
Early Evaluation of the Cray XT5

Patrick Worley, Richard Barrett, Jeffrey Kuehn
Oak Ridge National Laboratory

CUG 2009
May 6, 2009

Omni Hotel at CNN Center
Atlanta, GA

2

•  Research sponsored by the Climate Change Research Division of the
Office of Biological and Environmental Research, by the Fusion
Energy Sciences Program, and by the Office of Mathematical,
Information, and Computational Sciences, all in the Office of Science,
U.S. Department of Energy under Contract No. DE-AC05-00OR22725
with UT-Battelle, LLC.

•  This research used resources (Cray XT4 and Cray XT5) of the
National Center for Computational Sciences at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725 with
UT-Battelle, LLC.

•  These slides have been authored by a contractor of the U.S.
Government under contract No. DE-AC05-00OR22725. Accordingly,
the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

 Acknowledgements

3

1.  CUG 2008: The Cray XT4 Quad-core : A First Look (Alam, Barrett, Eisenbach,
Fahey, Hartman-Baker, Kuehn, Poole, Sankaran, and Worley)

2.  CUG 2007: Comparison of Cray XT3 and XT4 Scalability (Worley)
3.  CUG 2006: Evaluation of the Cray XT3 at ORNL: a Status Report (Alam,

Barrett, Fahey, Messer, Mills, Roth, Vetter, and Worley)
4.  CUG 2005: Early Evaluation of the Cray XD1 (Fahey, Alam, Dunigan, Vetter,

and Worley)
5.  CUG 2005: Early Evaluation of the Cray XT3 at ORNL (Vetter, Alam, Dunigan,

Fahey, Roth, and Worley)
6.  CUG 2004: ORNL Cray X1 Evaluation Status Report (Agarwal, et al)
7.  CUG 2003: Early Evaluation of the Cray X1 at ORNL (Worley and Dunigan)

(and subsystem or application-specific views of system performance)
8.  CUG 2006: Performance of the Community Atmosphere Model on the Cray

X1E and XT3 (Worley)
9.  CUG 2005: Comparative Analysis of Interprocess Communication on the X1,

XD1, and XT3 (Worley, Alam, Dunigan, Fahey, Vetter)
10.  CUG 2004: The Performance Evolution of the Parallel Ocean Program on the

Cray X1 (Worley and Levesque)

Prior CUG System Evaluation Papers

4

1.  A complete evaluation:
a.  microkernel, kernel, application benchmarks, chosen to examine

major subsystems and to be representative of anticipated workload
b.  optimized with respect to obvious compiler flags, system

environment variables (esp. MPI) and configuration options
2.  performed quickly (in time for CUG )

a.  not exhaustive (can’t answer all questions nor examine all options)
b.  minimal code modifications

3.  with a goal of determining:
a.  performance promise (a lower bound)
b.  performance characteristics (good and bad)
c.  usage advice for users

4.  in the context of an “evolving” system, subject to:
a.  HW instability
b.  system software upgrades

What is an Early Evaluation?

5

Cray XT5 at ORNL (JaguarPF)
-  18,722 compute nodes, 8 processor cores per node, 2 GB

memory per core:
•  149,776 processor cores and 299,552 TB memory

-  Compute node contains two 2.3 GHz quad-core Opteron
processors (AMD 2356 “Barcelona”) linked with dual
HyperTransport connections and DDR2-800 NUMA memory

-  3D Torus (25x32x24) with Cray SeaStar2+ NIC (9.6 GB/s peak
bidirectional BW in each of 6 directions; 6 GB/s sustained)

-  Version 2.1 of the Cray Linux Environment (CLE) operating
system (as of February 2009)

Compared with Cray XT4 at ORNL (Jaguar)
-  7832 compute nodes, 4 processor cores per node: 31,328

processor cores
-  Compute node contains one 2.1 GHz quad-core “Budapest”

Opteron and DDR2-800 UMA memory

Target System

6

•  Performance impacts of changes in
-  Processor architecture (2.3 GHz Barcelona vs. 2.1 GHz

Budapest)
-  Node architecture (2 socket and NUMA vs. 1 socket and UMA):

•  Additional memory contention? Utility of large page support?
•  OpenMP performance (8-way maximum vs. 4-way maximum)
•  MPI communication performance
-  Intranode and Internode
-  Point-to-point
-  Collective

