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ABSTRACT: Performance, debugging, and administration tools are critical for the 
effective use of parallel computing platforms, but traditional tools have failed to 
overcome several problems that limit their scalability, such as communication between a 
large number of tool processes and the management and processing of the volume of data 
generated on a large number of compute nodes. A tree-based overlay network has proven 
effective for overcoming these challenges. In this paper, we present our experiences in 
bringing our MRNet tree-based overlay network infrastructure to the Cray XT platform, 
including a description of proof-of-concept tools that use MRNet on the Cray XT.  

KEYWORDS: XT, scalability, overlay networks, tools 

 

1 Introduction 

Performance, debugging, and system administration 
tools are critical for the effective use of parallel 
computing systems. Performance tools help users 
understand why their programs are not performing as they 
desire, and debuggers help users understand why their 
programs are not working at all.  System administration 
tools help system administrators configure the system and 
monitor its health to make it available to users. 

As system scale increases, these activities—
performance diagnosis, program debugging, and system 
administration—become more critical for effective use of 
the system due to increases in the number of entities that 
must be configured, monitored, and controlled. 
Unfortunately, tools that work well in small-scale 
environments often fail to scale well as systems and 
applications get larger. Providing scalable tools that 
support these activities becomes more challenging for the 
same reason that the activities become more important: 
increases in system and application size result in more 

complex interactions between a larger number of 
application and system components. In the rest of the 
paper, we focus on performance and debugging tools for 
parallel applications. However, the material also applies 
to system administration tools with minor adaptations. 

The functionality of a parallel performance or 
debugging tool can be divided into two categories: data 
collection and analysis, and process control. These 
activities are performed by one or more components of 
the parallel tool. Data collection is done by tool back-end 
components (often called tool daemons) that run on the 
nodes of a parallel system. The user interacts with the 
tool’s user interface, implemented in a tool front-end 
component. Control of application processes (e.g., for 
single-stepping within a debugger) is done by tool back-
end components attached to application processes. Data 
analysis may be performed by tool back-end components, 
the front-end component, or both.  Figure 1a shows the 
organization of a typical parallel tool, with tool back end 
components running on the same nodes as application 
processes.
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Figure 1: Parallel tool organizations, showing the typical parallel tool organization (a) and the organization of an MRNet-based 
parallel tool (b).

All tool communication and computation activity 
comes at a cost. When an activity’s cost exceeds the 
available capability of the underlying parallel system, that 
activity limits the tool’s scalability. Tree-based overlay 
networks can be used to reduce tool computation and 
communication costs by providing support for flexible, 
scalable multicast and data reduction activities.  In this 
paper, we give a brief overview of tree-based overlay 
network concepts and a description of our tree-based 
overlay network implementation (Section 2). We then 
present our experiences in porting this implementation to 
the Cray XT platform (Section 3), followed by a brief 
description of a tool under development for the Cray XT 
that uses our implementation (Section 4).  We conclude 
the paper by summarizing our experiences (Section 5). 

2 Tree-Based Overlay Networks 

A tree-based overlay network is a collection of tool 
processes, connected in a tree organization, interposed 
between a tool’s front-end and its back-ends (see Figure 
1b).  The processes comprising the tree provide separate, 
independent threads of control that can compute and 
communicate in parallel. For instance, consider the 
situation when the tool front-end broadcasts a control 
message to all of its back-ends.  Whereas communication 
between the tool front-end and its back-ends must be 
serialized when using a tool organization such as that 
depicted in Figure 1b, multiple processes within the tree-
based overlay network can be broadcasting the message 
simultaneously to tool back-ends to which they are 
directly or indirectly attached. 

MRNet [7] is our initial implementation of the Tree-
Based Overlay Network concept. MRNet has been used to 
implement scalable performance tools [8], scalable 
debugging tools [2], and as a runtime for a programming 
model for data intensive applications [3]. 

