
Early Evaluation of the Cray XT5 ∗

P. H. Worley †,
R. F. Barrett ‡,
J. A. Kuehn §

Abstract

A Cray XT5 system has recently been installed at Oak Ridge National Laboratory (ORNL). This
system differs from the existing XT4 system at ORNL in its compute node architecture, utilizing two
quad-core Opteron Barcelona processors instead of a single quad-core Opteron Budapest processor. It
also differs in its sheer scale, having approximately 150,000 processor cores, almost 5 times as many as
in the XT4.

We present performance data for the Cray XT5, comparing with data from the Cray XT4 and other
high performance computing systems. The focus is on single node computational benchmarks, basic MPI
performance, both within and between nodes, and the impact of scale on MPI performance.

1 Introduction

A Cray XT5 system was recently installed in the Na-
tional Center for Computational Sciences (NCCS) at
Oak Ridge National Laboratory (ORNL). This sys-
tem includes 18,722 compute nodes connected in a
custom, three-dimensional torus (25x32x24). Each
compute node contains 8 processor cores and 16 GB
of memory, for an aggregate of 149,776 processor
cores and 299,552 TB of memory. Each compute
node contains two 2.3 GHz quad-core Opteron pro-
cessors (AMD 2356 “Barcelona”) linked with dual
HyperTransport connections and DDR2-800 mem-
ory. While memory access performance is “non-
uniform” (NUMA) at a node level, uniform memory
access can be enforced by restricting thread place-
ment and associated memory to a single socket in
the dual socket node architecture. The system inter-
connect utilizes the 6-port Cray SeaStar2+ network
interface controller. Each SeaStar2+ port is capa-
ble of 9.6 GB/s peak bidirectional bandwidth and 6
GB/s sustained. The SeaStar2+ is connected to the

processor via HyperTransport

The XT5 system is an augmentation to an ex-
isting Cray XT4 system, called Jaguar. The XT4
system differs from the XT5 in its compute node
architecture, utilizing a single 2.1 GHz quad-core
Opteron processor (AMD 1354 “Budapest”) and 8
GB of memory. It also differs in scale, having “only”
7,832 compute nodes, or a total of 31,328 proces-
sor cores and 62,656 TB of memory. Both the XT4
and XT5 systems currently run version 2.1 of the
Cray Linux Environment (CLE), Cray’s version of
the SuSE Linux operating system.

This paper examines performance characteristics
of the XT5, contrasting these with characteristics
of the XT4 and other high performance computing
systems such as the IBM BlueGene/P. The focus is
primarily on single node performance and on MPI
interprocess communication performance. The re-
sults are descriptive and quantitative, and currently
we do not have a good explanation for all of the data
that we observe. Hopefully these data will aid ap-
plication developers in porting and optimizing their

∗This research was sponsored by the Climate Change Research Division of the Office of Biological and Environmental
Research, by the Fusion Energy Sciences Program, and by the Office of Mathematical, Information, and Computational Sciences,
all in the Office of Science, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Batelle, LLC.
Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.
†Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5600, Oak Ridge, TN

37831-6016 (worleyph@ornl.gov)
‡Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, Oak Ridge, TN

37831-6164 (rbarrett@ornl.gov)
§Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, Oak Ridge, TN

37831-6164 (kuehn@ornl.gov)

CUG 2009 Proceedings Page 1 of 12

2 Proceedings of the 51st Cray User Group Conference, May 4-7, 2009

codes, setting some expectations as to the perfor-
mance they might expect. We also hope that some
of the performance anomalies described in the paper
will be diagnosed and addressed by the vendor or by
NCCS staff.

2 Methodology

This paper is the most recent in a series of early
evaluation papers [14, 10, 24, 11, 12, 22, 2, 1]. Early
evaluations are “targeted” evaluations, with caveats.
We look at subsystem performance using microker-
nel and kernel benchmarks, then attempt to validate
these results with application benchmarks. Evalua-
tions typically focus on the expected workload for
the target system, and benchmarks are chosen to re-
flect both the workload and the special features of
the system under investigation. The defining charac-
teristic of an early evaluation is the relatively short
duration of the data collection and the often un-
stable nature of the hardware and software of the
system during the data collection. While runtime
and compile-time optimizations are examined care-
fully, we are not able to modify the codes as part
of the evaluation typically. For the XT5 evaluation,
this latter point is especially important. Enabling
the application codes to utilize the full system is re-
quiring many developers to re-examine the choice of
algorithms and implementations [19], and the codes
that the authors are most familiar with are not yet
ready to be used for performance evaluations of the
XT5.

Data for most experiments were collected in Oc-
tober, 2008 on a 60 node XT5 development system,
February, 2009 on the full XT5 systems, and in late
April, 2009, verifying and augmenting the data col-
lected in February.

3 Single Node Benchmarks

The following kernel benchmarks are used to deter-
mine the computational characteristics of a single
compute node. We are in particular interested in
how the dual socket node architecture affects per-
formance.

