively old dual 

core Opteron.  Most customers have quad-core Opterons 

and are concerned with getting the most out of those 

systems.  To target that processor make sure that you have 

the module “xtpe-quadcore” loaded.  This not only sets 

the proper flags for the compiler, but also makes sure the 

proper libraries are loaded and linked into the executable. 

Once you have all the modules loaded the normal 

“ftn” and “cc” commands will invoke the Cray compiler.  

Cray’s philosophy is to optimize as much as possible at 

default, so when first porting and optimizing no options 

are necessary or recommended.  One option that is 

recommended is using the “-rm” option for fortran and 

the “-hlist=m” option for C.  These options will generate 

what we call “listing files”, files that are basically copies 

of the original source but annotated to indicate what 

optimizations and transformations the compiler did to 

your code.  It is here where you will look to see if 

particular loops were vectorized or unrolled. 

 

Current Capabilities 

When trying out a new compiler a developer wants to 

know its current capabilities.  Not surprisingly, one of our 

current capabilities and strengths revolves around 

vectorization.  Cray has always be experts in vectorization 

and that continues with this compiler.  CCE will tend to 

vectorize more than other compiler, throttled by what we 

feel we can profitable vectorize.  This is an area where we 

are intentionally aggressive and may vectorize loops 

which are not profitable to vectorize.  If one encounters 

such a situation, one can prevent vectorization of that loop 

by placing a “!dir$ nextscalar” directive just before the 

loop. 

For shared memory programming we are currently 

supporting OpenMP 2.0.  One unique capability that we 

have is support for nesting of OMP regions.  So if you 

have multiple, different levels of parallelism it may be 

beneficial to attack both levels rather than only one or the 

other. 

With this compiler we are also supporting the 

Partitioned Global Address Space, or PGAS, 

programming models.  This are often know as Co-Array 

Fortran and Unified Parallel C.  With these programming 

models one can directly access memory anywhere in the 

system.  For now, this implementation focuses only on 

functionality and performance; in fact we expect 

performance to be poor due to the underlying hardware 

and the youth of this feature.  We expect performance to 

improve over time and, in particular, to improve with the 

introduction of the Gemini network. 

Making codes run as fast as possible means doing 

whatever is possible to reduce memory bandwidth and 

hide memory latency.  CCE does automatic cache 

blocking, management of what stays in cache, 

prefetching, loop interchange and fusion, and much more. 

 

Performance of GTC 

GTC is a plasma fusion simulation code developed 

by Professor Zhihong Lin of UC Irvine.  It is a 3-D 

particle-in-cell 32-bit precision code where the torus is 

decomposed into between 32 and 64 slices in the torodial 

direction and then the particles are distributed in any 

given slice across groups of processors. GTC has several 

different computational characteristic in the code 

including stirde-1 copies, strided memory loads and 

stores, high computation intensity, gather/scatter, and 

sorting a packing. 
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The main routine is known at the pusher, and it is 

responsible for making the calculations that push particles 

around.  There are two loops in the pusher that are of 

particular importance.  The first loop contains groups of 4 

statements with significant indirect addressing. 

 

     
e1=e1+wp0*wt00*(wz0*gradphi(1,0,ij)+wz1*gradphi(1,1,ij)) 

e2=e2+wp0*wt00*(wz0*gradphi(2,0,ij)+wz1*gradphi(2,1,ij))  

e3=e3+wp0*wt00*(wz0*gradphi(3,0,ij)+wz1*gradphi(3,1,ij)) 

e4=e4+wp0*wt00*(wz0*phit(0,ij)+wz1*phit(1,ij)) 

 

The key thing to recognize is that these 4 statements are 

nearly identical except that they use 3 different elements 

of gradphi and one element of phit.  Fortunately gradphi 

and phi are not modified during the pusher phase itself so 

we were able to copy gradphi and phit into a new variable 

with 4 elements in the first dimension.  One can then 

rewrite the 4 statements into a single statement using 

array syntax: 

 
ev(1:4)=ev(1:4)+wp0*wt00*(wz0*tp(1:4,0,ij)+wz1*tp(1:4,1,ij)) 

 

This loop is not exactly the correct number of trips to 

be fit inside vector sse instruction.  CCE does what is 

called a vector shortloop, eliminates the loop structure 

and just uses vector operations.   

The second loop nest is large, computationally 

intensive, but also has strided loads and computed 

gathers.  CCE automatically vectorizes this loop.  While 

the strided loads and computed gathers hurt vector 

performance, it is more than offset by numerous 

computations in the loop going faster.   

The net result of the optimization and automatic 

vectorization is a 1.75x improvement in speed of the 

pusher kernel when compare to the previous best using a 

different compiler. 

 
 

The entire code is much more than just the pusher, 

and CCE does very well on the rest of the code as well, 

without any modification.   

