
HPC Fortran Compilers

Lee Higbie

Arctic Region Supercomputing Center

ABSTRACT:
Fortran, a largely forgotten language outside of HPC, continues to be important for computationally intensive
problem solving on supercomputers. This paper provides a detailed investigation of several of the Fortran com-
pilers that are most heavily used in supercomputing. The investigation looks at the performance of the compilers
on small code snippets. During the investigation, some problems with using PAPI on small code blocks were un-
covered; these are also discussed. The paper makes recommendations targeted at compiler developers and pro-
gram optimizers.

KEYWORDS: Compiler Comparison, PAPI, Timing, Optimization, Performance

Introduction
Fortran is the dominant language for numeric super-
computer applications such as weather, climate and
airfoil/aircraft modeling. These applications often use
millions of compute hours per year. For example, the
Arctic Region Supercomputing Center allocates ap-
proximately 16 core-years1 annually to weather fore-
casting for the state of Alaska. Most Fortran com-
pilers offer extensive “code optimization” options to
reduce modeling cost.

Many HPC users prefer to spend their time working
in their field of specialization instead of learning
about “another compiler” or a new language con-
struct. The result is that many programs are compiled
with default optimization or -Ox, for the biggest x
mentioned in the first screen or two of the compiler
man page. If there is an option with “fast,” that may
be added.

With this background, it seemed reasonable to com-
pare the compilers available on our machines. Most

1 Because the CPUs in supercomputers have multiple com-
putational “cores,” this term is usually used to describe the
basic computational resource on supercomputers. Nodes,
which typically have between 4 and 32 cores on 1 to 8
chips, are the basic unit of allocation on many large sys-
tems.

Fortran compiler performance studies have evaluated
compiler performance based on the execution time of
a few, mostly large programs.[1-4] This study has ap-
proached the analysis of Fortran compilers from a dif-
ferent angle. By studying at the performance on a
large number of very small code blocks. Each code
snippet used in this study is one or more loops, only a
few of which have more than five lines of code.2 We
think that the performance of one or more major ap-
plications is probably a better indication of useful
compiler quality than performance of small blocks of
code, but such performance measures provide little or
no help to the compiler-optimization writers or to the
analysts programming or tuning an application to ex-
ecute more efficiently.

The complete program is available at [6]. Several of
the loops are shown later in this paper and a sampling
of others is in the appendix.

We think our approach will be of greater interest to
compiler and optimizer creators and code developers
because we highlight specific well or poorly compiled
source code structures. The loops are small enough
that optimizer writers can evaluate the compiler's in-

2 The entire program source code and performance result
spreadsheets are at www.arsc.edu/~higbie/CompilerTests

1

Cray User Group 2009 Proceedings

ternal optimization operations and people doing code
development or optimization can see the types of
structure that prevent compilers from producing effi-
cient code.

This paper used all the Fortran 90/95 compilers on the
XT5 supercomputers at the Arctic Region
Supercomputing Center at the University of Alaska
Fairbanks: those from Cray, the Gnu Project,
PathScale and The Portland Group.3 The study
consisted of comparing the execution speed of several
hundred code snippets on each compiler.4 Some
statistics on the relative performance of the compiled
code are included in the figures.

The results were surprising for four reasons.

1. The execution time, as reported by the
PAPI5 papif_get_real_cyc, varied widely from one run

3 Terminology for compilers mentioned in this paper:
“Cray” = “Cray Fortran,” version 7.0.3
“Gnu” = “The gcc Fortran 90 compiler,” gfortran,

version 4.1.2(prerelease)
“PathScale” = “Qlogic PathScale Compiler Suite,” ver-

sions 3.2
“PGI” = “Portland Group's pgf90 compiler,” ver-

sions 7.2-3

4 We made no attempt to analyze the quality of diagnostics
or the acceptability of Fortran dialects with these com-
pilers. We did run into some minor issues with Cray For-
tran and Gnu Fortran. These compilers produced fatal er-
rors for a few statements that the PGI and PathScale com-
pilers accepted:

a. Gnu Fortran would not accept concatenated strings
on stop statement such as: stop 'Overflow at ' // here

b. Neither compiler would not allow unused parameters
from an include file that were out of range. PAPI has two
flags that are set to the value of 231, which caused warnings
in the other compilers but a fatal error for both Cray and
Gnu compilers.

c. One part of the inter-loop data re-initialization
used .xor. For gfortran, this had to be changed to .neqv.

d. The test program was written in Fortran 95 and
nearly all the code files had name suffix .F95. For the
Cray Fortran compiler, the files had to be renamed with
.F90 as the suffix.