3.1 DGEMM

Figure 3.1 describes the double-precision floating
point performance of a matrix multiply using the
DGEMM [8] routine from the Cray libsci library.
Matrix multiply has a high ratio of floating point

operations to operands and good register and cache
locality, when implemented carefully. A DGEMM
benchmark is often used to define the “achieveable
peak performance” of a processor. Data are de-
scribed for compute nodes from three different sys-
tems: the current XT5 and XT4 systems at ORNL
and an earlier XT4 system with 2.6 GHz dual-core
opteron processors and a slower memory subsystem.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600 700 800 900 1000
G

flo
p/

se
c

pe
r c

or
e

Matrix Order

 Cray XT5 (two 2.3 GHz quad-core Opterons, 1 core, libsci)
 Cray XT5 (two 2.3 GHz quad-core Opterons, 8 cores, libsci)
 Cray XT4-quad (2.1 GHz quad-core Opteron, 1 core, libsci)
 Cray XT4-quad (2.1 GHz quad-core Opteron, 4 cores, libsci)
 Cray XT4-dual (2.6 GHz dual-core Opteron, 1 core, libsci)
 Cray XT4-dual (2.6 GHz dual-core Opteron, 2 cores, libsci)

Figure 3.1: Matrix Multiply (DGEMM)
Performance

Figure 3.1 contains graphs for two experiments
for each system, one executing the benchmark on
a single core and the other executing multiple in-
stances of the benchmark, simultaneously, one on
each core. The second experiment measures the
performance impact of resource contention, if any,
caused by running the experiment on all cores. For
the multiple-core experiments, the lowest observed
computation rate for each matrix size is reported.

Data from the current XT4 and XT5 systems are
qualitatively identical, with the quantitative differ-
ences arising from the difference in processor clock
rate. Contention decreases performance from 89%
of peak to 85% for the largest measured matrix size.
In contrast, the dual-core XT4 node suffers little
degradation from contention, but achieves signifi-
cantly less performance. This is still 88% of the peak
performance for this older Opteron processor.

3.2 HPCC Benchmarks

The next three benchmarks are drawn from the
High Performance Computing Challenge benchmark
suite [9, 17]: FFT, Random Access, and STREAM.
DGEMM is also an HPCC benchmark, but the ver-
sion of the DGEMM benchmark and the experimen-
tal methodology employed in the previous section
are distinct from HPCC.

Early Evaluation of the Cray XT5 3

1. The FFT benchmark measures the perfor-
mance of computing a double precision com-
plex one-dimensional Discrete Fourier Trans-
form. It is based on the FFTE package devel-
oped by D. Takahashi [21].

2. The STREAM benchmark is a synthetic
benchmark that measures sustainable mem-
ory bandwidth and the corresponding compu-
tation rate for simple vector kernel. STREAM
was developed by J. McCalpin [18].

3. The RandomAccess benchmark measures the
rate of integer random updates of memory.
It was intially developed by D. Koester and
R. Lucas [16].

Table 1 describes the ratio of performance on the
XT5 to that on the XT4 for each of these bench-
marks. Performance was measured for a single pro-
cessor core, for a single core when all cores are com-
puting, for a single quad-core processor, and for a
single node. Note that in the node comparisons the
XT5 has twice as many active processor cores as does
the XT4.

FFT exhibits a reasonable temporal locality in
that intermediate results remain in registers or cache
during the computation. For this benchmark, the
XT5 node exhibits a moderate performance im-
provement over the XT4 node, slightly more than
the difference in processor clock rate. In contrast,
STREAM is characterized by a high level of spatial
locality in its memory reference pattern, but little
temporal locality. For STREAM, the XT5 demon-
strates a small penalty from increased memory con-
tention, probably due to memory controller/channel
limitations. RandomAccess performance is sensitive
to memory latency, and the XT5 demonstrates an
advantage over the XT4 for this benchmark similar
to that for the FFT benchmark.

Table 2 describes the degradation in per core per-
formance when running on all cores as compared to
running on one core. This degradation decreased on
the XT5 as compared to the XT5 for the benchmarks
that were not memory bandwidth limited. Bench-
marks (and applications) like STREAM that require
high memory bandwidth will exhibit decreased per
core performance when all cores are utilized.

3.3 POP

The Parallel Ocean Program (POP) [20, 15] is a
global ocean circulation model developed and main-
tained at Los Alamos National Laboratory (LANL).
It is used for high resolution studies and as the

ocean component in the Community Climate Sys-
tem Model (CCSM) [3, 6]. Here we use version 1.4.3
and a problem with a computational grid of size
320 × 384 × 40 to examine the performance impact
of memory contention.

Parallelization in POP is based on domain de-
composition and uses the Message Passing Interface
(MPI) [13] for interprocess communication. Produc-
tion runs for this problem size would typically use
between 64 and 1024 MPI processes, depending on
processor and MPI communication performance. On
eight or fewer processes on current high performance
computing (HPC) systems, interprocess communi-
cation overhead is negligible. In contrast, memory
performance is important due to the large memory
requirements when running on this small number of
processes and due to a relatively low ratio of floating
point operations to loads and stores.

Figure 3.2 describes POP performance on the
Cray XT5 in terms of simulated years per day of
computation (SYPD), a normalized inverse time
metric. Performance is compared between running
with 1, 2, 4, 8, and 64 processes when using 1, 2,
and 4 cores per quad-core processor. We also looked
at performance for one process per node. As this is
very similar to performance when using one process
per quad-core processor, we will not comment on it
further.

