
mailto:wichmann@cray.com

 Introduction to the Cray compiler

 Example

 GTC

 Overflow

 PARQUET

Cray Inc. Confidential Slide 2

 Cray has a long tradition of high performance compilers

 Vectorization

 Parallelization

 Code transformation

 More…

 Began internal investigation leveraging an open source
compiler called LLVM

 Initial results and progress better than expected

 Decided to move forward with Cray X86 compiler

 7.0 released in December 2008

 7.1 will be released Q2 2009

Cray Inc. Confidential Slide 3

Cray Inc. Proprietary Slide 4

X86 Code

Generator

Cray X2 Code

Generator

Fortran Front End

Interprocedural Analysis

Optimization and

Parallelization

C and C++ Source

Object File

C
o

m
p

il
e
r

C & C++ Front End

Fortran Source C and C++ Front End

supplied by Edison Design

Group, with Cray-developed

code for extensions and

interface support

X86 Code Generation from

Open Source LLVM, with

additional Cray-developed

optimizations and interface

support

Cray Inc. Compiler

Technology

 Make sure it is available

 module avail PrgEnv-cray

 To access the Cray compiler

 module load PrgEnv-cray

 To target the Barcelona chip

 module load xtpe-quadcore

 Once you have loaded the module “cc” and “ftn” are the Cray
compilers

 Recommend just using default options

 Use –rm (fortran) and –hlist=m (C) to find out what happened

 man crayftn

Cray Inc. Confidential

Slide 5

 Excellent Vectorization

 Vectorize more loops than other compilers

 OpenMP

 2.0 standard

 Nesting

 PGAS: Functional UPC and CAF available today.

 Excellent Cache optimizations

 Automatic Blocking

 Automatic Management of what stays in cache

 Prefetching, Interchange, Fusion, and much more…

Cray Inc. Confidential Slide 6

 C++ Support

 Automatic Parallelization

Modernized version of Cray X1 streaming capability

 Interacts with OMP directives

 OpenMP 3.0

 Optimized PGAS

Will require Gemini network to really go fast

 Improved Vectorization

 Improve Cache optimizations

Cray Inc. Confidential

Slide 7

 Plasma Fusion Simulation

 3D Particle-in-cell code (PIC) in toroidal geometry

 Developed by Prof. Zhihong Lin (now at UC Irvine)

 Code has several different characteristics
 Stride-1 copies

 Strided memory operations

 Computationally intensive

 Gather/Scatter

 Sorting and Packing

 Main routine is known as the “pusher”

Cray Inc. Confidential

Slide 8

 Main Pusher kernel consists of 2 main loop nests

 First loop nest contains groups of 4 statements which include
significant indirect addressing
e1=e1+wp0*wt00*(wz0*gradphi(1,0,ij)+wz1*gradphi(1,1,ij))

e2=e2+wp0*wt00*(wz0*gradphi(2,0,ij)+wz1*gradphi(2,1,ij))

e3=e3+wp0*wt00*(wz0*gradphi(3,0,ij)+wz1*gradphi(3,1,ij))

e4=e4+wp0*wt00*(wz0*phit(0,ij)+wz1*phit(1,ij))

 Turn 4 statements into 1 vector shortloop
ev(1:4)=ev(1:4)+wp0*wt00*(wz0*tempphi(1:4,0,ij)+wz1*tempphi(1:4,1,ij))

 Second loop is large, computationally intensive, but contains
strided loads and computed gather

 CCE automatically vectorizes loop
Cray Inc. Confidential

Slide 9

Cray Inc. Confidential

Slide 10

-

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

B
ill

io
n

 P
ar

ti
cl

es
 P

u
sh

ed
/S

ec

GTC Pusher performance
3200 MPI ranks and 4 OMP threads

CCE

Previous Best

Cray Inc. Confidential

Slide 11

-

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

B
ill

io
n

 P
ar

ti
cl

es
 P

u
sh

e
d

/S
e

c

GTC performance
3200 MPI ranks and 4 OMP threads

CCE

Previous Best

 Overflow is a NASA developed Navier-Stokes flow solver for
unstructured grids

 Subroutines consist of two or three simply-nested loops

 Inner loops tend to be highly vectorized and have 20-50
Fortran statements

 MPI is used for parallel processing

 Solver automatically splits grid blocks for load balancing

 Scaling is limited due to load balancing at > 1024

 Code is threaded at a high-level via OpenMP

Cray Inc. Confidential

Slide 12

256

512

1024

2048

4096

256 512 1024 2048 4096 8192

Ti
m

e
in

 S
ec

o
n

d
s

Number of Cores

Overflow Scaling

Previous-MPI

CCE-MPI

CCE-OMP 2 thr

CCE-OMP 4 thr

 Materials Science code

 Scales to 1000s of MPI ranks before it runs out of parallelism

 Want to use shared memory parallelism across entire node

 Main kernel consists of 4 independent zgemms

 Want to use multi-level OMP to scale across the node

Cray Inc. Confidential

Slide 14

!$omp parallel do …

do i=1,4

call complex_matmul(…)

enddo

Subroutine complex_matmul(…)

!$omp parallel do private(j,jend,jsize)! num_threads(p2)

do j=1,n,nb

jend = min(n, j+nb-1)

jsize = jend - j + 1

call zgemm(transA,transB, m,jsize,k, &

alpha,A,ldA,B(j,1),ldb, beta,C(1,j),ldC)

enddo

Cray Inc. Confidential

Slide 15

Cray Inc. Confidential

Slide 16

0

10

20

30

40

50

60

70

80

Serial ZGEMM High Level OMP
ZGEMM 4x1

Nested OMP
ZGEMM 3x3

Nested OMP
ZGEMM 4x2

Nested OMP
ZGEMM 2x4

Low level OMP
ZGEMM 1x8

G
Fl

o
p

s

Parallel method and Nthreads at each level

ZGEMM 1000x1000

Cray Inc. Confidential

Slide 17

0

5

10

15

20

25

30

35

Serial ZGEMM High Level OMP
ZGEMM 4x1

Nested OMP
ZGEMM 3x3

Nested OMP
ZGEMM 4x2

Low Level ZGEMM
1x8

G
Fl

o
p

s

Parallel method and Nthreads at each level

ZGEMM 100x100

 The Cray Compiling Environment is a new, different, and
interesting compiler with several unique capabilities

 Several codes are already taking advantage of CCE

 Development is ongoing

 Consider trying CCE if you think you could take
advantage of its capabilities