•  Performance characteristics of running at increased scale
•  Nature and impacts of performance variability
•  Application performance

Initial Evaluation Questions

7

•  Evaluation far from complete:
-  System not open to general evaluation studies, only studies in

support of early science application codes.
-  Scaling application codes to 150,000 cores is requiring re-

examination of algorithms and implementations.
-  No full system scaling studies as of yet because of high cost and

special requirements (e.g. interactive session).
-  Performance variability makes aspects of evaluation difficult:

•  There appear to be multiple sources of variability, some that
may be eliminated easily, once diagnosed properly, and
some that may be intrinsic to the system.

•  May be possible to mitigate impact of intrinsic variability once
it has been diagnosed adequately.

•  Too much data to present in 30 minute talk. Will describe highlights
of preliminary results.

Status of Evaluation

8

1.  Single node performance
a.  Kernels: DGEMM, FFT, RandomAccess, STREAM
b.  Application codes: POP, CAM

2.  MPI communication performance
a.  Point-to-point: Intra- and Inter-node
b.  Collective: Barrier, Allreduce
c.  HALO

3.  Application codes: approaches, performance, and progress
a.  AORSA
b.  XGC1
c.  CAM

Talk Outline

9

 Matrix Multiply Benchmark (DGEMM)

Evaluated performance of libsci routine for matrix multiply. Achieved 89% of peak,
Some degradation observed from running benchmark on all cores simultaneously.
Behavior similar to that on XT4-quad, scaled by difference in clocks.

Other HPCC Single Node Benchmarks
(ratio of JaguarPF to Jaguar)

  Spatial locality Apps (like STREAM) see small penalty from increased
contention – memory controller/channel limitation

  Temporal locality Apps (like FFT) see moderate improvement
  Even low locality apps (Like RandomAccess) see some benefit

Core
Performance
(1core active)

Core
Performance
(all active)

Socket
Performance
(all active)

Node
Performance
(all active)

FFT 1.074 1.134 1.134 2.267
RandomAccess 1.094 1.139 1.139 2.277
STREAM 0.998 0.937 0.937 1.874

SMP Performance Ratio
(MultiCore to SingleCore)

  SMP efficiency improved for apps that weren't bandwidth limited
  Memory bandwidth hungry apps suffer from increased contention
  At JaguarPF scale, 5% ~ 4000 cores
  Lessons:

  Eliminate unnecessary memory traffic
  Consider replacing MPI w/ OpenMP on node (see MPI results)

Jaguar JaguarPF % Improvement

FFT 0.704 0.743 5.6%

RandomAccess 0.645 0.671 4.0%

STREAM 0.408 0.383 -6.2%

12

 Parallel Ocean Program

Using POP to investigate performance impact of memory contention. Using all cores
in a node can degrade performance by as much as 45% compared to assigning one
process per node. It is still much better to use all cores for a fixed number of nodes.

13

 Parallel Ocean Program

For a single process, XT5 performance is nearly the same as the XT4. However,
when using all cores in a socket XT5 performance was greater than 1.3X that of the
XT4 in Oct. 08, and greater than 1.15X in Feb. 09 and May 09, both of which are
greater than the difference in the clock speed.

14

 Community Atmosphere Model

For the Finite Volume dynamics solver, XT5 is 1.38X faster than the XT4 on a single
quad-core processor, and 1.36X faster on two quad-core processors. Using the
same number of nodes (but only two cores per processor) increases the advantage
to 1.44 and 1.45, respectively. Physics dominates runtime in these experiments.

15

Computation Benchmarks: Summary
1.  DGEMM “sanity check” looks good.
2.  FFT, RandomAccess, and STREAM demonstrate steadily decreasing

advantage of XT5 node over XT4 as contention for (main) memory
increases.

3.  XT5 per node performance is better than the XT4 per node performance
no matter how measure it, for both POP and CAM. Memory contention
(?) can degrade performance, especially for POP.

4.  For this level of parallelism, OpenMP did not improve performance of
CAM for same number of cores (not shown).

5.  POP all-core performance has degraded by 15% since October.
Performance when not using all cores in a socket is essentially
unchanged. CAM performance has not changed significantly over this
period, but CAM is more compute intensive for this problem granularity
than is POP.

