

CUG 2009 Proceedings 1 of 5

Early Experience using the Cray Compiling Environment

Nathan Wichmann, Chris Brady, and David Whitaker

Cray Inc. and Ed D’Azevedo, Oak Ridge National

Laboratory

ABSTRACT: In 2008, Cray released its first compiler targeted at the X86 instruction

set and over the last several months code developers have begun to test its capabilities.

This paper will briefly review the life of the Cray compiler, how to use it, and its current

capabilities. We will then present performance numbers, for both some standard

benchmarks as well as real applications.

 KEYWORDS: Compiler, CCE

1. Introduction

Cray Inc. has had a long tradition of providing high

performance compilers to its high performance customers.

Dating back to the early 1980’s, Cray compilers have

been known for their vectorization and parallelization

capabilities while more recently, with the addition of

cache and multi-core architectures, several techniques

have been added to maximize the use of the cache,

minimize memory bandwidth requirements, and minimize

the overhead of parallel regions. However the compiler

had been targeted primarily at Cray’s traditional vector

machines along with some additional RISC based

processors. Until recently it had never targeted a CISC

based processor such as those produced by Intel and

AMD.

As part of its Cascade project, Cray began to

investigate adding a new “back-end” to the compiler to

generate CISC instructions. This investigation quickly

began to focus on an open source compiler called LLVM,

short for Low-Level-Virtual-Machine, originally started

out of the University of Illinois and more recently

championed by Apple Computer.

Initial results and the progress of combining LLVM

with the Cray compiler were better than expected and,

after several months of additional investigation, the

decision was made to move forward and productize a

Cray compiler targeting the Opteron processor in the Cray

XT product line. As a result the Cray Compiling

Environment (CCE) Version 7.0 was release in December

of 2008.

Basic Components of a Compiler

Most compilers can be broken down into 3 phases

with perhaps stages in each phase.

Phase 1 is often referred to as the “front end” and

takes files written in computer languages most

programmers are familiar with, in this case Fortran, C,

and C++, and translates all of those into an intermediate,

internal representation used by the next phase of the

compiler. The Cray Compiling Environment uses an

internally developed Fortran front-end for all Fortran code

and front end made by the Edison Design Group for all C

and C++ code.

Phase 2 is the largest, and perhaps most complicated

phase and is where most of the code transformations takes

place. There can be many different names for this phase

and its many stages but this is where dependence analysis,

loop vectorization and parallelization, loop

transformations, and interprocedural analysis and inlinimg

are all done. In CCE, almost all of the code and

technology are from, or decendents from, the traditional

Cray compilers from years past and can therefore take

advantage of Cray’s considerable experience with

vectorization and parallelization.

CUG 2009 Proceedings 2 of 5

Firgure 1: Phases and components of the compiler

Phase 3 is call the “back end” and translates the

compilers internal representation into an assembly

language targeted as a specific processor type. Here Cray

has always be had to create their own back ends to targets

its proprietary vector processors, and it is here where Cray

might have had to create a new back end to translate to

the CISC assembly language used in the AMD Opteron

processor. Instead, Cray uses the back end component of

LLVM, translates from the Cray to LLVM representation,

and lets LLVM generate the assembly code. Creating the

links to attach these two components together was much

less work than creating its own back end and Cray can

take advantage or any ongoing enhancements and updates

to the open source code.

Using CCE

Using the Cray Compiler Environment is simple and

straightforward. If it is installed on your system there

should be a module called PrgEnv-cray. A simple

“module avail PrgEnv-cray” will indicate its presence. If

it is available simply load the module PrgEnv-cray, or if

you already have a PrgEnv you first have to unload that

other PrgEnv because one cannot have two different

PrgEnvs loaded at the same time.

At default, CCE will target a now relatively old dual

core Opteron. Most customers have quad-core Opterons

and are concerned with getting the most out of those

systems. To target that processor make sure that you have

the module “xtpe-quadcore” loaded. This not only sets

the proper flags for the compiler, but also makes sure the

proper libraries are loaded and linked into the executable.

Once you have all the modules loaded the normal

“ftn” and “cc” commands will invoke the Cray compiler.

Cray’s philosophy is to optimize as much as possible at

default, so when first porting and optimizing no options

are necessary or recommended. One option that is

recommended is using the “-rm” option for fortran and

the “-hlist=m” option for C. These options will generate

what we call “listing files”, files that are basically copies

of the original source but annotated to indicate what

optimizations and transformations the compiler did to

your code. It is here where you will look to see if

particular loops were vectorized or unrolled.

Current Capabilities

When trying out a new compiler a developer wants to

know its current capabilities. Not surprisingly, one of our

current capabilities and strengths revolves around

vectorization. Cray has always be experts in vectorization

and that continues with this compiler. CCE will tend to

vectorize more than other compiler, throttled by what we

feel we can profitable vectorize. This is an area where we

are intentionally aggressive and may vectorize loops

which are not profitable to vectorize. If one encounters

such a situation, one can prevent vectorization of that loop

by placing a “!dir$ nextscalar” directive just before the

loop.