5 Acronym Decoding
ARSC Arctic Region Supercomputing Center
CNL Compute node Linux
HPC High performance computing
MFLOPS Mega-floating point operations/second
MOPS Mega-operations/second
PAPI Performance application programming in-

terface

to the next.
2. Changing the optimization from normal to

high often did little to improve the performance on
these small code blocks.

3. For each compiler tested, there were some
snippets that ran substantially slower with “high” op-
timization.

Caveats
Any study like this is a snapshot of specific compiler
versions on specific code.3 Making general infer-
ences about compiler performance is unlikely to be
useful. At a different time, i.e., with other compiler
versions, the relative results are likely to change.

We did not attempt to comprehensively test compiler
options. Only a few switches or options were tried
and they were only tried on our small code snippets.
How well a compiler does on a large program, spe-
cifically on your own program, is probably a better
compiler metric.

Background
Each compiler tested has many, often dozens of “op-
timization” options.6 Facing the complexity of select-
ing the way to compile, we suspect most production
program users try high optimization, and if that does-
n't work (the program doesn't run or runs inaccur-
ately), back off to the default optimization.

ARSC's XT5s have a typical supercomputer architec-
ture with hundreds of nodes, each with two or more
x86 family processor chips. Thus, we do not think

6 It's unlikely that any significant program has been optim-
ized. Requesting “optimization” from a compiler means
requesting that it generate code that runs faster (or some-
times takes less space). “Hey, make it run a little faster”
just doesn't have the nice ring of “optimize.”

2

Another performance-enhancing option for
some users is to take advantage of thread-level
parallelism and use OpenMP. For these small
loops, performance was often slowed by auto-
parallelization so we do not report on it further.

There are many sources for information on
how to efficiently utilize compilers, but we doubt
that most users spend time studying these op-
tions. This documentation seems targeted at ana-
lysts.

Cray User Group 2009 Proceedings

they pose any special compilation difficulties the way
a more unusual architecture, such as vector or cell
processors, might. ARSC has two XT5s, a small one
named Ognip and a large one named Pingo.7 These
tests were run standalone on nodes with 8 CPU cores
and 32 GB of memory.

Test Procedure
The program was compiled using each of the com-
pilers and a few of the most common options:

-O2, or the default optimization level for each
compiler

-fast (or its equivalent), an option that is is
supposed to produce faster-running code. This option
often invokes several more specific types of “optimiz-
ation.” Cray recommends the -tp barcelona switch for
the Portland Group compiler and PathScale has a
switch, -ffast-math, that looked useful. We used both
options in addition to “-fast” for the fast code ver-
sions.

Because code quality is difficult to assess directly and
the size of source code structure space is so large and
highly dimensioned, we planned to use execution time
as a surrogate for compiler quality. We feel that this
is a proper measure, in the sense that code execution
time is what compiler optimization is all about, at
least for HPC.8

Further, we doubt that the management of the
memory hierarchy can be determined except by its ex-
ecution time behavior. I.e., to measure how well the
code generated by a compiler utilizes the memory
system, we believe one has to use code execution
time.

Because of variability of PAPI clock cycle time, many
loop-time measurements were made for each loop.
The sidebar describes some of these issues.

Compiler Differences
Table1 shows the execution speed ratios on Ognip
comparing statistics for the loop times compiled with

7 A Pingo is a large frost heave, typically a kilometer across
and dozens of meters high. An Ognip is a Pingo that has
collapsed (melted interior). Both words are derived from
Inuit. In Alaska, some people (incorrectly?) call smaller
frost heaves “pingos.” Pingos are common in northern
Canada, but rare in Alaska. Pingos form in areas of per-
mafrost.

8 DoD's large Challenge Projects are often required to show
the efficient operation on the machines they use. In this
context, efficiency is usually measured only by the scaling
of the program to large numbers of MPI tasks.

3

While collecting data, we realized there was large
variability in the PAPI-reported clock ticks. The
calls to papif_get_real_cyc() include
some operating system overhead, which can vary
widely and systematically.

It seems to us there should be an easy, portable,
low-overhead way to access the system clock,
but we could find none, nor could we find any
standard-Fortran high resolution timer. The PAPI
function was the only one that appeared adequate
for timing small loops and was available on all
machines and compilers.