MRNet-based tools transfer data between tool front-
end and back-ends on logical data flows called streams. 
MRNet processes between the tool front-end and back-
ends are called internal processes or internal nodes. 
MRNet internal processes use filters for synchronizing 
and manipulating data as it passes through the internal 
node. Using filters, MRNet can efficiently compute 
common data aggregations like averages and sums on 
data transferred across the overlay network. MRNet filters 
can also be used to implement complex, non-traditional 
data aggregations such as time-aligned performance data 
aggregation [7] for the Paradyn performance tool [5]. 
Paradyn’s back-end processes produce timestamped 
performance data samples, but because the system node 
clocks are not synchronized on most modern parallel 
systems, samples taken from different application 
processes may represent different intervals of the program 
run. Given input sequences of unaligned performance data 
samples from several application processes, the time-
aligned performance data aggregation filter aligns the 
performance data in time, and then aggregates the 
performance data to produce a single output sequence of 
performance data samples. 

MRNet supports flexibility in MRNet network 
topology. When an MRNet overlay network is 
instantiated, a process topology specification is provided 
to the MRNet library in the tool’s front-end process. The 
MRNet library creates and connects MRNet processes to 
match the provided topology. 

3 Porting MRNet to the Cray XT 

In this section, we describe our experiences in porting 
the MRNet tree-based overlay network implementation to 
the Cray XT platform. In this section, we denote this port 
MRNet/XT when describing characteristics specific to the 
Cray XT platform. All our MRNet/XT porting efforts 
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were done using Cray XT systems deployed in the 
National Center for Computational Sciences (NCCS) at 
Oak Ridge National Laboratory (ORNL). 

When the NCCS Cray XT systems were first 
deployed at ORNL, the systems ran the lightweight 
Catamount operating system kernel on their compute 
nodes. In this time frame, we attempted to port MRNet to 
the Cray XT platform but were thwarted by mismatches 
between MRNet’s implementation and the support 
provided by Catamount. For instance, because MRNet 
was originally implemented to support a wide variety of 
cluster-like parallel systems, MRNet processes 
communicate over TCP/IP sockets. Within the MRNet 
process tree, the MRNet front-end and internal node 
processes act as parent processes to a collection of child 
processes. When the MRNet process network is 
instantiated, each parent process creates a listening socket 
and accepts connections from its child processes. 
Catamount supported the client side of the TCP/IP socket 
API but not the server side, so MRNet processes running 
on XT compute nodes running Catamount could not 
create sockets listening for child connections. We made 
several abortive attempts to abstract the data transfer 
functionality from the rest of the MRNet implementation 
so that we could implement MRNet data transfer between 
compute nodes using the low-level Portals data transfer 
facility, but retaining the TCP/IP connection approach for 
traditional Linux clusters while adding a Portals data 
transfer facility proved challenging. 

Eventually, the NCCS Cray XT systems were 
updated to run Linux on their compute nodes. This change 
enabled the MRNet implementation to use the same 
TCP/IP-based approach for data transfer on the XT and 
on more traditional compute clusters, because MRNet 
processes acting in a parent role could now create sockets 
listening for connections from child processes.  

Support for server side TCP/IP sockets is necessary 
for MRNet process connection, but it is not sufficient. 
The MRNet process creation strategy in the initial MRNet 
implementation uses rsh (or ssh) to create processes on 
the nodes of a parallel system (Figure 2). This process 
creation occurs in waves by tree level. First (Figure 2a-b), 
the front-end at the root of the process tree uses rsh to 
create the processes at the first level of the MRNet tree. 
Once created, these processes connect back to the front-

end using host and port information provided on the 
command line about the listening socket in the tool’s 
front-end. When each child connects, the front-end 
delivers the topology specification to the child and the 
child then creates and connects its own collection of child 
processes (Figure 2c). This approach continues 
recursively until all network processes are created and 
connected (Figure 2d). Because each child can create its 
own children processes independently of each other, 
network startup is more scalable than if the front-end had 
to directly connect to each back-end process.  

Although the Cray XT compute nodes now use a 
Linux kernel, they do not allow tools running on behalf of 
unprivileged users to ssh to compute nodes to create 
processes remotely. Instead, tools run by unprivileged 
users must use the system’s parallel process launcher 
(aprun) to create application processes. This requirement 
produces an ordering problem for MRNet’s traditional 
process creation/connection strategy: because all MRNet 
processes except the tool front-end are created at the same 
time, there is no opportunity for a process acting as an 
MRNet parent to create its listening socket, extract its port 
number, and provide the hostname and port number to the 
processes that will connect as its children in the MRNet 
tree as in the traditional MRNet process creation 
approach. 

