The Cray Compiler Environment:
Introduction and Intial Results

Nathan Wichmann
wichmann@cray.com

mailto:wichmann@cray.com

Outline

Introduction to the Cray compiler
Example

GTC

Overflow

PARQUET

EEEEEEEEEEEEEEEEEEEEEEE

Cray Compiler Environment (CCE): A
Brief History of Time
Cray has a long tradition of high performance compilers

Vectorization
Parallelization

Code transformation
More...

Began internal investigation leveraging an open source
compiler called LLVM

Initial results and progress better than expected
Decided to move forward with Cray X86 compiler
7.0 released in December 2008

7.1 will be released Q2 2009

C=RA0Y

THE SUPERCOMPUTER COMPANY

Technology Sources

Fortran Source C and C++ Source C and C++ Front End
supplied by Edison Design
Group, with Cray-developed
code for extensions and
interface support

Cray Inc. Compiler
Technology

X86 Code Generation from
Open Source LLVM, with
additional Cray-developed
optimizations and interface
support

THE SUPERCOMPUTER COMPANY

Cray Opteron Compiler: How to use it

Make sure it is available
module avail PrgEnv-cray

To access the Cray compiler
module load PrgEnv-cray

To target the Barcelona chip
module load xtpe-quadcore

Once you have loaded the module “cc” and “ftn” are the Cray
compilers

Recommend just using default options

Use —rm (fortran) and —hlist=m (C) to find out what happened

man crayftn

Cray Opteron Compiler: Current Capabilities bt

Excellent Vectorization
Vectorize more loops than other compilers

OpenMP
2.0 standard
Nesting

PGAS: Functional UPC and CAF available today.

Excellent Cache optimizations
Automatic Blocking
Automatic Management of what stays in cache

Prefetching, Interchange, Fusion, and much more...

Cray Opteron Compiler: Future Capabilities THE SurEcoMPuTER couran

C++ Support
Automatic Parallelization

Modernized version of Cray X1 streaming capability
Interacts with OMP directives

OpenMP 3.0
Optimized PGAS
Will require Gemini network to really go fast
Improved Vectorization
Improve Cache optimizations

Case Study: The Gyrokinetic Toroidal Code (GTC)

Plasma Fusion Simulation
3D Particle-in-cell code (PIC) in toroidal geometry
Developed by Prof. Zhihong Lin (now at UC Irvine)

Code has several different characteristics
Stride-1 copies
Strided memory operations
Computationally intensive
Gather/Scatter
Sorting and Packing

Main routine is known as the “pusher”

THE SUPERCOMPUTER COMPANY

P
Case Study: The Gyrokinetic Toroidal Code (GTC) - mermecommurencoum

Main Pusher kernel consists of 2 main loop nests

First loop nest contains groups of 4 statements which include

significant indirect addressing
el=el+wpO0*wt00*(wz0*gradphi(1,0,ij)+wz1*gradphi(1,1,ij))
e2=e2+wp0*wt00*(wz0*gradphi(2,0,ij)+wzl1*gradphi(2,1,ij))
e3=e3+wp0*wt00*(wz0*gradphi(3,0,ij)+wz1*gradphi(3,1,ij))
ed4=e4+wp0*wt00*(wz0*phit(0,ij)+wz1*phit(1,ij))

Turn 4 statements into 1 vector shortloop
ev(1:4)=ev(1:4)+wp0*wt00*(wz0*tempphi(1:4,0,ij)+wzl1*tempphi(1:4,1,ij))
Second loop is large, computationally intensive, but contains
strided loads and computed gather

CCE automatically vectorizes loop

Case Study: GTC

C=RA0Y

THE SUPERCOMPUTER COMPANY

Billion Particles Pushed/Sec

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

GTC Pusher performance
3200 MPI ranks and 4 OMP threads

m CCE

M Previous Best

Case Study: GTC

Billion Particles Pushed/Sec

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

GTC performance
3200 MPI ranks and 4 OMP threads

C=RA0Y

THE SUPERCOMPUTER COMPANY

m CCE

M Previous Best

THE SUPERCOMPUTER COMPANY

Case Study: Overflow

Overflow is a NASA developed Navier-Stokes flow solver for
unstructured grids

Subroutines consist of two or three simply-nested loops

Inner loops tend to be highly vectorized and have 20-50
Fortran statements

MPI is used for parallel processing
Solver automatically splits grid blocks for load balancing
Scaling is limited due to load balancing at > 1024

Code is threaded at a high-level via OpenMP

CRRANY

THE SUPERCOMPUTER COMPANY

Overflow Scaling using only MPI vs MPI & OMP

Overflow Scaling

4096

2048 \

Previous-MPI

1024
\ CCE-MPI

==ge— CCE-OMP 2 thr

Time in Seconds

512

256
256 512 1024 2048 4096 8192

Number of Cores

Case Study: PARQUET

Materials Science code
Scales to 1000s of MPI ranks before it runs out of parallelism
Want to use shared memory parallelism across entire node

Main kernel consists of 4 independent zgemms
Want to use multi-level OMP to scale across the node

CRANY
Case StUdy: PARQU ET THE SUPERCOMPUTER COMPANY

ISomp parallel do ...
doi=1,4
call complex_matmul(...)

enddo

Subroutine complex_matmul(...)
ISomp parallel do private(j,jend,jsize)! num_threads(p2)
do j=1,n,nb
jend = min(n, j+nb-1)
jsize=jend-j+1
call zgemm(transA,transB, m,jsize,k, &
alpha,A,IdA,B(j,1),Idb, beta,C(1,j),1dC)
enddo

C=RA0Y
Ca se Stu dy: PA RQU ET THE SUPERCOMPUTER COMPANY

ZGEMM 1000x1000

80

70

60

50

40

GFlops

30

20

10
.

Serial ZGEMM High Level OMP Nested OMP Nested OMP Nested OMP Low level OMP
ZGEMM 4x1 ZGEMM 3x3 ZGEMM 4x2 ZGEMM 2x4 ZGEMM 1x8

Parallel method and Nthreads at each level

C=RA0Y
Ca se Stu dy: PA RQU ET THE SUPERCOMPUTER COMPANY

ZGEMM 100x100

35

30

25

20

15

| I:
0 1

Serial ZGEMM High Level OMP Nested OMP Nested OMP Low Level ZGEMM
ZGEMM 4x1 ZGEMM 3x3 ZGEMM 4x2 1x8

GFlops

(%)
]

Parallel method and Nthreads at each level

Conclusions e

The Cray Compiling Environment is a new, different, and
interesting compiler with several unique capabilities

Several codes are already taking advantage of CCE
Development is ongoing

Consider trying CCE if you think you could take
advantage of its capabilities

AN

THE SUPERCOMPUTER COMPANY