Because of the seemingly random operating
system overhead added to PAPI calls, we
experimented to find a way to determine the
actual loop execution time. The procedure we
settled on was to time each test loop three times
in succession to guarantee that the time from
program-start to loop timing varied:

 DO I=1, noTimings ! = 1 to 3
 timeStmp(tstNo, 1, I) = compTim()
 <loop being timed>
 timeStmp(tstNo, 2, I) = compTim()
 call checkResult
 call reinitialize
 enddo

This loop structure is repeated for each of the 708
loops, see [6]. The calls to checkResult and
reinitialize have the side effect of flushing data
from the cache before the next loop timing. For
some of the test loops, the code block above was
embedded in an outer loop that doubled the
iteration count of the test loop 20 times, from
about 35 to 35M iterations. In the sample graphs
at the end of the paper or those at [6], you can see
timing ratios for blocks of loops with increasing
iteration counts.

Using the smallest timing from three re-execu-
tions of a loop appears to produce repeatable and
reasonable results. The entire program was run
15+ times for each compiler and the minimum of
the 15 minimal-times is the value used for this
paper.

The test code program does not perform any I/O
until the last few code snippets.

Cray User Group 2009 Proceedings

“-fast” to those compiled with -O2. If the ratio is
greater than 1.0, then -O2 code performed faster than
-fast. The column heading show the compiler and the
“optimization” selections compared.

We checked the assembly code produced by the code
snippets producing the extremal values in the table
above. In some cases we could see why the code was
substantially faster or slower.

The Gnu compiler with the -fast option had the best
speedup, nearly twice as fast, on the “loop”

 DO I=1, Nparhd ! = 1 to 128
 DO J=1, NSomeDat ! = 1 to 32
 DO K=1, nFewDat ! = 1 to 15
 XP1(I,J) = XP1(I,J) + &
 XP2(I,K)* XP3(K,J)
 enddo
 enddo
 enddo

For this loop the -fast option caused preloading the
XP2 values and fully unrolling the inner loop (the
loop iteration counts are parameters).

The PathScale compiler's -fast option slowed the exe-
cution of

 j = 0
 DO I=1, nFewDat
 K = nFewDat - I + 1
 J= J+1
 T1(I,J,I) = T2(I,I,K) * &
 F1(I,J,M,I) * &
 FV1(I,NP2,J,K,I) * &
 FV2(I,I,I,J,K)
 enddo

by more than a factor of 2. In this case, PathScale un-

rolled the loop with -fast. Our guess is that cache
misses slowed execution of the unrolled code. At the
other extreme, -fast increased execution speed of

 v1 = 2
 DO I = 1, NPARHD
 XS1(I) = XS2(I)**V1
 enddo

by a factor of 25 for PathScale. In this case the com-
piler called a different function, vrs4_powf(), to eval-
uate the expression, instead powf(). No other com-
piler used the vrs4_powf() function, one that com-
putes four exponentiations at a time. In effect, it un-
rolled the loop.

The Portland Group compiler was slowed with -fast
by almost 20% on the set of loops

 DO I=1,13
 XS1(I) = 1.0
 enddo
 DO I=14,330 ! note overlap
 XS1(I) = -1.0
 enddo
 DO I=34,nData ! nData = 600
 XS1(I) = 10.0
 enddo

apparently because of loop unrolling. At the other ex-
treme, it gave a 40% speed up on

 k = 1
 DO I=1, nParHD
 IF(ls1(I)) THEN
 XS1(I) = XS2(k)
 k=k+1
 ENDIF
 enddo

4

Table 1: Statistics of the execution-time ratios of the loops compiled with
-O2 and -fast.

Time Ratio -fast over -O2
Statistic / Compiler Cray Gnu PathScale PGI
Maximum Time Ratio 1.35 1.50 2.28 1.17
99th Percentile 1.20 1.25 1.30 1.13
95th Percentile 1.05 1.14 1.15 1.05
50th Percentile 1.00 1.00 0.94 1.00
5th Percentile 0.96 0.92 0.39 0.94
1st Percentile 0.86 0.80 0.32 0.86
Minimum Time Ratio 0.72 0.56 0.04 0.61

Cray User Group 2009 Proceedings

Using our loop-by-loop technique for measuring com-
piler-to-compiler differences does not seem appropri-
ate as we have noted. In fact, despite our efforts to
use performance as an accurate surrogate for com-
piled code quality, we may have bad time values in-
stead of compiled-code quality differences. Compiler
writers may be interested in specific areas where their
compiler's relative performance is poor, so they can
improve it. Table 2 should not be viewed as compar-
ing compiled code quality.

For example, the zero entries in the Table 2 result
from the random number generator, which took sub-
stantially longer in the PGI-compiled code than with
the others. PGI's code may be doing substantially
better or more anticipatory work than the others.

