

CUG 2009 Proceedings 1 of 9

Scalable Tool Infrastructure for the Cray XT
Using Tree-Based Overlay Networks

Philip C. Roth, Oak Ridge National Laboratory and
Jeffrey S. Vetter, Oak Ridge National Laboratory and
Georgia Institute of Technology

ABSTRACT: Performance, debugging, and administration tools are critical for the
effective use of parallel computing platforms, but traditional tools have failed to
overcome several problems that limit their scalability, such as communication between a
large number of tool processes and the management and processing of the volume of data
generated on a large number of compute nodes. A tree-based overlay network has proven
effective for overcoming these challenges. In this paper, we present our experiences in
bringing our MRNet tree-based overlay network infrastructure to the Cray XT platform,
including a description of proof-of-concept tools that use MRNet on the Cray XT.

KEYWORDS: XT, scalability, overlay networks, tools

1 Introduction

Performance, debugging, and system administration
tools are critical for the effective use of parallel
computing systems. Performance tools help users
understand why their programs are not performing as they
desire, and debuggers help users understand why their
programs are not working at all. System administration
tools help system administrators configure the system and
monitor its health to make it available to users.

As system scale increases, these activities—
performance diagnosis, program debugging, and system
administration—become more critical for effective use of
the system due to increases in the number of entities that
must be configured, monitored, and controlled.
Unfortunately, tools that work well in small-scale
environments often fail to scale well as systems and
applications get larger. Providing scalable tools that
support these activities becomes more challenging for the
same reason that the activities become more important:
increases in system and application size result in more

complex interactions between a larger number of
application and system components. In the rest of the
paper, we focus on performance and debugging tools for
parallel applications. However, the material also applies
to system administration tools with minor adaptations.

The functionality of a parallel performance or
debugging tool can be divided into two categories: data
collection and analysis, and process control. These
activities are performed by one or more components of
the parallel tool. Data collection is done by tool back-end
components (often called tool daemons) that run on the
nodes of a parallel system. The user interacts with the
tool’s user interface, implemented in a tool front-end
component. Control of application processes (e.g., for
single-stepping within a debugger) is done by tool back-
end components attached to application processes. Data
analysis may be performed by tool back-end components,
the front-end component, or both. Figure 1a shows the
organization of a typical parallel tool, with tool back end
components running on the same nodes as application
processes.

CUG 2009 Proceedings 2 of 9

(a) (b)

Figure 1: Parallel tool organizations, showing the typical parallel tool organization (a) and the organization of an MRNet-based
parallel tool (b).

All tool communication and computation activity
comes at a cost. When an activity’s cost exceeds the
available capability of the underlying parallel system, that
activity limits the tool’s scalability. Tree-based overlay
networks can be used to reduce tool computation and
communication costs by providing support for flexible,
scalable multicast and data reduction activities. In this
paper, we give a brief overview of tree-based overlay
network concepts and a description of our tree-based
overlay network implementation (Section 2). We then
present our experiences in porting this implementation to
the Cray XT platform (Section 3), followed by a brief
description of a tool under development for the Cray XT
that uses our implementation (Section 4). We conclude
the paper by summarizing our experiences (Section 5).

2 Tree-Based Overlay Networks

A tree-based overlay network is a collection of tool
processes, connected in a tree organization, interposed
between a tool’s front-end and its back-ends (see Figure
1b). The processes comprising the tree provide separate,
independent threads of control that can compute and
communicate in parallel. For instance, consider the
situation when the tool front-end broadcasts a control
message to all of its back-ends. Whereas communication
between the tool front-end and its back-ends must be
serialized when using a tool organization such as that
depicted in Figure 1b, multiple processes within the tree-
based overlay network can be broadcasting the message
simultaneously to tool back-ends to which they are
directly or indirectly attached.

MRNet [7] is our initial implementation of the Tree-
Based Overlay Network concept. MRNet has been used to
implement scalable performance tools [8], scalable
debugging tools [2], and as a runtime for a programming
model for data intensive applications [3].

