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Cray Compiler Environment (CCE): A
Brief History of Time
Cray has a long tradition of high performance compilers

Vectorization
Parallelization

Code transformation
More...

Began internal investigation leveraging an open source
compiler called LLVM

Initial results and progress better than expected
Decided to move forward with Cray X86 compiler
7.0 released in December 2008

7.1 will be released Q2 2009
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Technology Sources

Fortran Source C and C++ Source C and C++ Front End
supplied by Edison Design
Group, with Cray-developed
code for extensions and
interface support

Cray Inc. Compiler
Technology

X86 Code Generation from
Open Source LLVM, with
additional Cray-developed
optimizations and interface
support
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Cray Opteron Compiler: How to use it

Make sure it is available
module avail PrgEnv-cray

To access the Cray compiler
module load PrgEnv-cray

To target the Barcelona chip
module load xtpe-quadcore

Once you have loaded the module “cc” and “ftn” are the Cray
compilers

Recommend just using default options

Use —rm (fortran) and —hlist=m (C) to find out what happened

man crayftn



Cray Opteron Compiler: Current Capabilities bt

Excellent Vectorization
Vectorize more loops than other compilers

OpenMP
2.0 standard
Nesting

PGAS: Functional UPC and CAF available today.

Excellent Cache optimizations
Automatic Blocking
Automatic Management of what stays in cache

Prefetching, Interchange, Fusion, and much more...



Cray Opteron Compiler: Future Capabilities THE SurEcoMPuTER couran

C++ Support
Automatic Parallelization

Modernized version of Cray X1 streaming capability
Interacts with OMP directives

OpenMP 3.0
Optimized PGAS
Will require Gemini network to really go fast
Improved Vectorization
Improve Cache optimizations



Case Study: The Gyrokinetic Toroidal Code (GTC)

Plasma Fusion Simulation
3D Particle-in-cell code (PIC) in toroidal geometry
Developed by Prof. Zhihong Lin (now at UC Irvine)

Code has several different characteristics
Stride-1 copies
Strided memory operations
Computationally intensive
Gather/Scatter
Sorting and Packing

Main routine is known as the “pusher”
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P
Case Study: The Gyrokinetic Toroidal Code (GTC) - mermecommurencoum

Main Pusher kernel consists of 2 main loop nests

First loop nest contains groups of 4 statements which include

significant indirect addressing
el=el+wpO0*wt00*(wz0*gradphi(1,0,ij)+wz1*gradphi(1,1,ij))
e2=e2+wp0*wt00*(wz0*gradphi(2,0,ij)+wzl1*gradphi(2,1,ij))
e3=e3+wp0*wt00*(wz0*gradphi(3,0,ij)+wz1*gradphi(3,1,ij))
ed4=e4+wp0*wt00*(wz0*phit(0,ij)+wz1*phit(1,ij))

Turn 4 statements into 1 vector shortloop
ev(1:4)=ev(1:4)+wp0*wt00*(wz0*tempphi(1:4,0,ij)+wzl1*tempphi(1:4,1,ij))
Second loop is large, computationally intensive, but contains
strided loads and computed gather

CCE automatically vectorizes loop



Case Study: GTC
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Case Study: Overflow

Overflow is a NASA developed Navier-Stokes flow solver for
unstructured grids

Subroutines consist of two or three simply-nested loops

Inner loops tend to be highly vectorized and have 20-50
Fortran statements

MPI is used for parallel processing
Solver automatically splits grid blocks for load balancing
Scaling is limited due to load balancing at > 1024

Code is threaded at a high-level via OpenMP
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Overflow Scaling using only MPI vs MPI & OMP
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Case Study: PARQUET

Materials Science code
Scales to 1000s of MPI ranks before it runs out of parallelism
Want to use shared memory parallelism across entire node

Main kernel consists of 4 independent zgemms
Want to use multi-level OMP to scale across the node
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ISomp parallel do ...
doi=1,4
call complex_matmul(...)

enddo

Subroutine complex_matmul(...)
ISomp  parallel do private(j,jend,jsize)! num_threads(p2)
do j=1,n,nb
jend = min(n, j+nb-1)
jsize=jend-j+1
call zgemm( transA,transB, m,jsize,k, &
alpha,A,IdA,B(j,1),Idb, beta,C(1,j),1dC)
enddo
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Conclusions e

The Cray Compiling Environment is a new, different, and
interesting compiler with several unique capabilities

Several codes are already taking advantage of CCE
Development is ongoing

Consider trying CCE if you think you could take
advantage of its capabilities
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