In addition to complications caused by differences in 
the available process creation mechanisms between the 
Cray XT environment and the traditional cluster 
environment, the Cray XT resource manager’s restriction 
on co-locating processes presents another barrier to using 
the traditional MRNet process creation strategy on the 
Cray XT. To support on-line tools like parallel debuggers 
and parallel performance tools that attach and monitor 
application processes through third party interfaces (as 
opposed to being linked into the application’s executables 
and monitoring the application’s processes as a first-party 
entity), MRNet be able to place back-end processes on the 
same system nodes that are running application processes. 
On the Cray XT, however, after a parallel application has 
been launched on a collection of compute nodes the Cray 
XT resource manager does not allow a subsequent 
invocation of aprun to create processes on that same set 
of nodes. 
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Figure 2: Traditional MRNet process tree instantiation. 
A small-scale binary tree topology used for a debugger-like tool is shown as an example. Gray boxes indicate system node boundaries. 
First, the FE uses the system’s parallel job launcher to start application processes (a). Next, the FE uses ssh to launch Level 1 MRNet 
processes which connect back to the FE and obtain the process tree topology specification (b). Next, each Level 1 process launches its 
Level 2 children, which connect back and obtain the process tree topology specification (c). Finally, the Level 2 processes launch the 
tool BE processes, which connect back to their parent processes but also attach to the application processes. 

Another challenge facing the MRNet/XT port 
involves support for an MRNet use case requested by 
several parallel tool developers. In traditional compute 
cluster environments, MRNet developers have advocated 
he use of topologies that place MRNet internal processes 
on system nodes distinct from those running application 
processes (Figure 3a) to avoid perturbing application 
behavior with tool computation and communication 
activity. However, because leadership class systems like 
the ORNL Cray XT systems are scarce resources, access 
to the systems is managed using a highly competitive 
allocation process. When a user runs a job on such 
systems, their allocation is decreased based on the number 

of system nodes used and for how long. Some tool 
developers are loath to ask users to pad the number of 
nodes requested to provide “extra” nodes for running 
MRNet internal processes, and may not be concerned 
about the potential for perturbing application process 
behavior because of the type or timing of tool activities.  
For instance, a post-mortem debugging tool may not be 
concerned with perturbing application behavior because 
the tool’s activity occurs after the application has finished 
running. Developers of such tools requested support for 
“flattening” the MRNet tree topology onto the same set of 
nodes that run the application processes (Figure 3b) 
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instead of requesting additional nodes for MRNet 
processes. 

To address these challenges and new requirements, 
the MRNet/XT port uses a combination of conventions 
and Cray XT-specific tool support during its process tree 
creation and connection phase. MRNet/XT can use two 
mechanisms to create tool processes. For creating any 
MRNet processes that will not run on the same nodes as 
application processes, the MRNet library in the tool’s 
front end uses fork() and exec() to invoke the Cray 
XT aprun command. The aprun process placement 
option (-L) is used to control the location of processes 
created with this mechanism. For creating any processes 
that are co-located with application processes, MRNet/XT 
uses a Cray-specific tool helper library. This library 
provides functions for determining the identity of nodes 
on which a particular application’s processes are running, 
for spawning tool processes on those nodes, and for 
staging files to those nodes for use by the tool processes. 

To address the problem of lack of information about 
listening sockets in parent MRNet processes, MRNet/XT 
separates the connection of MRNet processes into two 
phases: propagation of network topology and 
establishment of connections for data transfer. At the start 
of the MRNet network instantiation (Figure 4a), the only 
process with topology information is the tool front-end 
process. All other MRNet/XT processes create a listening 
socket for propagating topology information. By 
convention, these processes bind to a well-known port 
number. The tool front-end connects to each of its child 
processes at the first level of the MRNet process tree and 
pass along the network topology information for the 
subtree rooted at that child (Figure 4b-c). The front-end 
also delivers the port number of its listening data transfer 
socket (with system-assigned port number), and each 
child establishes a data connection to this socket. 
Although MRNet/XT could rely on well-known port 
numbers for its data connections as well as its topology 
propagation connections, the strategy we currently use 
allows us to share the same data connection logic for the 
traditional MRNet implementation as MRNet/XT. Once 
each child receives its part of the topology specification 
and connects back to its parent, the child propagates the 
topology to any of its own children within the desired 
MRNet process topology ((Figure 4d-e). 