 

 

 

 

Performance of Overflow 

  OVERFLOW is a three-dimensional Navier-Stokes 

flow solver that uses a series of over-set structured grids. 

Each structured grid is composed of a series grid points in 

a block configuration.  The grid block has dimensions of 

JD, KD and LD. 

  OVERFLOW uses the SPMD (Single Program, 

Multiple data) method for parallelism. MPI is used for 

exchange data between each instance of the OVERFLOW 

program. In OVERFLOW, parallelism is is implemented 

at a high level, by going parallel on multiple grid blocks. 

During a single time step, OVERFLOW will compute 

flow quantities in grid blocks in parallel. At the end of the 

time step, chimera boundaries are updated for each grid 

block.  

OVERFLOW, as part of a pre-processing step, will 

divide the collection of grid blocks into parallel groups. 

The number of parallel groups will match the number 

processors being used in the parallel run. Scaling is 

limited due to load balance issues at over 1024 mpi ranks.  

The code has OpenMP at a high level 

Overflow was run several different ways, using only 

MPI to use multiple cores, and then using OpenMP on 

first 2 then 4 threads underneath MPI.   
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What we found was that just switching to use CCE 

made the code about10% faster.  You can see that when 

using only MPI the code went its fastest using about 1500 

cores.  However if we used MPI in conjunction 2 

OpenMP threads we were able to keep scaling until 2048 

cores.  Finally, if we used 4 threads, we hit a maximum 

speed using 5120 cores.  Scaling us is not great up to that 

point, but it is possible to go about 2.3 times faster than 

what was possible using only MPI. 

 

Performance of PARQUET 

PARQUET is materials science code who’s main 

kernel consists of 4 independent matrix multiplications 

using the complex data type.  The code scales to 

thousands of MPI ranks, but after at that point it runs out 

of parallelism and cannot scale further. 

Because our MPI scaling is limited, we want to use 

shared memory parallelism to effectively have as 

powerful nodes as possible, allowing us to use many more 

cores than would be possible using only MPI.  To date, 

OpenMP was used to do the 4 matrix multiplications in 

parallel.  This, however, was not able to use all 8 cores in 

an XT5 node.  With the number of cores in a processor, 

and thus the node, ever increasing, we need a new way of 

attacking the shared memory parallelism available.  We 

decided we wanted to use multi-level OpenMP to not only 

do the independent matmuls in parallel, but to do each 

matmul using multiple cores. The resulting code can be 

seen below: 

 

!$omp parallel do … 

do i=1,4 

     call complex_matmul(…) 

enddo  

 

Subroutine complex_matmul(…) 

!$omp       parallel do private(j,jend,jsize)! 

num_threads(p2) 

     do j=1,n,nb 

        jend = min(n, j+nb-1) 

        jsize = jend - j + 1  

        call zgemm(transA,transB,m,jsize,k,                & 

               alpha,A,ldA,B(j,1),ldb, beta,C(1,j),ldC) 

     enddo  

 

We were then able to compare the performance of 

several different runs.  Our baseline was running each 

zgemm serially, with no shared memory parallelism.  

Next we ran the 4 zgemms in parallel, as is done in the 

current version of the code.  There we can see that indeed 

we run about 3.9 times faster than doing the zgemm 

serially.  Than we made a series of multi-level OpenMP 

runs using a 3x3, 4x2, and 2x4 distribution where the first 

number represents parallelism across independent 

zgemms and the second number represents the number of 

threads used to calculate a single zgemm.   

 

 
 

What we found is that in fact the 4x2 distribution was 

almost a perfect 2 times faster than using only a single 

level of OpenMP.   

We also wanted to know what the performance 

graphs would look like if the matrixes were much smaller.  

The graph below shows the performance if the zgemms 

were only 100x100.  There we see that the 4x2 
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distribution was still 1.4 times faster than using only a 

single, high level OpenMP implementation. 

 

 

 
 

One obvious question is why didn’t we just do 

OpenMP inside the zgemm and forget about the high 

level OpenMP?    In the 1000x1000 case in fact the 8-way 

low level OpenMP had a very good speed-up over the 

serial case, but you can see that it is not quite as good as 

the 4x2 multi-level case.  But we can really see a 

difference in the 100x100 case.   In that situation the 8-

way zgemm not only did not match the performance of 

the 4x2 distribution, it was about 33% slower than using 

the high level OpenMP. 

Conclusions 

The Cray Compiling Environment is a new, different 

and interesting compiler with several unique capabilities.  

Despite its young age, several codes are already taking 

advantage of CCE to go faster or attack new levels of 

parallelism.  CCE is constantly being developed to 

improve its current capabilities and to add new features.  

Users should consider trying CCE if they think they could 

take advantage of the capabilities of the Cray Compiling 

Environment. 
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