
mailto:wichmann@cray.com

 Introduction to the Cray compiler

 Example

 GTC

 Overflow

 PARQUET

Cray Inc. Confidential Slide 2

 Cray has a long tradition of high performance compilers

 Vectorization

 Parallelization

 Code transformation

 More…

 Began internal investigation leveraging an open source
compiler called LLVM

 Initial results and progress better than expected

 Decided to move forward with Cray X86 compiler

 7.0 released in December 2008

 7.1 will be released Q2 2009

Cray Inc. Confidential Slide 3

Cray Inc. Proprietary Slide 4

X86 Code

Generator

Cray X2 Code

Generator

Fortran Front End

Interprocedural Analysis

Optimization and

Parallelization

C and C++ Source

Object File

C
o

m
p

il
e
r

C & C++ Front End

Fortran Source C and C++ Front End

supplied by Edison Design

Group, with Cray-developed

code for extensions and

interface support

X86 Code Generation from

Open Source LLVM, with

additional Cray-developed

optimizations and interface

support

Cray Inc. Compiler

Technology

 Make sure it is available

 module avail PrgEnv-cray

 To access the Cray compiler

 module load PrgEnv-cray

 To target the Barcelona chip

 module load xtpe-quadcore

 Once you have loaded the module “cc” and “ftn” are the Cray
compilers

 Recommend just using default options

 Use –rm (fortran) and –hlist=m (C) to find out what happened

 man crayftn

Cray Inc. Confidential

Slide 5

 Excellent Vectorization

 Vectorize more loops than other compilers

 OpenMP

 2.0 standard

 Nesting

 PGAS: Functional UPC and CAF available today.

 Excellent Cache optimizations

 Automatic Blocking

 Automatic Management of what stays in cache

 Prefetching, Interchange, Fusion, and much more…

Cray Inc. Confidential Slide 6

 C++ Support

 Automatic Parallelization

Modernized version of Cray X1 streaming capability

 Interacts with OMP directives

 OpenMP 3.0

 Optimized PGAS

Will require Gemini network to really go fast

 Improved Vectorization

 Improve Cache optimizations

Cray Inc. Confidential

Slide 7

 Plasma Fusion Simulation

 3D Particle-in-cell code (PIC) in toroidal geometry

 Developed by Prof. Zhihong Lin (now at UC Irvine)

 Code has several different characteristics
 Stride-1 copies

 Strided memory operations

 Computationally intensive

 Gather/Scatter

 Sorting and Packing

 Main routine is known as the “pusher”

Cray Inc. Confidential

Slide 8

 Main Pusher kernel consists of 2 main loop nests

 First loop nest contains groups of 4 statements which include
significant indirect addressing
e1=e1+wp0*wt00*(wz0*gradphi(1,0,ij)+wz1*gradphi(1,1,ij))

e2=e2+wp0*wt00*(wz0*gradphi(2,0,ij)+wz1*gradphi(2,1,ij))

e3=e3+wp0*wt00*(wz0*gradphi(3,0,ij)+wz1*gradphi(3,1,ij))

e4=e4+wp0*wt00*(wz0*phit(0,ij)+wz1*phit(1,ij))

 Turn 4 statements into 1 vector shortloop
ev(1:4)=ev(1:4)+wp0*wt00*(wz0*tempphi(1:4,0,ij)+wz1*tempphi(1:4,1,ij))

 Second loop is large, computationally intensive, but contains
strided loads and computed gather

 CCE automatically vectorizes loop
Cray Inc. Confidential

Slide 9

Cray Inc. Confidential

Slide 10

-

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

B
ill

io
n

 P
ar

ti
cl

es
 P

u
sh

ed
/S

ec

GTC Pusher performance
3200 MPI ranks and 4 OMP threads

CCE

Previous Best

Cray Inc. Confidential

Slide 11

-

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

B
ill

io
n

 P
ar

ti
cl

es
 P

u
sh

e
d

/S
e

c

GTC performance
3200 MPI ranks and 4 OMP threads

CCE

Previous Best

 Overflow is a NASA developed Navier-Stokes flow solver for
unstructured grids

 Subroutines consist of two or three simply-nested loops

 Inner loops tend to be highly vectorized and have 20-50
Fortran statements

 MPI is used for parallel processing

 Solver automatically splits grid blocks for load balancing

 Scaling is limited due to load balancing at > 1024

 Code is threaded at a high-level via OpenMP

Cray Inc. Confidential

Slide 12

256

512

1024

2048

4096

256 512 1024 2048 4096 8192

Ti
m

e
in

 S
ec

o
n

d
s

Number of Cores

Overflow Scaling

Previous-MPI

CCE-MPI

CCE-OMP 2 thr

CCE-OMP 4 thr

 Materials Science code

 Scales to 1000s of MPI ranks before it runs out of parallelism

 Want to use shared memory parallelism across entire node

 Main kernel consists of 4 independent zgemms

 Want to use multi-level OMP to scale across the node

Cray Inc. Confidential

Slide 14

!$omp parallel do …

do i=1,4

call complex_matmul(…)

enddo

Subroutine complex_matmul(…)

!$omp parallel do private(j,jend,jsize)! num_threads(p2)

do j=1,n,nb

jend = min(n, j+nb-1)

jsize = jend - j + 1

call zgemm(transA,transB, m,jsize,k, &

alpha,A,ldA,B(j,1),ldb, beta,C(1,j),ldC)

enddo

Cray Inc. Confidential

Slide 15

Cray Inc. Confidential

Slide 16

0

10

20

30

40

50

60

70

80

Serial ZGEMM High Level OMP
ZGEMM 4x1

Nested OMP
ZGEMM 3x3

Nested OMP
ZGEMM 4x2

Nested OMP
ZGEMM 2x4

Low level OMP
ZGEMM 1x8

G
Fl

o
p

s

Parallel method and Nthreads at each level

ZGEMM 1000x1000

Cray Inc. Confidential

Slide 17

0

5

10

15

20

25

30

35

Serial ZGEMM High Level OMP
ZGEMM 4x1

Nested OMP
ZGEMM 3x3

Nested OMP
ZGEMM 4x2

Low Level ZGEMM
1x8

G
Fl

o
p

s

Parallel method and Nthreads at each level

ZGEMM 100x100

 The Cray Compiling Environment is a new, different, and
interesting compiler with several unique capabilities

 Several codes are already taking advantage of CCE

 Development is ongoing

 Consider trying CCE if you think you could take
advantage of its capabilities