When increasing the process count from one to
two, and placing the two processes on separate quad-
core processors (in the same node), performance
nearly doubles. In contrast, when both processes are
assigned to the same quad-core processor, speed-up
is only 1.6. When using 4 processes, the speed-up
relative to one process performance is 4.1, 3.4, and
2 when using 1, 2, and 4 cores per quad-core proces-
sor, respectively. Note that the speed-up on 4 cores
was 2.3 last October. Thus performance degraded
by approximately 15% for this experiment between
October 2008 and February 2009. Data collected
in April is the similar to that collected in Feburary.
Performance for the other experiments (1 and 2 pro-
cesses per quad-core processor) did not change be-
tween October, February, and April. Note the super-
linear speed-up when using 4 processes and one pro-
cess per quad-core processor, reflecting the improved
cache utilization as the process count increases for
this fixed size problem.

For eight processes, the speed-up compared to
one process performance is 8.4, 7.4, and 4.4, respec-
tively, with an October 2008 speed-up for 4 processes
per processor of 5.0. For 64 processes, using all cores
in 8 nodes, the speed-up is 42.3 and 45.2 for February

4 Proceedings of the 51st Cray User Group Conference, May 4-7, 2009

Core Core Socket Node
Performance Performance Performance Performance
(1 core active) (all active) (all active) (all active)

FFT 1.074 1.134 1.134 2.267
RandomAccess 1.094 1.139 1.139 2.277
STREAM 0.998 0.937 0.937 1.874

Table 1: HPC Challenge Benchmarks: Ratio of XT5 to baseline XT4

Jaguar JaguarPF Improvement
FFT 0.704 0.743 5.6%
RandomAcess 0.645 0.671 4.0%
STREAM 0.408 0.383 -6.2%

Table 2: HPC Challenge Benchmarks: MultiCore Performance Degradation, Rate(multi)/Rate(single)

2009 and October 2008, respectively. The improved
agreement between the October and February data
appears to be due to the steadily decreasing memory
requirements per process, as communication over-
head is still very small in these experiments. Note
that using all of the cores in a node is much faster
than when using fewer for a fixed number of nodes,
even with the performance degradation due to mem-
ory contention. We also ran the POP experiments
with large page support enabled (not shown here),
and it did not change POP performance.

 0

 2

 4

 6

 8

 10

1 2 4 8 64

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

MPI Processes

version 1.4.3, 320x384x40 grid, Cray XT5

(30.28) (28.4)4 processes per socket (10/08)
4 processes per socket (2/09, 5/09)
2 processes per socket
1 process per socket
1 process per node

Figure 3.2: Parallel Ocean Program Performance
on the XT5

Figure 3.3 compares POP performance on Cray
XT4 and Cray XT5 nodes. For a single process, per-
formance on the XT5 is nearly the same as that on
the XT4. However, when using 4 processes and all
cores in a quad-core processor, performance on the
XT5 in February 2009 and October 2008 was 1.15
and 1.3 times greater that on the XT4, respectively,

both of which are greater than the difference in the
clock speed. Similar comparisons hold for eight pro-
cesses.

 0

 1

 2

 3

 4

 5

1 4 8

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

MPI Processes

version 1.4.3, 320x384x40 grid

XT4 (4 processes per node)
XT5 (4 processes per socket, 10/08)
XT5 (4 processes per socket, 2/09, 5/09)
XT5 (2 processes per socket)

Figure 3.3: Parallel Ocean Program Performance

3.4 CAM

The Community Atmosphere Model (CAM) is a
global atmosphere circulation model developed at
the National Science Foundation’s National Center
for Atmospheric Research with contributions from
researchers funded by the Department of Energy and
by the National Aeronautics and Space Administra-
tion [4, 5]. CAM is used in both weather and cli-
mate research. In particular, CAM serves as the
atmospheric component of the CCSM. Here we use
version 3.1p2 with the finite volume dynamics solver
on a computational grid of size 96× 144.

CAM is a mixed-mode parallel application code,
using both MPI and OpenMP protocols [7]. As in
POP, MPI parallelization in CAM is based on do-

Early Evaluation of the Cray XT5 5

main decomposition. For the most part, OpenMP
parallelism is used to further refine the domain de-
compostion. Here we use CAM in the same we used
POP in the previous section, and examine perfor-
mance when using MPI parallelism only. Produc-
tion runs for this problem size would typically use
between 32 and 256 MPI processes, but as many as
1024 processor cores when also utilizing OpenMP
parallelism.

Figure 3.4 describes CAM performance on the
Cray XT5 in terms of SYPD. Performance is com-
pared between the XT4 and the XT5 for 4 and 8 MPI
processes, and for 1, 2, and 4 processes per quad-core
processor for the XT5. As with POP, MPI commu-
nication overhead is negligible for this combination
of problem size and number of processes. In these
experiments performance on the XT5 is 1.38 times
faster than that on the XT4 on a single quad-core
processor, and 1.36 times faster on two quad-core
processors. Using the same number of nodes (but
only two cores per processor on the XT5) increases
the advantage to 1.44 and 1.45, respectively. So,
unlike the POP experiments, there is less evidence
of memory contention degrading performance. For
this process count, the runtime is dominated by the
computation of the physical processes, which is more
compute intensive than the computation in POP.
We also ran experiments with OpenMP (not shown
here), keeping the total number of threads (processor
cores) fixed. For this level of parallelism, OpenMP
did not improve CAM performance.