As with the intra-compiler comparison above, we
made an effort to see how the compilers “optimized”
or failed to optimize code, by looking at the assembly
language output for the loops producing the maxima
or minima in Table 2. Here we summarize those
cases where this yielded useful insight.

The PGI compiler outperformed the Gnu compiler at
O2 and fast optimization levels by the widest margin
on a character string copies. The Gnu compiler com-
piled the code while PGI made a single call to
__c_mcopy1. With -fast, Gnu unrolled the loop, but
__c_mcopy1 was still nearly four times faster.

The PGI compiler had the best performance relative
to the Pathscale compiler for fast optimization on

 DO I=1, nData
 ls1(I) = CH1(I:I) .EQ. CH2(I:I)
 ENDDO

For this loop, it appears that PGI -fast is preloading
the data, probably reducing cache miss time to
achieve more than three times the performance of
PathScale -fast.

The loop where the PGI -O2 compilation code ran or-
ders-of-magnitude slower than either Gnu or PathS-
cale (but quite close to Cray's compiler) is

 DO I = 1, NPARHD
 XS1(I) = XS2(I)*XS3(i)
 CALL random_seed()
 enddo

Pathscale called ranf_4 and Gnu called _gfortran_ran-
dom_ seed while PGI called pghpf_rseed, which ap-
parently slowed the execution tremendously for both
levels of optimization.

Summary:
If performance on a code is not as expected, the easi-
est optimization is often to vary the compiler or com-
piler options. Changing from -fast to -O2 or con-
versely, may yield good results, especially for pro-
grams with loop counts near 64. If your program will
compile with another compiler, this analysis suggests
you should try it or try it on some of the hot-spot
routines.

The big and long term program improvement is from
enhancing the algorithms in heavily used code blocks
and cleaning up their code. We feel certain that
clean code will always be easier to analyze and op-
timize, both to programmers working on it and to
compilers—it is not difficult to confuse a compiler.
Clean, understandable code is the best defense against
poor compiler performance.

5

Text 1: Statistics on the loop timings of our XT5 compilers to the PGI compiler, the Ognip and
Pingo default.

Inter-compiler Time Ratio Statistics
Statistic / Compiler O2: CRI/PGI O2: Gnu/PGI O2: Path/PGI fast: CRI/PGI fast: Gnu/PGI fast: Path/PGI
Maximum Time Ratio 1.23 3.86 29.42 1.51 3.99 3.07
99th Percentile 1.09 3.19 2.84 1.18 3.32 1.81
95th Percentile 1.04 1.94 1.74 1.06 2.00 1.52
50th Percentile 1.00 1.05 1.02 1.00 1.06 0.97
5th Percentile 0.95 0.73 0.58 0.95 0.72 0.28
1st Percentile 0.86 0.43 0.30 0.88 0.30 0.09
Minimum Time Ratio 0.79 0.00 0.00 0.71 0.00 0.00

Cray User Group 2009 Proceedings

Observations:
1. PAPI's papif_get_real_cyc() appears to
have a variable, sometime thousands of clock cycle,
overhead. Perhaps the incorrect clock cycle counts
would improve if there were separate
get_start_cycle and get_end_ cycle func-
tions.

Our idea is get_start_cycle would collect the
system clock value, hopefully putting any variable op-
erating system operations before the clock value is
captured; we would use it as the starting time. At the
end of code snippet timing, we would use
get_end_cycle, which would return the clock
value just as quickly as possible from the function,
before nearly all operating system overhead.

An alternative that we prefer is for the Fortran stand-
ard to specify a function to directly access the system
clock and a complementary function to report its peri-
od. The Fortran standard should specify functions
with minimal overhead and maximal reproducibility.

2. Our loop results, as shown in Figures 1 and 2, sug-
gest that for most Fortran programs any of these com-
pilers should produce similar performance. For any
code, one compiler may be better or worse, possibly
spectacularly so and small performance improve-
ments on production codes can be worthwhile. Chan-
ging from -O2 or default optimization to -fast, or con-
versely may be worthwhile. Experiment with optim-
ization and compiler choices, even on a routine-by-
routine basis.