MRNet-based tools transfer data between tool front-
end and back-ends on logical data flows called streams.
MRNet processes between the tool front-end and back-
ends are called internal processes or internal nodes.
MRNet internal processes use filters for synchronizing
and manipulating data as it passes through the internal
node. Using filters, MRNet can efficiently compute
common data aggregations like averages and sums on
data transferred across the overlay network. MRNet filters
can also be used to implement complex, non-traditional
data aggregations such as time-aligned performance data
aggregation [7] for the Paradyn performance tool [5].
Paradyn’s back-end processes produce timestamped
performance data samples, but because the system node
clocks are not synchronized on most modern parallel
systems, samples taken from different application
processes may represent different intervals of the program
run. Given input sequences of unaligned performance data
samples from several application processes, the time-
aligned performance data aggregation filter aligns the
performance data in time, and then aggregates the
performance data to produce a single output sequence of
performance data samples.

MRNet supports flexibility in MRNet network
topology. When an MRNet overlay network is
instantiated, a process topology specification is provided
to the MRNet library in the tool’s front-end process. The
MRNet library creates and connects MRNet processes to
match the provided topology.

3 Porting MRNet to the Cray XT

In this section, we describe our experiences in porting
the MRNet tree-based overlay network implementation to
the Cray XT platform. In this section, we denote this port
MRNet/XT when describing characteristics specific to the
Cray XT platform. All our MRNet/XT porting efforts

CUG 2009 Proceedings 3 of 9

were done using Cray XT systems deployed in the
National Center for Computational Sciences (NCCS) at
Oak Ridge National Laboratory (ORNL).

When the NCCS Cray XT systems were first
deployed at ORNL, the systems ran the lightweight
Catamount operating system kernel on their compute
nodes. In this time frame, we attempted to port MRNet to
the Cray XT platform but were thwarted by mismatches
between MRNet’s implementation and the support
provided by Catamount. For instance, because MRNet
was originally implemented to support a wide variety of
cluster-like parallel systems, MRNet processes
communicate over TCP/IP sockets. Within the MRNet
process tree, the MRNet front-end and internal node
processes act as parent processes to a collection of child
processes. When the MRNet process network is
instantiated, each parent process creates a listening socket
and accepts connections from its child processes.
Catamount supported the client side of the TCP/IP socket
API but not the server side, so MRNet processes running
on XT compute nodes running Catamount could not
create sockets listening for child connections. We made
several abortive attempts to abstract the data transfer
functionality from the rest of the MRNet implementation
so that we could implement MRNet data transfer between
compute nodes using the low-level Portals data transfer
facility, but retaining the TCP/IP connection approach for
traditional Linux clusters while adding a Portals data
transfer facility proved challenging.

Eventually, the NCCS Cray XT systems were
updated to run Linux on their compute nodes. This change
enabled the MRNet implementation to use the same
TCP/IP-based approach for data transfer on the XT and
on more traditional compute clusters, because MRNet
processes acting in a parent role could now create sockets
listening for connections from child processes.

Support for server side TCP/IP sockets is necessary
for MRNet process connection, but it is not sufficient.
The MRNet process creation strategy in the initial MRNet
implementation uses rsh (or ssh) to create processes on
the nodes of a parallel system (Figure 2). This process
creation occurs in waves by tree level. First (Figure 2a-b),
the front-end at the root of the process tree uses rsh to
create the processes at the first level of the MRNet tree.
Once created, these processes connect back to the front-

end using host and port information provided on the
command line about the listening socket in the tool’s
front-end. When each child connects, the front-end
delivers the topology specification to the child and the
child then creates and connects its own collection of child
processes (Figure 2c). This approach continues
recursively until all network processes are created and
connected (Figure 2d). Because each child can create its
own children processes independently of each other,
network startup is more scalable than if the front-end had
to directly connect to each back-end process.

Although the Cray XT compute nodes now use a
Linux kernel, they do not allow tools running on behalf of
unprivileged users to ssh to compute nodes to create
processes remotely. Instead, tools run by unprivileged
users must use the system’s parallel process launcher
(aprun) to create application processes. This requirement
produces an ordering problem for MRNet’s traditional
process creation/connection strategy: because all MRNet
processes except the tool front-end are created at the same
time, there is no opportunity for a process acting as an
MRNet parent to create its listening socket, extract its port
number, and provide the hostname and port number to the
processes that will connect as its children in the MRNet
tree as in the traditional MRNet process creation
approach.