Using the convention of well-known port numbers 
during the MRNet/XT topology propagation phase 
presents a problem when more than one MRNet/XT 

process are to be placed on the same node, such as with a 
“flattened” tree topology (Figure 3b) where both internal 
processes and tool back-end nodes are placed on the same 
nodes with application processes. The problem is that not 
all MRNet processes on the same system node can bind to 
the same well-known port number. To address this 
problem, MRNet/XT slightly modifies its process creation 
strategy so that aprun or the Cray XT tool helper library 
creates exactly one MRNet process on each node (Figure 
4b). This process accepts the topology specification from 
its MRNet parent process, determines which other MRNet 
processes should be created on the local node, and then 
uses fork() and exec() to create as many additional 
MRNet processes as needed for the desired topology 
(Figure 4c-f). To simplify the process creation logic, the 
first process on a node with co-located processes is 
always created to be an MRNet internal node process.  If, 
after receiving the MRNet topology, the process 
determines that it should be a tool back-end process (i.e., 
if it is the only MRNet process on the node), it simply 
exec()s itself to become a back-end process. 

As an example, consider a parallel debugger that uses 
MRNet/XT.  Assuming the application and its arguments 
are specified to the debugger on its command line when 
the debugger front-end process is started, the debugger 
can use fork() and exec() to spawn the aprun process 
that launches the application processes with the desired 
command line arguments. The debugger front-end passes 
a special flag (-P) on the aprun command line that 
indicates the file descriptors of two pipes across which the 
debugger front-end process communicates with the 
aprun process to control the execution of the parallel 
application processes; the presence of this flag indicates 
to aprun that it should create the application processes 
but leave them blocked at a synchronization barrier, to be 
released after the debugger has completed its 
initialization. The debugger front-end then uses the tool 
helper function to determine the nodes on which 
application processes were placed, and constructs an 
MRNet topology specification using those nodes. The 
front-end instantiates the MRNet process network using 
an MRNet API function, including debugger back-end 
processes that attach to the paused application processes 
using the standard Linux ptrace or proc filesystem 
interfaces. Once the tool’s back-ends are attached, they 
report their status to across MRNet to the tool’s front-end 
and the tool front-end writes a command across its pipe 
connection to aprun causing it to release the application 
processes from their start up barrier. 
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Figure 3: Process placement options for MRNet-based tools. 
System node boundaries are indicated by gray boxes. The tool front-end process (labelled FE) runs on a login service node in both 
scenarios. Tool back-end processes (labelled BEi) are co-located with application processes in both scenarios. In the “additional node” 
scenario (a), MRNet internal processes are placed on additional system nodes distinct from those running application processes. In the 
“flattened tree” scenario (b), one or more MRNet internal node processes may be placed along with a tool back-end process on each 
system node running application processes.  

4 MRNet/XT Example Tool: mpiP 

MpiP [1, 11] is a lightweight profiling library for 
programs that use the Message Passing Interface API [4, 
9]. Using the PMPI interface provided by any MPI 
standard-conformant implementation, mpiP interposes 
instrumented versions of the communication and I/O 
functions of the MPI application programming interface. 
To control performance data volume, mpiP only gathers 
statistics about each MPI function call such as the 
maximum number of bytes transferred and the average 
operation latency. We recently augmented mpiP to collect 
communication topology data for point-to-point 
communication operations (e.g., see Figure 5).  This 
capability helps a user understand the communication 
patterns and intensity used by an application, and thus 
may expose opportunities for optimizing communication 
performance with judicious mappings of application 
processes to system nodes to take advantage of the 
underlying system’s interconnection network.  