 0

 1

 2

 3

 4

 5

4 8

Si
m

ul
at

io
n

Ye
ar

s
pe

r D
ay

MPI Processes

version 3.1p2, FV dynamics, 1.9x2.5 grid

XT4 (4 processes per node)
XT5 (4 processes per socket)
XT5 (2 processes per socket)
XT5 (1 process per node)

Figure 3.4: Community Atmosphere Model
(CAM) Performance

3.5 Single Node Performance Sum-
mary

The DGEMM benchmark represents a “sanity”
check, and performance on the XT5 was as expected.

FFT, RandomAccess, and Stream demonstrate de-
creased performance advantage of the XT5 node over
the XT4 as contention for (main) memory increases.
For POP and CAM, XT5 per node performance is
better than XT4 per node performance no matter
how we measured it. However, what appears to be
memory contention can degrade performance, espe-
cially for POP, in agreement with the HPCC results.
POP performance when using all cores in a quad-
core processor has degraded by 15% since October
2008. Performance when not using all cores in a
socket is essentially unchanged. CAM performance
has not changed significantly over this period, but
CAM is more compute intensive for this problem
granularity than is POP.

4 Communication Bench-
marks

MPI is the most common mechanism used for in-
ternode communication by applications running on
the Cray XT systems at ORNL. When not using
OpenMP parallelism, MPI is also the most common
mechanism used when communicating between pro-
cesses within the compute node. As such, under-
standing MPI performance characteristics is an im-
portant first step in analyzing and optimizing appli-
cation code performance.

4.1 Point-to-Point

Our first MPI benchmark measures bandwidth rates
for MPI point-to-point commands. Data were col-
lected for two types of experiments: measuring com-
munication performance between two processes and
measuring communication performance between two
subsets of processes, where pairs of processes, one in
one subset and one in the other, are communicat-
ing simultaneously. The benchmark measures both
bidirectional performance, using a “ping-ping” com-
munication pattern, and undirectional performance,
using half the roundtrip time in a “ping-pong” com-
munication pattern. In the following, we discuss
bidirectional bandwidth only.

The benchmark also measures performance for
20 different implementations of the exchange op-
erator using MPI two-sided commands. The only
omission of consequence is that MPI persistent com-
mands are not included among these implementa-
tions. In the following we describe the optimal per-
formance observed for a given message size over all
examined implementations.

6 Proceedings of the 51st Cray User Group Conference, May 4-7, 2009

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

Bidirectional Bandwidth (MPI) on the Cray XT5

0-1 intrasocket (n2S2d1)
0-1 intersocket (n2S1d1)

0-1 internode (n2N1d1)

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

Bidirectional Bandwidth (MPI) on the Cray XT5

0-1 intrasocket (n2S2d1)
0-1 intersocket (n2S1d1)

0-1 internode (n2N1d1)

Figure 4.1: Single pair exchange experiments
(log-linear and log-log)

Figure 4.1 describes performance when a sin-
gle process pair exchange data. Measurements in-
clude performance between two processes in the
same quad-core processor, two processes in different
processors but in the same node, and processes in
different, but neighboring, nodes. The top graph is
a log-linear plot, while the bottom is a log-log plot,
both of the same data.

Figure 4.2 describes performance for a single pro-
cess pair when multiple process pairs exchange data.
Experiments include:

1. two process pairs in the same quad-core pro-
cessor;

2. four process pairs in the same node such that
each core in one quad-core processor commu-
nicates with a distinct core in the other pro-
cessor;

3. two process pairs such that one core in each
quad-core processor communicates with the
analogous core in the neighboring node;

4. eight process pairs such that each core in one

node communicates with the analogous core in
the neighboring node;

5. sixteen process pairs such that each core in
two neighboing nodes n and n + 1 communi-
cate with the analogous cores in neighboring
nodes n + 2 and n + 3;

6. thirty-two process pairs such that cores in the
four nodes n, . . . , n+3 communicate with cores
in the four nodes n + 4, . . . , n + 7;

7. sixty-four process pairs such that cores in the
four nodes n, . . . , n+7 communicate with cores
in the four nodes n + 8, . . . , n + 15.

For up to 4 nodes (16 process pairs), the nodes were
consecutive in a single dimension of the torus (4×1).
For 8 and 16 nodes, the physical topology was 4× 2
and 4 × 4, respectively. We experimented with dif-
ferent orderings of the nodes, and this made no dif-
ference in the observed performance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

Bidirectional Bandwidth (MPI) on the Cray XT5

i-(i+2), i=0,1 intrasocket (n4S4d1)
i-(i+4), i=0,..,3 intranode (n8N8d1)

i-(i+2), i=0,1 internode (n4N2S1d1)
i-(i+8), i=0,..,7 internode (n16N8d1)

i-(i+16), i=0,..,15 internode (n32N8d1)
i-(i+32), i=0,..,31 internode (n64N8d1)

i-(i+64), i=0,..,63 internode (n128N8d1)

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

Bidirectional Bandwidth (MPI) on the Cray XT5

i-(i+2), i=0,1 intrasocket (n4S4d1)
i-(i+4), i=0,..,3 intranode (n8N8d1)

i-(i+2), i=0,1 internode (n4N2S1d1)
i-(i+8), i=0,..,7 internode (n16N8d1)

i-(i+16), i=0,..,15 internode (n32N8d1)
i-(i+32), i=0,..,31 internode (n64N8d1)

i-(i+64), i=0,..,63 internode (n128N8d1)

Figure 4.2: Single pair performance for multiple
pair experiments (log-linear and log-log)

From these data, performance for a single pro-
cess pair is the same for the two intranode experi-
ments up to messages of size 128 KBytes. For large

Early Evaluation of the Cray XT5 7

message sizes, a higher bidirectional rate is achieved
when communicating between the quad-core proces-
sors than within a quad-core processor. Internode
performance is lower than intranode performance for
messages of size 128 KB and smaller, representing
an approximately 10 times higher latency between
nodes than within nodes. For the largest message
sizes, internode performance is equal to or better
than intranode performance.

