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 Introduction to the Cray compiler

 Example

 GTC

 Overflow

 PARQUET
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 Cray has a long tradition of high performance compilers

 Vectorization

 Parallelization

 Code transformation

 More…

 Began internal investigation leveraging an open source 
compiler called LLVM

 Initial results and progress better than expected

 Decided to move forward with Cray X86 compiler

 7.0 released in December 2008

 7.1 will be released Q2 2009
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 Make sure it is available

 module avail PrgEnv-cray

 To access the Cray compiler

 module load PrgEnv-cray

 To target the Barcelona chip

 module load xtpe-quadcore

 Once you have loaded the module “cc” and “ftn” are the Cray 
compilers

 Recommend just using default options

 Use –rm (fortran) and –hlist=m (C) to find out what happened

 man crayftn
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 Excellent Vectorization 

 Vectorize more loops than other compilers

 OpenMP

 2.0 standard

 Nesting

 PGAS:  Functional UPC and CAF available today.  

 Excellent Cache optimizations

 Automatic Blocking

 Automatic Management of what stays in cache

 Prefetching, Interchange, Fusion, and much more…
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 C++ Support

 Automatic Parallelization

Modernized version of Cray X1 streaming capability

 Interacts with OMP directives

 OpenMP 3.0

 Optimized PGAS

Will require Gemini network to really go fast

 Improved Vectorization

 Improve Cache optimizations
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 Plasma Fusion Simulation

 3D Particle-in-cell code (PIC) in toroidal geometry

 Developed by Prof. Zhihong Lin (now at UC Irvine) 

 Code has several different characteristics
 Stride-1 copies

 Strided memory operations

 Computationally intensive

 Gather/Scatter

 Sorting and Packing

 Main routine is known as the “pusher”
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 Main Pusher kernel consists of 2 main loop nests

 First loop nest contains groups of 4 statements which include 
significant indirect addressing
e1=e1+wp0*wt00*(wz0*gradphi(1,0,ij)+wz1*gradphi(1,1,ij))

e2=e2+wp0*wt00*(wz0*gradphi(2,0,ij)+wz1*gradphi(2,1,ij))

e3=e3+wp0*wt00*(wz0*gradphi(3,0,ij)+wz1*gradphi(3,1,ij))

e4=e4+wp0*wt00*(wz0*phit(0,ij)+wz1*phit(1,ij))

 Turn 4 statements into 1 vector shortloop
ev(1:4)=ev(1:4)+wp0*wt00*(wz0*tempphi(1:4,0,ij)+wz1*tempphi(1:4,1,ij))

 Second loop is large, computationally intensive, but contains 
strided loads and computed gather

 CCE automatically vectorizes loop
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 Overflow is a NASA developed Navier-Stokes flow solver for 
unstructured grids

 Subroutines consist of two or three simply-nested loops

 Inner loops tend to be highly vectorized and have 20-50 
Fortran statements

 MPI is used for parallel processing

 Solver automatically splits grid blocks for load balancing

 Scaling is limited due to load balancing at > 1024

 Code is threaded at a high-level via OpenMP
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 Materials Science code 

 Scales to 1000s of MPI ranks before it runs out of parallelism

 Want to use shared memory parallelism across entire node

 Main kernel consists of 4 independent zgemms

 Want to use multi-level OMP to scale across the node
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!$omp parallel do …

do i=1,4

call complex_matmul(…)

enddo

Subroutine complex_matmul(…)

!$omp parallel do private(j,jend,jsize)! num_threads(p2)

do j=1,n,nb

jend = min(n, j+nb-1)

jsize = jend - j + 1

call zgemm( transA,transB, m,jsize,k,                        &

alpha,A,ldA,B(j,1),ldb, beta,C(1,j),ldC)

enddo
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 The Cray Compiling Environment is a new, different, and 
interesting compiler with several unique capabilities

 Several codes are already taking advantage of CCE

 Development is ongoing

 Consider trying CCE if you think you could take 
advantage of its capabilities