16

 MPI Point-to-Point Performance

Bidirectional bandwidth for single process pair when single pair communicating and
when multiple pairs communicating simultaneously. One pair, two pairs and eight
pairs achieve same total internode bandwidth. These experiments were unable to
saturate network bandwidth.

17

 MPI Point-to-Point Performance

Same data, but in log-log plot. Intranode latency over 10 times lower than internode
latency. Internode latency of single pair is half that of two pair, and 1/5 that of 8 pair.
Latency is (also) not affected by number of nodes communicating, in these
experiments.

18

 MPI Point-to-Point Performance

Log-log plots of bidirectional bandwidth between nodes for different platforms, both
for a single pair and when all pairs exchange data simultaneously. XT5 and XT4-
quadcore demonstrate same total internode performance, resulting in XT5 per pair
performance to be half that of XT4 for simultaneous swaps.

19

 MPI_Barrier Performance

Observed minimum and average MPI_Barrier performance for one MPI process
per node and for 8 MPI processes per node. Note preference for power-of-two
number of nodes for minimum. Data not collected on a dedicated system.

20

 MPI_Barrier Performance

Observed minimum, average, and worst case MPI_Barrier performance for one
MPI process per node and for 8 MPI processes per node. Worst case tends to
increase with node count, but high costs can occur for relatively small node counts
also.

21

 MPI_Barrier: Platform Comparison

Lower latency? less frequent or smaller performance perturbations? give advantage
to Catamount and to BG/P results.

22

 MPI_Barrier: Platform Comparison

Minimum times are comparable between Catamount and CLE results. Big difference
is in maximum times.

23

 MPI_Allreduce rate (larger is faster) for summing REAL*8 vectors of length 2 when
using one process per node and when using all processes per node. Optimal
performance is not that much different in the two cases. Average and worst case
performance are worse when using all processes per node. Data not collected on a
dedicated system.

MPI_Allreduce (16B)

24

 Worst case MPI_Allreduce rate for summing REAL*8 vectors of various lengths when
using one process per node and when using all processes per node. Not as sensitive to
process count?

MPI_Allreduce (Worst Case)

25

HALO Benchmark
•  Alan Wallcraft’s HALO benchmark is a suite of codes that measures

the performance of 2D halo updates as found in 2D domain
decompositions of, for example, finite difference ocean models.
Implementations exist for multiple message layers, and for multiple
implementations for a given layer. The benchmark measures max time
(over all processes) for a small number of repetitions, normalized by
the number of repetitions.

•  We used HALO to examine impact of process count on performance

26

 HALO Benchmark: Scaling Comparison

-N 8 experiments for SMP process mapping. The halo exchange is “logically” a local
operator, so would like performance to not vary with process count. Process mapping
determines actual locality. Ignoring “noisy” runs, cost appears to grow in a
deterministic fashion as a function of process count, even for relatively small halos
(because ???). Source of noise in noisy data?

27

 HALO Benchmark: Scaling Comparison

-N 4 and –N 1 experiments for SMP process mapping. Separation by process count
holds in both of these cases as well, but “noise” is less evident except for >= 8192
processes for –N 4 .

28

Communication Benchmarks: Summary
1.  Point-to-point performance makes sense, though these experiments do

not stress the network. XT5 (8-way) node demonstrates approximately
the same maximum internode bandwidth as quad-core XT4 node, and
individual processes in an XT5 node may suffer from as much as twice
the contention as processes in an XT4 node.

2.  Best observed MPI_Barrier performance is reasonable – comparable to
that on XT4-dual core when running Catamount operating system.
Unfortunately, barrier performance is subject to significant variability,
even at small process counts.

3.  MPI_Allreduce has performance characteristics similar to that of
MPI_Barrier, even for large vectors. Worst case performance appears to
be relatively insensitive to processor count.

4.  Cost of “logically local” halo update increases with total number of
processes. This could be a sign of a poor logical to physical mapping,
but regularity of growth may be better explained by an OS jitter-like
performance degradation.