References and Bibliography
1. Appleyard, John, “Comparing Fortran com-

pilers,” ACM SIGPLAN Fortran Forum, v.20
n.1, p.6-10, April 2001

2. Higbie, Lee, “Speeding up FORTRAN (CFT)
programs on the CRAY-1,” Cray Research Inc.
Tech Note 2240207. 1978

3. Kozin, Igor N., “Performance comparison of
compilers for AMD Opteron,” Dec, 2005,
www.cse.scitech.ac.uk/ disco/Benchmarks/Op-
teron_compilers.pdf

4. Polyhedron Software, “32 bit Fortran execu-
tion time benchmarks,” http://www.polyhed-
ron.com/benchamdwin and http://www.poly-
hedron.com/pb05-win32-f90bench_p40html

5. Higbie, Lee, Tom Baring, Ed Kornkven,
“Simple Loop Performance on the Cray X1,”
CUG 2005, Tuesday. Also available at
www.arsc.edu/~higbie/LoopTests

About the Author
Lee Higbie is an HPC Specialist at the Arctic Region
Supercomputing Center, P.O. Box 756020, Fairbanks,
AK 99775-6020, +1-907-450-8688, higbie@arsc.
edu. He has been working in supercomputing and
parallelization for almost five decades.

Appendix: A few of the 708 loops

In these snippets, names that begin with x are real*4,
d are real*8, c are complex*8, l are logical.

I. Loops with doubling trip counts. Each of these
was timed for k = 1, 2, 4, 8, 16, ...2 ** 20.

1. Done for several data types (real*4, int*1, int*4,
complex, etc.)
 DO I=1, nSomeDat * k
 XL1(I) = XL2(I) + XL3(I)

 enddo

2.
 DO I=1, (nSomeDat + 3) * k
 XL1(I) = XL2(I) * v2 + &

 xl2(i+1) * v1 + &

 xl2(i+2) * v3 + &

XL2(I + 3)

 enddo

3. Done for several common functions
 DO I = 1, nSomeDat * k
 XL1(I) = sin(XL2(I))

 enddo

4. Note that here the “vector length” is decreasing
and the stride is doubling.
 DO I=1, nLongDat, k

 XL1(I) = XL2(I) + xl3(i)

 enddo

6

Cray User Group 2009 Proceedings

II. A few loops were checked with the loop trip count
varying but formed in a way that the compiler could
know it at compile time.

1. This loop was repeated with he constant 2 replaced
by integers from 1 to 11. nFewDat is a parameter =
15. The loop was also repeated with nFewDat re-
placed by a parameter whose value was 32.
 DO I = 1, 2 * nFewDat

 XS1(I) = XS2(I) + XS3(I)

 enddo

2. This loop, like the one above, was rewritten for
many, fixed and known iteration counts.
 DO I = 1, 2 * nFewDat

 XS1(I) = sin(XS2(I))

 enddo

III. Many loop nests, loops with conditionals and
series of loops were checked. Often the best strategy
is to re-order the loops, combine several loops or break
a loop into multiple loops.

1.
 DO I=1, NPARHD

 DO J=1, NSomeDat

 DO K=1, nFewDat

 XP1(I,J) = XP1(I,J) + &

 XP2(I,K) * XP3(K,J)

 enddo

 enddo

 enddo

2.
 DO I=1,NPARHD

 XS1(I) = 0.0

 enddo

 do i = 1, NPARHD

 XS2(I) = 1.0

 enddo

 DO I = 1,NPARHD

 XS3(I) = 2.0

 enddo

 DO I=1,NPARHD

 XL1(I) = -1.0

 enddo

 DO I=1,NPARHD

 XL2(I) = -12.0

 enddo

3.
 DO I=1,nData

 IF(I.LT.11) XS1(I) = 0.0

 IF((I.GE.11) .AND. &

 (I.LT.33)) XS1(I) = 1.0

 IF(I.GE.33) XS1(I) = 3.0

 enddo

IV. The compilation was done as a single unit, so the
compiler can expand in-line, pass the sign of paramet-
ers, etc to the sub-programs.

1.
 DO I = 1, NPARHD

 XS1(I) = VCTFN(XS2(I),XS3(I))

 enddo

2.
 CALL VCTSB2(XS2, XS3, XL2, &

 2, NPARHD)

3. In this case, the programmer viewed the call to ran-
dom_seed as a no-op that could be lifted out of the
loop.
 DO I=1, NPARHD

 xs1(I) = xs2(I)*xs3(I)

 CALL random_seed()

 xl1(I) = xs2(I) - xs3(I)

 enddo

V. The following sample Fortran 90 loop was tried
with several structure layouts.
 DO I=1,Ndata

 bo1(i)%XS1(2) = bo1(i)%XS2(1) &

 + bo1(i)%XS3(3)

 enddo

7

Cray User Group 2009 Proceedings

8

Figure 1: Graph of log of execution time ratios for all loops. Values above zero imply -O2
was faster than -fast.

Cray User Group 2009 Proceedings

9

Figure 2: Log Time Ratios of Compilers to PGI Compiler

Cray User Group 2009 Proceedings