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

Bidirectional Bandwidth (MPI)

X1E: 0-8 (2 modules)
XT4-dualcore: 0-1 (2 nodes, SN)
XT4-quadcore: 0-1 (2 nodes, n2N1d1)
XT5: 0-1 (2 nodes, n2N1d1)
BG/P: 0-1 (2 nodes, SMP)
Xeon w/gigE: 0-2 (2 nodes)

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06 1e+07

M
By

te
s/

se
co

nd

Amount of Data Sent Each Direction

Bidirectional Bandwidth (MPI)

X1E: i-(i+8), i=0,...,7 (2 modules)
XT4: i-(i+2), i=0,1 (2 nodes, VN)
XT4-quadcore: i-(i+4), i=0,...,3 (2 nodes)
XT5: i-(i+8), i=0,...,7 (2 nodes)
BG/P: i-(i+4), i=0,..,3 (2 nodes, VN)
Xeon w/gigE: i-(i+2), i=0,1 (2 nodes)

Figure 4.3: Point-to-point performance: Platform
comparisons (log-log)

For the simultaneous exchange experiments,
achieved bandwidth within a quad-core processor
when two pairs are communicating is approximately
50% higher than the bandwidth between quad-core
processors when 4 pairs are communicating. This re-
sult holds for the entire range of message sizes. For
the largest messages sizes, performance for two pro-
cess pairs is the same for internode and intranode
experiments. For smaller message sizes, intranode
performance is again approximately 10 times better.

For the simultaneous exchange experiments, one
pair, two pairs and eight pairs achieve the same total
internode bandwidth, with the available bandwidth
being divided equally between the different process

pairs. For more simultaneous pairs, involving more
than two compute nodes, performance is identical to
that in the eight pair experiments, indicating that
these experiments were not able to saturate links in
the network. Internode latency of single pair is (also)
half that of two pair, but is 1/5 that of 8 pair (and
not 1/8). Latency is (also) not affected by number
of nodes communicating, in these experiments.

Figure 4.3 compares internode performance be-
tween different platforms for a single process pair
when a single pair is communicating and when all
processor (cores) in one node communicate with all
of the processor (cores) in a neighboring node. For
the largest message sizes performance on the Cray
X1E is significantly better than on the other sys-
tems; the advantage is smaller for the simultane-
ous exchange experiments. The dual-core XT4 run-
ning the Catamount operating system achieves the
next best performance. For a single process pair,
the quad-core XT4 and the XT5 achieve the same
performance. For the simultaneous exchange experi-
ments, the quad-core XT4 and the XT5 demonstrate
the same total internode bandwidth for almost all
message sizes, resulting in the performance observed
by a single pair of processes on the XT5 being half
that observed on the quad-core XT4. For small mes-
sage sizes, the best performance is observed on the
IBM BG/P.

4.2 Barrier

Figure 4.4 describes performance of the MPI Barrier
command on the Cray XT5. The benchmark mea-
sures the performance of MPI Barrier 10,000 times.
The top graph describes the best observed and av-
erage barrier performance over these 10,000 experi-
ments for a range of node counts, and for both one
process per node and 8 processes per node. The
bottom graph contains the same data as well as the
worst case performance. Note that these data were
not collected on a dedicated system.

Looking at the best performance, there is a small
preference for power-of-two process counts. There is
also very little performance difference between us-
ing one process per node and all processes per node
for the same number of nodes. Average performance
is approximately half that of the best performance.
The worst case is much worse (up to 1000 times
worse). Worst case performance is worse when using
8 processes per node than 1 process per node, but
experiments with 1 process per node can still suffer
significant performance degradation. The ratio of
worst case to best case appears to increase with the

8 Proceedings of the 51st Cray User Group Conference, May 4-7, 2009

node count, but very large worst case performance
also can occur for small process counts.

Figure 4.5 compares average MPI Barrier perfor-
mance for one process per node between the XT5,
a dual-core XT4 running the Catamount operat-
ing system, and an IBM BG/P. For barriers over
MPI COMM WORLD, the BG/P can use a hard-
ware barrier, which is much faster than not using
it on the BG/P and much faster than what is ob-
served on the XT4 and XT5 systems. The average
MPI Barrier runtime on the Cray XT5 is approxi-
mately 1.46 times greater than that on the dual-core
XT4.

Figure 4.6 compares minimum, average, and
maximum MPI Barrier performance for one process
per node between the XT5 and the dual-core XT4
running the Catamount operating system. Mini-
mum runtimes are comparable on the XT4 and XT5
systems. It is the maximum times that differentiate
MPI Barrier performance on the two systems.