In addition to complications caused by differences in
the available process creation mechanisms between the
Cray XT environment and the traditional cluster
environment, the Cray XT resource manager’s restriction
on co-locating processes presents another barrier to using
the traditional MRNet process creation strategy on the
Cray XT. To support on-line tools like parallel debuggers
and parallel performance tools that attach and monitor
application processes through third party interfaces (as
opposed to being linked into the application’s executables
and monitoring the application’s processes as a first-party
entity), MRNet be able to place back-end processes on the
same system nodes that are running application processes.
On the Cray XT, however, after a parallel application has
been launched on a collection of compute nodes the Cray
XT resource manager does not allow a subsequent
invocation of aprun to create processes on that same set
of nodes.

CUG 2009 Proceedings 4 of 9

(a) (b)

(c) (d)

Figure 2: Traditional MRNet process tree instantiation.
A small-scale binary tree topology used for a debugger-like tool is shown as an example. Gray boxes indicate system node boundaries.
First, the FE uses the system’s parallel job launcher to start application processes (a). Next, the FE uses ssh to launch Level 1 MRNet
processes which connect back to the FE and obtain the process tree topology specification (b). Next, each Level 1 process launches its
Level 2 children, which connect back and obtain the process tree topology specification (c). Finally, the Level 2 processes launch the
tool BE processes, which connect back to their parent processes but also attach to the application processes.

Another challenge facing the MRNet/XT port
involves support for an MRNet use case requested by
several parallel tool developers. In traditional compute
cluster environments, MRNet developers have advocated
he use of topologies that place MRNet internal processes
on system nodes distinct from those running application
processes (Figure 3a) to avoid perturbing application
behavior with tool computation and communication
activity. However, because leadership class systems like
the ORNL Cray XT systems are scarce resources, access
to the systems is managed using a highly competitive
allocation process. When a user runs a job on such
systems, their allocation is decreased based on the number

of system nodes used and for how long. Some tool
developers are loath to ask users to pad the number of
nodes requested to provide “extra” nodes for running
MRNet internal processes, and may not be concerned
about the potential for perturbing application process
behavior because of the type or timing of tool activities.
For instance, a post-mortem debugging tool may not be
concerned with perturbing application behavior because
the tool’s activity occurs after the application has finished
running. Developers of such tools requested support for
“flattening” the MRNet tree topology onto the same set of
nodes that run the application processes (Figure 3b)

CUG 2009 Proceedings 5 of 9

instead of requesting additional nodes for MRNet
processes.

To address these challenges and new requirements,
the MRNet/XT port uses a combination of conventions
and Cray XT-specific tool support during its process tree
creation and connection phase. MRNet/XT can use two
mechanisms to create tool processes. For creating any
MRNet processes that will not run on the same nodes as
application processes, the MRNet library in the tool’s
front end uses fork() and exec() to invoke the Cray
XT aprun command. The aprun process placement
option (-L) is used to control the location of processes
created with this mechanism. For creating any processes
that are co-located with application processes, MRNet/XT
uses a Cray-specific tool helper library. This library
provides functions for determining the identity of nodes
on which a particular application’s processes are running,
for spawning tool processes on those nodes, and for
staging files to those nodes for use by the tool processes.

To address the problem of lack of information about
listening sockets in parent MRNet processes, MRNet/XT
separates the connection of MRNet processes into two
phases: propagation of network topology and
establishment of connections for data transfer. At the start
of the MRNet network instantiation (Figure 4a), the only
process with topology information is the tool front-end
process. All other MRNet/XT processes create a listening
socket for propagating topology information. By
convention, these processes bind to a well-known port
number. The tool front-end connects to each of its child
processes at the first level of the MRNet process tree and
pass along the network topology information for the
subtree rooted at that child (Figure 4b-c). The front-end
also delivers the port number of its listening data transfer
socket (with system-assigned port number), and each
child establishes a data connection to this socket.
Although MRNet/XT could rely on well-known port
numbers for its data connections as well as its topology
propagation connections, the strategy we currently use
allows us to share the same data connection logic for the
traditional MRNet implementation as MRNet/XT. Once
each child receives its part of the topology specification
and connects back to its parent, the child propagates the
topology to any of its own children within the desired
MRNet process topology ((Figure 4d-e).