5.  All performance variability-related issues under active investigation.

AORSA: All Orders Spectral Algorithm*
(Fusion energy modeling)

Ax=b
Fourier
space Physical space

Solver options:
1.  HPL
2.  Mixed-precision HPL (mphpl)
3.  Mixed-precision ScaLAPACK (mpscal)

29

 *SciDAC SWIM project
 (NSTD@ORNL, Fred Jaeger, Lee Berry)

AORSA : Solver performance, 16k cores
G

FL
O

P
S

 p
er

 c
or

e

Cores per socket configuration

30

AORSA : Solver performance
 Ti

m
e

(s
ec

s)

Cores per socket configuration

31

XGC1: First full-f gyrokinetic simulation
of whole device tokamak plasma

•  XGC1 is a particle-in-
cell code developed by
S. Ku and C.S. Chang
as part of the the
Center for Plasma
Edge Simulation
project. It is used to
study turbulent
transport in magnetic
confinement fusion
plasmas, and is
capable of treating the
edge region in tokamak
devices accurately.

Turbulent electrostatic potential

32

Scaling XGC1 to 150,000 cores
•  XGC1 uses PETSc to solve an elliptic problem at each timestep.

Performance experiments are typically weak scaling in total particle
count and strong scaling in grid size.

•  High performance communication algorithms failed when using more
than 8000 processes. Developed equally high performing alternatives
(utilizing flow control) that scale to over 32768 processes (largest
tried). See R. Mills talk.

•  Solution of Poisson problem on fixed size grid scaling poorly at large
process counts, and is primary “site” of performance variability.
Introducing OpenMP parallelism to minimize number of MPI
processes. Also considering alternative solvers.

•  OpenMP parallelism of loops over particles dominated by search for
particle location in underlying grid are less efficient when using 8
threads than when using 4 threads, possibly due to NUMA effects
when threads not local to a single socket.

33

XGC1: Current performance scaling

0

500

1000

1500

2000

2500

0  20000  40000  60000  80000  100000  120000  140000 

Perfect Scale OMP-MPI MPI only

 M
ill

io
n

P
ar

tic
le

s/
se

co
nd

Processor Cores

•  Reasonable scalability out to 131,072 cores when using OpenMP (4 or 8
threads). Still working to improve both scalability and performance.

35

Community Atmosphere Model (CAM)
•  Global atmosphere circulation model

developed at National Center for Atmospheric
Research, with contributions from DOE and
NASA funded researchers. Used as
atmospheric component of CCSM.

•  Tensor product longitude x latitude x vertical
level grid over the sphere

•  Hybrid MPI/OpenMP parallelism and 1D or 2D
domain decomposition.

•  Timestepping code with two primary phases:
-  Dynamics: advances evolution equations for atmospheric flow; 2D

lat-lon decomposition in one phase and 2D lat-vert in another
phase, requiring two remaps per timestep when using 2D decomp.

-  Physics: approximates subgrid phenomena, such as precipitation,
clouds, radiation, turbulent mixing, …; support for arbitrary
decomposition on horizontal grid.

-  “coupling” between the dynamics and the physics requires remap
when physics load balancing is enabled.

Scaling CAM to 40,000 cores
•  Fixed “0.5 degree” problem can use a maximum of 3328 MPI

processes in phase of code with most limited parallelism. Utilizing
more processes in other phases and 4-way OpenMP parallelism
permits approximately 40,000 cores.

•  Communication between phases and gathers/scatters associated
with I/O required introduction of flow control, for reliability and for
performance. See R. Mills talk.

•  In original implementation, OpenMP and MPI parallelism were applied
to the same loops. Have been moving OpenMP to other loops, for
cases when MPI exhausts parallelism in original loops.

36

37

CAM Performance Scaling

Contributions to performance from exploitation of increasing amounts of parallelism.

Application Codes: Summary
•  AORSA

-  Periodically revisiting code is important, including evaluating and
exploiting external libraries and technologies.

-  Both memory contention within the node and contention within the
network are evident. A coordinated approach is needed:
OpenMP?

•  XGC1
-  Flow control is important in communication algorithms for large

process counts.
-  OpenMP important to control cost of Poisson solve and other MPI

communication overheads.
-  NUMA affects performance when using OpenMP with only one

MPI process per node.
•  CAM

-  Flow control is important in communication algorithms for large
process counts, especially gathers and other mismatched
numbers of senders and receivers.

-  At scale, need to revisit placement of OpenMP parallelism in
code.