 1

 4

 16

 64

 256

 1024

 4096

 1 4 16 64 256 1024 4096

m
ic

ro
se

co
nd

s

Nodes

Barrier Cost on Cray XT5

8 cores/node, mean
1 core/node, mean
8 cores/node, minimum
1 core/node, minimum

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096

m
ic

ro
se

co
nd

s

Nodes

Barrier Cost on Cray XT5

8 cores/node, max
1 core/node, max
8 cores/node, mean
1 core/node, mean
8 cores/node, minimum
1 core/node, minimum

Figure 4.4: MPI Barrier performance on the Cray
XT5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1 4 16 64 256 1024

m
ic

ro
se

co
nd

s

Nodes

MPI_Barrier Performance

Cray XT5
 mean (1 core/node)
Cray XT4: dual core running Catamount
 mean (1 core/node)
IBM BG/P
 mean (1 core/node, unoptimized)
 mean (1 core/node, barrier network)

Figure 4.5: MPI Barrier performance: Platform
Comparison

 4

 16

 64

 256

 1024

 4096

 16384

 1 2 4 8 16 32 64 128 256 512

m
ic

ro
se

co
nd

s

Nodes

MPI_Barrier Performance

Cray XT5
 max (1 core/node)
 mean (1 core/node)
 min (1 core/node)
Cray XT4: dual-core running Catamount
 max (1 core/node)
 mean (1 core/node)
 min (1 core/node)

Figure 4.6: MPI Barrier performance: XT4
versus XT5

4.3 HALO

The HALO benchmark [23] simulates the nearest
neighbor exchange of a 1-2 row/column “halo” from
a two-dimensional (2D) array. This is a common
operation when using domain decomposition to par-
allelize, for example, a finite difference ocean model.
There are no actual 2D arrays used, but instead the
copying of data from an array to a local buffer is sim-
ulated and this buffer is transferred between nodes.
HALO is actually a suite of benchmarks, implement-
ing the basic halo exchange operator utilizing a num-
ber of different messaging layers, and a number of
different implementations for each layer. We first
used the HALO benchmark suite to examine which
MPI two-sided communication protocol is most ef-
ficient. On the basis of these data we used a single
communication protocol in subsequent experiments.

For this paper, we examined the impact of pro-
cess count on HALO performance. The halo ex-

Early Evaluation of the Cray XT5 9

change is “logically” a local operator, so we might
expect performance not to vary with process count.
However, the mapping of processes to processors de-
termines the actual locality of the operator.

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

M
ic

ro
se

co
nd

s

Words

MPI isend/irecv protocol and SMP mapping (8 cores per node)
65536
32768
16384
8192
4096
2048
1024
512
256
128
64

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

M
ic

ro
se

co
nd

s

Words

MPI isend/irecv protocol and SMP mapping (2 cores per socket)
32768
8192
2048
1024
512
256
128
64
32

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

M
ic

ro
se

co
nd

s

Words

MPI isend/irecv protocol and SMP mapping (2 cores per node)
16384
8192
4096
2048
1024
512
256
128
64
32
16

Figure 4.7: HALO performance scaling on the
Cray XT5

Figure 4.7 describes HALO performance as a
function of the size of the halo being exchanged for
diffferent process counts. The top graph describes
the performance when 8 processes are assigned to
each node; the middle graph describes performance
whan 4 processes are assigned to each node, two

processes to each quad-core processor; the bottom
graph describes the performance when 1 process is
assigned to each node. Ignoring the few “noisy”
data in some of the small halo exchanges, cost ap-
pears to grow nearly monotonically as a function of
process count, even for relatively small halos. This
is most evident in the top two graphs, with eight
and four processes assigned to each node. For these
experiments, the default “SMP” assignment of pro-
cesses to nodes was used, e.g., for the first graph pro-
cesses 0 through 7 were assigned to node 0, processes
8 through 15 were assigned to node 1, etc. This
mapping does not minimize the internode commu-
nication for the underlying two-dimensional virtual
process grid. However, the growth appears to be
too regular to be attributable to simply this source.
Moreover, performance when assigning one node to
each process also grows monotonically with the pro-
cess count. It is difficult to attribute this to network
performance, given our inability to saturate network
links in other experiments. Rather, this could be a
signature of performance degradation due to OS jit-
ter, especially given the greater sensitivity to process
count for smaller halo exchanges.

4.4 Communication Performance
Summary

Performance is consistent between the different
point-to-point experiments. From these experi-
ments, the performance bottleneck on the XT5 is
communication from the node into the network, and
not in the network itself. Experience in a multi-user
environment appears to indicate that the aggregate
network traffic can saturate network links, but we
have not been able to duplicate that behavior with
these benchmarks. The experiments also indicate
that bandwidth into the network is divided equally
between competing MPI processes. The movement
from XT4 compute nodes with 4 processor cores to
XT5 compute nodes with 8 processor cores can halve
the MPI internode performance observed by a sin-
gle process. MPI latency also increases when mul-
tiple MPI processes are communicating simultane-
ously. Techniques to minimize contention, such a
using OpenMP parallelism to decrease the number
of MPI processes assigned to a single compute node
or using communication algorithms that are aware of
the node architecture and aggregate messages locally
before communicating between nodes, are important
to consider on the XT5.