Using the convention of well-known port numbers
during the MRNet/XT topology propagation phase
presents a problem when more than one MRNet/XT

process are to be placed on the same node, such as with a
“flattened” tree topology (Figure 3b) where both internal
processes and tool back-end nodes are placed on the same
nodes with application processes. The problem is that not
all MRNet processes on the same system node can bind to
the same well-known port number. To address this
problem, MRNet/XT slightly modifies its process creation
strategy so that aprun or the Cray XT tool helper library
creates exactly one MRNet process on each node (Figure
4b). This process accepts the topology specification from
its MRNet parent process, determines which other MRNet
processes should be created on the local node, and then
uses fork() and exec() to create as many additional
MRNet processes as needed for the desired topology
(Figure 4c-f). To simplify the process creation logic, the
first process on a node with co-located processes is
always created to be an MRNet internal node process. If,
after receiving the MRNet topology, the process
determines that it should be a tool back-end process (i.e.,
if it is the only MRNet process on the node), it simply
exec()s itself to become a back-end process.

As an example, consider a parallel debugger that uses
MRNet/XT. Assuming the application and its arguments
are specified to the debugger on its command line when
the debugger front-end process is started, the debugger
can use fork() and exec() to spawn the aprun process
that launches the application processes with the desired
command line arguments. The debugger front-end passes
a special flag (-P) on the aprun command line that
indicates the file descriptors of two pipes across which the
debugger front-end process communicates with the
aprun process to control the execution of the parallel
application processes; the presence of this flag indicates
to aprun that it should create the application processes
but leave them blocked at a synchronization barrier, to be
released after the debugger has completed its
initialization. The debugger front-end then uses the tool
helper function to determine the nodes on which
application processes were placed, and constructs an
MRNet topology specification using those nodes. The
front-end instantiates the MRNet process network using
an MRNet API function, including debugger back-end
processes that attach to the paused application processes
using the standard Linux ptrace or proc filesystem
interfaces. Once the tool’s back-ends are attached, they
report their status to across MRNet to the tool’s front-end
and the tool front-end writes a command across its pipe
connection to aprun causing it to release the application
processes from their start up barrier.

CUG 2009 Proceedings 6 of 9

(a) (b)

Figure 3: Process placement options for MRNet-based tools.
System node boundaries are indicated by gray boxes. The tool front-end process (labelled FE) runs on a login service node in both
scenarios. Tool back-end processes (labelled BEi) are co-located with application processes in both scenarios. In the “additional node”
scenario (a), MRNet internal processes are placed on additional system nodes distinct from those running application processes. In the
“flattened tree” scenario (b), one or more MRNet internal node processes may be placed along with a tool back-end process on each
system node running application processes.

4 MRNet/XT Example Tool: mpiP

MpiP [1, 11] is a lightweight profiling library for
programs that use the Message Passing Interface API [4,
9]. Using the PMPI interface provided by any MPI
standard-conformant implementation, mpiP interposes
instrumented versions of the communication and I/O
functions of the MPI application programming interface.
To control performance data volume, mpiP only gathers
statistics about each MPI function call such as the
maximum number of bytes transferred and the average
operation latency. We recently augmented mpiP to collect
communication topology data for point-to-point
communication operations (e.g., see Figure 5). This
capability helps a user understand the communication
patterns and intensity used by an application, and thus
may expose opportunities for optimizing communication
performance with judicious mappings of application
processes to system nodes to take advantage of the
underlying system’s interconnection network.