For shared memory programming we are currently

supporting OpenMP 2.0. One unique capability that we

have is support for nesting of OMP regions. So if you

have multiple, different levels of parallelism it may be

beneficial to attack both levels rather than only one or the

other.

With this compiler we are also supporting the

Partitioned Global Address Space, or PGAS,

programming models. This are often know as Co-Array

Fortran and Unified Parallel C. With these programming

models one can directly access memory anywhere in the

system. For now, this implementation focuses only on

functionality and performance; in fact we expect

performance to be poor due to the underlying hardware

and the youth of this feature. We expect performance to

improve over time and, in particular, to improve with the

introduction of the Gemini network.

Making codes run as fast as possible means doing

whatever is possible to reduce memory bandwidth and

hide memory latency. CCE does automatic cache

blocking, management of what stays in cache,

prefetching, loop interchange and fusion, and much more.

Performance of GTC

GTC is a plasma fusion simulation code developed

by Professor Zhihong Lin of UC Irvine. It is a 3-D

particle-in-cell 32-bit precision code where the torus is

decomposed into between 32 and 64 slices in the torodial

direction and then the particles are distributed in any

given slice across groups of processors. GTC has several

different computational characteristic in the code

including stirde-1 copies, strided memory loads and

stores, high computation intensity, gather/scatter, and

sorting a packing.

CUG 2009 Proceedings 3 of 5

The main routine is known at the pusher, and it is

responsible for making the calculations that push particles

around. There are two loops in the pusher that are of

particular importance. The first loop contains groups of 4

statements with significant indirect addressing.

e1=e1+wp0*wt00*(wz0*gradphi(1,0,ij)+wz1*gradphi(1,1,ij))

e2=e2+wp0*wt00*(wz0*gradphi(2,0,ij)+wz1*gradphi(2,1,ij))

e3=e3+wp0*wt00*(wz0*gradphi(3,0,ij)+wz1*gradphi(3,1,ij))

e4=e4+wp0*wt00*(wz0*phit(0,ij)+wz1*phit(1,ij))

The key thing to recognize is that these 4 statements are

nearly identical except that they use 3 different elements

of gradphi and one element of phit. Fortunately gradphi

and phi are not modified during the pusher phase itself so

we were able to copy gradphi and phit into a new variable

with 4 elements in the first dimension. One can then

rewrite the 4 statements into a single statement using

array syntax:

ev(1:4)=ev(1:4)+wp0*wt00*(wz0*tp(1:4,0,ij)+wz1*tp(1:4,1,ij))

This loop is not exactly the correct number of trips to

be fit inside vector sse instruction. CCE does what is

called a vector shortloop, eliminates the loop structure

and just uses vector operations.

The second loop nest is large, computationally

intensive, but also has strided loads and computed

gathers. CCE automatically vectorizes this loop. While

the strided loads and computed gathers hurt vector

performance, it is more than offset by numerous

computations in the loop going faster.

The net result of the optimization and automatic

vectorization is a 1.75x improvement in speed of the

pusher kernel when compare to the previous best using a

different compiler.

The entire code is much more than just the pusher,

and CCE does very well on the rest of the code as well,

without any modification.

Performance of Overflow

 OVERFLOW is a three-dimensional Navier-Stokes

flow solver that uses a series of over-set structured grids.

Each structured grid is composed of a series grid points in

a block configuration. The grid block has dimensions of

JD, KD and LD.

 OVERFLOW uses the SPMD (Single Program,

Multiple data) method for parallelism. MPI is used for

exchange data between each instance of the OVERFLOW

program. In OVERFLOW, parallelism is is implemented

at a high level, by going parallel on multiple grid blocks.

During a single time step, OVERFLOW will compute

flow quantities in grid blocks in parallel. At the end of the

time step, chimera boundaries are updated for each grid

block.

OVERFLOW, as part of a pre-processing step, will

divide the collection of grid blocks into parallel groups.

The number of parallel groups will match the number

processors being used in the parallel run. Scaling is

limited due to load balance issues at over 1024 mpi ranks.

The code has OpenMP at a high level

Overflow was run several different ways, using only

MPI to use multiple cores, and then using OpenMP on

first 2 then 4 threads underneath MPI.

-

10.0

20.0

30.0

40.0

B
ill

io
n

 P
ar

ti
cl

e
s

P
u

sh
e

d
/S

e
c

GTC Pusher performance
3200 MPI ranks and 4 OMP threads

CCE

Previous Best

-

5.0

10.0

15.0

B
ill

io
n

 P
ar

ti
cl

e
s

P
u

sh
e

d
/S

e
c

GTC performance
3200 MPI ranks and 4 OMP threads

CCE

Previous Best

CUG 2009 Proceedings 4 of 5

What we found was that just switching to use CCE

made the code about10% faster. You can see that when

using only MPI the code went its fastest using about 1500

cores. However if we used MPI in conjunction 2

OpenMP threads we were able to keep scaling until 2048

cores. Finally, if we used 4 threads, we hit a maximum

speed using 5120 cores. Scaling us is not great up to that

point, but it is possible to go about 2.3 times faster than

what was possible using only MPI.