Experiments with collective operators indicate
additional performance issues. The best observed

10 Proceedings of the 51st Cray User Group Conference, May 4-7, 2009

MPI Barrier performance is comparable to that on
XT4-dual core when running the Catamount oper-
ating system, and only 1.4 times slower than that on
the IBM BG/P when not using the hardware bar-
rier network. Where the XT5 performance is differ-
ent is in the worst case performance, which can be
a thousand times slower than the best observed per-
formance. This performance perturbation is likely
not in the MPI library, but rather something exter-
nal. It does not have the usual signature of operating
system jitter, and is currently being investigated by
staff at both Cray and ORNL. In contrast, operat-
ing system jitter may be a partial explanation of the
increase in runtime in the HALO benchmark as the
number of processes increases.

5 Conclusions

The new XT5 system has great promise as a plat-
form for large scale computational science. In order
to make maximum use of the system, application
developers will need to reexamine the performance
characteristics of their codes, looking for ways to de-
crease memory traffic. Techniques for decreasing the
amount and frequency of internode MPI communi-
cation, such as exploiting OpenMP parallelism or
SMP-aware MPI algorithms, should also be consid-
ered.

In contrast, it is the responsibility of the vendor
and computer center staff to diagnosis the source of
performance variability, and to minimize it to the
extent possible. Without a such a diagnosis, appli-
cation developers can not develop mitigation strate-
gies.

6 Acknowledgements

This research used resources (Cray XT4, Cray XT5,
and IBM BG/P) of the National Center for Com-
putational Sciences at Oak Ridge National Labora-
tory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

7 About the Authors

Richard F. Barrett is a senior R&D staff member
in the Computer Science and Mathematics Division
of Oak Ridge National Laboratory. His research in-
terests span several areas required for creating ef-
fective scientific applications on current and future

highest performance computing platforms. Of spe-
cial interest are the use of programming models and
languages, such as explicit message passing, parti-
tioned global address space languages, and develop-
ing languages such as those in the DARPA High Pro-
ductivity Computer Systems Program; code devel-
opment tools; performance modeling, analysis, and
optimization; computer architectures; inter-process
communication mechanisms; the solution of large
scale linear systems; and the bridge between research
and production computing..
E-mail: rbarrett@ornl.gov.

Jeffrey A. Kuehn joined the Computer Science
and Mathematics Division of Oak Ridge National
Laboratory in February of 2005 as a Senior HPC
Evaluation Researcher. He received his undergrad-
uate and graduate degrees from University of Col-
orado at Boulder in Mechanical Engineering. His
expertise is in software performance and system
benchmarking. Jeff has played key roles in bring-
ing over 30 ”Top500” computing systems to pro-
duction, many in the top 25. His role at ORNL
encompasses the evaluation of next-generation high
performance computing systems and technologies.
Jeff’s current research interests center around the
development and use of microbenchmarks, system
performance analysis, and software performance en-
gineering.

Patrick H. Worley is a senior R&D staff member
in the Computer Science and Mathematics Division
of Oak Ridge National Laboratory. His research in-
terests include parallel algorithm design and imple-
mentation (especially as applied to simulation mod-
els used in climate and fusion energy research) and
the performance evaluation of parallel applications
and computer systems. He is currently a co-chair
of the CCSM Software Engineering Working Group,
the principal investigator for the Performance Engi-
neering and Analysis Consortium End Station DOE
INCITE project, and is an Associate Editor of the
journal Parallel Computing. Worley has a PhD in
computer science from Stanford University. He is a
member of the Association for Computing Machin-
ery and the Society for Industrial and Applied Math-
ematics.
E-mail: worleyph@ornl.gov.

References

[1] S. Alam, R. Barrett, M. Eisenbach,
M. Fahey, R. Hartman-Baker, J. Kuehn,
S. Poole, R. Sankaran, and P. Wor-
ley, The Cray XT4 Quad-core : A First Look,

Early Evaluation of the Cray XT5 11

in Proceedings of the 50th Cray User Group
Conference, May 5-8, 2008, R. Winget and
K. Winget, ed., Eagan, MN, 2008, Cray User
Group, Inc.

[2] S. R. Alam, R. F. Barrett, M. R. Fahey,
J. A. Kuehn, J. M. Larkin, R. Sankaran,
and P. H. Worley, Cray XT4: An Early
Evaluation for Petascale Scientific Simulation,
in Proceedings of the ACM/IEEE Intl. Conf.
for High Performance Computing, Networking,
Storage and Analysis (SC07), Nov. 10-16, 2007,
IEEE Computer Society Press, Los Alamitos,
CA, 2007.

[3] M. B. Blackmon, B. Boville, F. Bryan,
R. Dickinson, P. Gent, J. Kiehl,
R. Moritz, D. Randall, J. Shukla,
S. Solomon, G. Bonan, S. Doney,
I. Fung, J. Hack, E. Hunke, and J. Hur-
rel, The Community Climate System Model,
BAMS, 82 (2001), pp. 2357–2376.

[4] W. D. Collins, P. J. Rasch, B. A.
Boville, J. J. Hack, J. R. McCaa, D. L.
Williamson, B. P. Briegleb, C. M. Bitz,
S.-J. Lin, and M. Zhang, The Formulation
and Atmospheric Simulation of the Community
Atmosphere Model: CAM3, Journal of Climate,
19 (2006), pp. 2144–2161.