As an mpiP-instrumented program runs, all mpiP
data collection activity is restricted to the local MPI
process. MpiP only communicates between processes
when it produces a report of observed program behavior.
To produce this report, the mpiP library in each
application process delivers the statistics it collected
about the process’ MPI activity to the mpiP library in the
mpiP collector process (usually the rank 0 application
process) using point-to-point MPI operations. The rank 0

process receives these statistics as they arrive and
aggregates the statistics across all application processes
for the generated report.

To reduce the cost of aggregating mpiP statistics and
communication topology information, we are
investigating the use of MRNet for off-loading the
aggregation activity from the mpiP collector rank process
into filters running in the MRNet overlay network. For
communication statistics, each filter instance in an
MRNet internal process aggregates the statistics collected
from MPI processes reachable by that internal process via
the MRNet process tree. By induction, the filter instance
running in the MRNet front-end node produces
aggregated statistics for the entire application.

Unlike communication operation statistics,
communication topology data is not aggregated across
application processes because its goal is to specify which
pairs of processes are communicating and how much data
they are transferring. However, MRNet can still benefit
mpiP’s collection of communication topology data to the
mpiP collector rank by making individual communication
operations more efficient. For situations like this, MRNet
provides a data concatenation filter that concatenates
smaller messages into a larger message as data is
transferred across the MRNet process tree toward the tool
front-end. On most systems, these larger, concatenated
messages can be transferred more efficiently than the
smaller messages containing communication topology
data for only one MPI process.

CUG 2009 Proceedings 7 of 9

(a) (b)

(c) (d)

(e) (f)

Figure 4: MRNet/XT process tree instantiation.
A small-scale binary tree topology used for a debugger-like tool is shown as an example. The flattened tree topology is used in the
example. System node boundaries are indicated by gray boxes. First (a), the FE launches the application processes. Next (b), the FE
creates the first MRNet process on each system node. Next (c), the FE connects to the Level 1 processes and provides them with the
MRNet topology specification. Then (d), each Level 1 process spawns any co-located Level 2 processes, connects to its Level 2 child
processes, and delivers the topology specification to its Level 2 children. Next (e), each Level 2 process creates any co-located Level 3
BE processes, connects to its Level 3 children, and delivers the topology specification to its Level 3 children. Finally (f), any Level 3
processes that are supposed to be BE processes become BE processes, and all BE processes attach to their co-located application
processes.

CUG 2009 Proceedings 8 of 9

Figure 5: Visualization of point-to-point communication
topology for AMG2000 collected with mpiP.
In the matrix, each item represents the amount of data
transferred using point-to-point operations between a specific
sending process (on the y-axis) and receiving process (on the
x-axis). “Hot” colors like yellow and orange represent large
communication volumes whereas “cool” colors represent
smaller volumes. The observed diagonal pattern of hot-colored
cells indicates a large point-to-point communication
component, but the smearing of purple cells away from the
diagonals indicates a substantial amount of communication
also occurs with non-neighboring processes.

By design, mpiP supports profiling of MPI programs.
However, some application developers are using
programming models other than MPI like a Partitioned
Global Address Space (PGAS) language such as Unified
Parallel C [10] or Co-Array Fortran [6]. We are
investigating how to apply the mpiP infrastructure mpiP
to support programs using these alternative programming
models. We call this more generic profiling infrastructure
xP. Because xP may be used to profile applications that
do not use MPI, the xP profiler cannot assume that an
MPI implementation is available for aggregating
performance data for program reports. MRNet provides a
suitable alternative communication and data reduction
infrastructure for use by xP that is not tied to any
particular programming model used by the application.

5 Summary

Tree-based overlay networks have proven to be
effective for overcoming several barriers to tool
scalability by providing scalable support for multicast and
data reduction operations. We have ported the MRNet

tree-based overlay network implementation to the Cray
XT platform. As part of the port, we added support
placing MRNet internal network processes on the same
compute nodes as tool back-end processes and application
processes. We are now investigating the use of MRNet for
implementing scalable performance and debugging tools
on the Cray XT platform.

Acknowledgments

The authors would like to thank Mike Brim and
Barton Miller of the University of Wisconsin, and Bob
Moench of Cray, Inc. for assistance and advice in porting
MRNet to the Cray XT platform. In particular, we thank
Mike Brim for debugging assistance and for suggesting
the approach for instantiating MRNet processes co-
located with application processes.