As an mpiP-instrumented program runs, all mpiP 
data collection activity is restricted to the local MPI 
process.  MpiP only communicates between processes 
when it produces a report of observed program behavior. 
To produce this report, the mpiP library in each 
application process delivers the statistics it collected 
about the process’ MPI activity to the mpiP library in the 
mpiP collector process (usually the rank 0 application 
process) using point-to-point MPI operations. The rank 0 

process receives these statistics as they arrive and 
aggregates the statistics across all application processes 
for the generated report.  

To reduce the cost of aggregating mpiP statistics and 
communication topology information, we are 
investigating the use of MRNet for off-loading the 
aggregation activity from the mpiP collector rank process 
into filters running in the MRNet overlay network. For 
communication statistics, each filter instance in an 
MRNet internal process aggregates the statistics collected 
from MPI processes reachable by that internal process via 
the MRNet process tree. By induction, the filter instance 
running in the MRNet front-end node produces 
aggregated statistics for the entire application.  

Unlike communication operation statistics, 
communication topology data is not aggregated across 
application processes because its goal is to specify which 
pairs of processes are communicating and how much data 
they are transferring. However, MRNet can still benefit 
mpiP’s collection of communication topology data to the 
mpiP collector rank by making individual communication 
operations more efficient.  For situations like this, MRNet 
provides a data concatenation filter that concatenates 
smaller messages into a larger message as data is 
transferred across the MRNet process tree toward the tool 
front-end. On most systems, these larger, concatenated 
messages can be transferred more efficiently than the 
smaller messages containing communication topology 
data for only one MPI process. 
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Figure 4: MRNet/XT process tree instantiation. 
A small-scale binary tree topology used for a debugger-like tool is shown as an example. The flattened tree topology is used in the 
example. System node boundaries are indicated by gray boxes. First (a), the FE launches the application processes. Next (b), the FE 
creates the first MRNet process on each system node. Next (c), the FE connects to the Level 1 processes and provides them with the 
MRNet topology specification. Then (d), each Level 1 process spawns any co-located Level 2 processes, connects to its Level 2 child 
processes, and delivers the topology specification to its Level 2 children. Next (e), each Level 2 process creates any co-located Level 3 
BE processes, connects to its Level 3 children, and delivers the topology specification to its Level 3 children. Finally (f), any Level 3 
processes that are supposed to be BE processes become BE processes, and all BE processes attach to their co-located application 
processes.     
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Figure 5: Visualization of point-to-point communication 
topology for AMG2000 collected with mpiP. 
In the matrix, each item represents the amount of data 
transferred using point-to-point operations between a specific 
sending process (on the y-axis) and receiving process (on the 
x-axis). “Hot” colors like yellow and orange represent large 
communication volumes whereas “cool” colors represent 
smaller volumes. The observed diagonal pattern of hot-colored 
cells indicates a large point-to-point communication 
component, but the smearing of purple cells away from the 
diagonals indicates a substantial amount of communication 
also occurs with non-neighboring processes. 

By design, mpiP supports profiling of MPI programs. 
However, some application developers are using 
programming models other than MPI like a Partitioned 
Global Address Space (PGAS) language such as Unified 
Parallel C [10] or Co-Array Fortran [6]. We are 
investigating how to apply the mpiP infrastructure mpiP 
to support programs using these alternative programming 
models. We call this more generic profiling infrastructure 
xP. Because xP may be used to profile applications that 
do not use MPI, the xP profiler cannot assume that an 
MPI implementation is available for aggregating 
performance data for program reports. MRNet provides a 
suitable alternative communication and data reduction 
infrastructure for use by xP that is not tied to any 
particular programming model used by the application. 

5 Summary 

Tree-based overlay networks have proven to be 
effective for overcoming several barriers to tool 
scalability by providing scalable support for multicast and 
data reduction operations. We have ported the MRNet 

tree-based overlay network implementation to the Cray 
XT platform. As part of the port, we added support 
placing MRNet internal network processes on the same 
compute nodes as tool back-end processes and application 
processes. We are now investigating the use of MRNet for 
implementing scalable performance and debugging tools 
on the Cray XT platform.  
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