[5] W. D. Collins, P. J. Rasch, and et al.,
Description of the NCAR Community Atmo-
sphere Model (CAM 3.0), NCAR Tech Note
NCAR/TN-464+STR, National Center for At-
mospheric Research, Boulder, CO 80307, 2004.

[6] Community Climate System Model.
http://www.ccsm.ucar.edu/.

[7] L. Dagum and R. Menon, OpenMP: an
industry-standard API for shared-memory pro-
gramming, IEEE Computational Science & En-
gineering, 5 (1998), pp. 46–55.

[8] J. Dongarra, J. D. Croz, I. Duff, and
S. Hammarling, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Soft-
ware, 16 (1990), pp. 1–17.

[9] J. Dongarra and P. Luszczek, Introduction
to the HPCChallenge Benchmark Suite, Tech.
Rep. UT-CS-05-544, Computer Science Depart-
ment, University of Tennessee, Knoxville, Ten-
nessee, 2005. http://icl.cs.utk.edu/hpcc/.

[10] T. H. Dunigan, Jr., Kendall square multi-
processor: Early experience and performance,
Tech. Rep. ORNL/TM-12065, Oak Ridge Na-
tional Laboratory, Oak Ridge, TN, March 1992.

[11] T. H. Dunigan, Jr., M. R. Fahey, J. B.
White III, and P. H. Worley, Early Eval-
uation of the Cray X1, in Proceedings of the
ACM/IEEE Conference on High Performance
Networking and Computing (SC03), Nov. 15-
21, 2003, IEEE Computer Society Press, Los
Alamitos, CA, 2003.

[12] M. R. Fahey, S. Alam, T. H. Dunigan, Jr.,
J. S. Vetter, and P. H. Worley, Early
Evaluation of the Cray XD1, in Proceedings of
the 47th Cray User Group Conference, May 16-
19, 2005, R. Winget and K. Winget, ed., Eagan,
MN, 2004, Cray User Group, Inc.

[13] W. Gropp, M. Snir, B. Nitzberg, and
E. Lusk, MPI: The Complete Reference, MIT
Press, Boston, 1998. second edition.

[14] M. T. Heath, G. A. Geist, and J. B.
Drake, Early experience with the Intel
iPSC/860 at Oak Ridge National Laboratory,
Tech. Rep. ORNL/TM-11655, Oak Ridge Na-
tional Laboratory, Oak Ridge, TN, September
1990.

[15] P. W. Jones, P. H. Worley, Y. Yoshida,
J. B. White III, and J. Levesque, Prac-
tical performance portability in the Parallel
Ocean Program (POP), Concurrency and Com-
putation: Practice and Experience, 17 (2005),
pp. 1317–1327.

[16] D. Koester and R. Lucas, Random Access
Benchmark. http://icl.cs.utk.edu/projectsfiles/
hpcc/RandomAccess/.

[17] J. Kuehn, J. Larkin, and N. Wichmann,
An Analysis of HPCC Resuls on the Cray XT4,
in Proceedings of the 49th Cray User Group
Conference, May 7-10, 2007, R. Winget and
K. Winget, ed., Cray User Group, Inc., Eagan,
MN, 2007.

[18] J. D. McCalpin, Memory Bandwidth
and Machine Balance in Current High
Performance Computers, IEEE Computer
Society Technical Committee on Com-
puter Architecture Newsletter, (1995).
http://tab.computer.org/tcca/news/dec95/
dec95.htm.

12 Proceedings of the 51st Cray User Group Conference, May 4-7, 2009

[19] R. Mills, F. Hoffman, P. Worley, K. Pe-
rumalla, A. Mirin, G. Hammond, and
B. Smith, Coping at the User-Level with Re-
source Limitations in the Cray Message Passing
Toolkit MPI at Scale: How Not to Spend Your
Summer Vacation, in Proceedings of the 51st
Cray User Group Conference, May 4-7, 2009, R.
Winget and K. Winget, ed., Eagan, MN, 2009,
Cray User Group, Inc.

[20] R. D. Smith, J. K. Dukowicz, and R. C.
Malone, Parallel ocean general circulation
modeling, Phys. D, 60 (1992), pp. 38–61.

[21] D. Takahashi, FFTE: A Fast Fourier Trans-
form Package. http://www.ffte.jp/.

[22] J. S. Vetter, S. R. Alam, T. H. Dunigan,
Jr., M. R. Fahey, P. C. Roth, and P. H.

Worley, Early Evaluation of the Cray XT3
at ORNL, in Proceedings of the 47th Cray User
Group Conference, May 16-19, 2005, R. Winget
and K. Winget, ed., Eagan, MN, 2005, Cray
User Group, Inc.

[23] A. J. Wallcraft, SPMD OpenMP vs MPI
for Ocean Models, in Proceedings of the
First European Workshop on OpenMP,
Lund, Sweden, 1999, Lund University.
http://www.it.lth.se/ewomp99.

[24] P. H. Worley, T. H. Dunigan, Jr., M. R.
Fahey, J. B. White III, and A. S. Bland,
Early evaluation of the IBM p690, in Pro-
ceedings of the IEEE/ACM SC2002 Confer-
ence, Nov. 16-22, 2002, IEEE Computer Society
Press, Los Alamitos, CA, 2002.