This research is sponsored by the Office of Advanced
Scientific Computing Research; U.S. Department of
Energy. The work was performed at Oak Ridge National
Laboratory, which is managed by UT-Battelle, LLC under
Contract No. De-AC05-00OR22725. Accordingly, the
U.S. Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S.
Government purposes.

This research used resources of the National Center
for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science
of the Department of Energy under Contract DE-AC05-
00OR22725.

About the Authors

Philip C. Roth is a computer scientist in the
Computer Science and Mathematics Division at Oak
Ridge National Laboratory, where he is a founding
member of the Future Technologies Group. His research
interests include performance analysis, prediction, and
tools with special emphases on scalability and
automation; systems software, and storage for large-scale
systems. He earned his Ph.D. from the University of
Wisconsin—Madison in 2005. Roth can be reached at
Oak Ridge National Laboratory, PO Box 2008 MS 6173,
Oak Ridge, TN 37830-6173, USA, Email:
rothpc@ornl.gov.

Jeffrey S. Vetter is a computer scientist in the
Computer Science and Mathematics Division of Oak
Ridge National Laboratory, where he leads the Future
Technologies Group and directs the Experimental
Computing Laboratory. Dr. Vetter is also Joint Professor
in the College of Computing at the Georgia Institute of
Technology, where he earlier earned his Ph.D. He joined

CUG 2009 Proceedings 9 of 9

ORNL in 2003 after four years at Lawrence Livermore
National Laboratory. Vetter’s interests span several areas
of high-end computing—encompassing architectures,
system software, and tools for performance and
correctness analysis of applications. He can be reached at
Oak Ridge National Laboratory, One Bethel Valley Road,
P.O. Box 2008 MS 6173, Oak Ridge, TN 37831-6173,
USA, Email: vetter@computer.org.

References

[1] mpiP: Lightweight, Scalable MPI Profiling,
http://mpip.sourceforge.net/.

[2] D.C. Arnold, D.H. Ahn, B.R. de Supinski et al.,
“Stack Trace Analysis for Large-Scale
Debugging,” Proc. IEEE International Parallel
and Distributed Processing Symposium, 2007.

[3] D.C. Arnold, G.D. Pack, and B.P. Miller, “Tree-
Based Overlay Networks for Scalable
Applications,” in 11th International Workshop
on High-Level Parallel Programming Models
and Supportive Environments (HIPS 2006).
Rhodes, Greece, 2006.

[4] W.D. Gropp, R. Thakur, and E. Lusk, Using
MPI-2: Advanced Features of the Message
Passing Interface, 2nd ed. Cambridge,
Massaschusetts: MIT Press, 1999.

[5] B.P. Miller, M.D. Callaghan, J.M. Cargille et al.,
“The Paradyn Parallel Performance

Measurement Tools,” IEEE Computer,
28(11):37-46, 1995.

[6] R.W. Numrich and J. Reid, “Co-array Fortran for
parallel programming,” SIGPLAN Fortran
Forum, 17(2):1-31, 1998.

[7] P.C. Roth, D.C. Arnold, and B.P. Miller,
“MRNet: A Software-Based Multicast/Reduction
Network for Scalable Tools,” Proc. 2003
ACM/IEEE Conference on Supercomputing,
2003.

[8] P.C. Roth and B.P. Miller, “On-line automated
performance diagnosis on thousands of
processes,” Proc. Eleventh ACM SIGPLAN
Symposium on Principles and Practice of
Parallel Programming, 2006.

[9] M. Snir, W.D. Gropp, S. Otto et al., Eds., MPI—
the complete reference, 2nd ed. Cambridge,
Mass.: MIT Press, 1998.

[10] UPC Consortium, “UPC Language
Specifications, v1.2,” Lawrence Berkeley
National Laboratory LBNL-59208, 2005.

[11] J.S. Vetter and M.O. McCracken, “Statistical
scalability analysis of communication operations
in distributed applications,” Proc. Eighth ACM
SIGPLAN Symposium on Principles and
Practices of Parallel Programming, 2001.