Performance of PARQUET

PARQUET is materials science code who’s main

kernel consists of 4 independent matrix multiplications

using the complex data type. The code scales to

thousands of MPI ranks, but after at that point it runs out

of parallelism and cannot scale further.

Because our MPI scaling is limited, we want to use

shared memory parallelism to effectively have as

powerful nodes as possible, allowing us to use many more

cores than would be possible using only MPI. To date,

OpenMP was used to do the 4 matrix multiplications in

parallel. This, however, was not able to use all 8 cores in

an XT5 node. With the number of cores in a processor,

and thus the node, ever increasing, we need a new way of

attacking the shared memory parallelism available. We

decided we wanted to use multi-level OpenMP to not only

do the independent matmuls in parallel, but to do each

matmul using multiple cores. The resulting code can be

seen below:

!$omp parallel do …

do i=1,4

 call complex_matmul(…)

enddo

Subroutine complex_matmul(…)

!$omp parallel do private(j,jend,jsize)!

num_threads(p2)

 do j=1,n,nb

 jend = min(n, j+nb-1)

 jsize = jend - j + 1

 call zgemm(transA,transB,m,jsize,k, &

 alpha,A,ldA,B(j,1),ldb, beta,C(1,j),ldC)

 enddo

We were then able to compare the performance of

several different runs. Our baseline was running each

zgemm serially, with no shared memory parallelism.

Next we ran the 4 zgemms in parallel, as is done in the

current version of the code. There we can see that indeed

we run about 3.9 times faster than doing the zgemm

serially. Than we made a series of multi-level OpenMP

runs using a 3x3, 4x2, and 2x4 distribution where the first

number represents parallelism across independent

zgemms and the second number represents the number of

threads used to calculate a single zgemm.

What we found is that in fact the 4x2 distribution was

almost a perfect 2 times faster than using only a single

level of OpenMP.

We also wanted to know what the performance

graphs would look like if the matrixes were much smaller.

The graph below shows the performance if the zgemms

were only 100x100. There we see that the 4x2

256

512

1024

2048

4096

256 512 1024 2048 4096 8192

Ti
m

e
in

 S
ec

o
n

d
s

Number of Cores

Overflow Scaling

Previous-MPI CCE-MPI

CCE-OMP 2 thr CCE-OMP 4 thr

0
10
20
30
40
50
60
70
80

Serial
ZGEMM

High Level
OMP

ZGEMM
4x1

Nested
OMP

ZGEMM
3x3

Nested
OMP

ZGEMM
4x2

Nested
OMP

ZGEMM
2x4

Low level
OMP

ZGEMM
1x8

G
Fl

o
p

s

Parallel method and Nthreads at each level

ZGEMM 1000x1000

CUG 2009 Proceedings 5 of 5

distribution was still 1.4 times faster than using only a

single, high level OpenMP implementation.

One obvious question is why didn’t we just do

OpenMP inside the zgemm and forget about the high

level OpenMP? In the 1000x1000 case in fact the 8-way

low level OpenMP had a very good speed-up over the

serial case, but you can see that it is not quite as good as

the 4x2 multi-level case. But we can really see a

difference in the 100x100 case. In that situation the 8-

way zgemm not only did not match the performance of

the 4x2 distribution, it was about 33% slower than using

the high level OpenMP.

Conclusions

The Cray Compiling Environment is a new, different

and interesting compiler with several unique capabilities.

Despite its young age, several codes are already taking

advantage of CCE to go faster or attack new levels of

parallelism. CCE is constantly being developed to

improve its current capabilities and to add new features.

Users should consider trying CCE if they think they could

take advantage of the capabilities of the Cray Compiling

Environment.

Acknowledgments

The authors would like to thank colleagues and the

compiler developers for supporting this effort and

answering many questions. We would also like to thank

Oak Ridge National Laboratories for the computer time to

run some of these codes and generate some of the data.

About the Authors

Nathan Wichmann is member of Performance Team at

Cray Inc. and is also a member of the Cray Center of

Excellence at Oak Ridge National Laboratories. He has a

particular interest in single cpu optimization and

optimization done by the compiler. David Whitaker is a

member of the Cray Performance Team who specializes

in Aerospace CFD applications. Dr. Whitaker received

his Ph.D. in Aerospace Engineering from Virginia

Polytechnic Institute and State University. Chris Brady is

a member of the Cray Performance Team at Cray. Ed

D'Azevedo is the group leader for the Computational

Mathematics Group at the Computer Science and

Mathematics Division at the Oak Ridge National

Laboratory. He obtained his PhD at the Department of

Computer Science at the University of Waterloo. His

interests are in high performance scientific computing,

numerical linear algebra and optimal mesh generation.

0

5

10

15

20

25

30

35

Serial ZGEMM High Level
OMP ZGEMM

4x1

Nested OMP
ZGEMM 3x3

Nested OMP
ZGEMM 4x2

Low Level
ZGEMM 1x8

G
Fl

o
p

s

Parallel method and Nthreads at each level

ZGEMM 100x100

