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1.  A complete evaluation: 
a.  microkernel, kernel, application benchmarks, chosen to examine 

major subsystems and to be representative of anticipated workload 
b.  optimized with respect to obvious compiler flags, system 

environment variables (esp. MPI) and configuration options 
2.  performed quickly (in time for CUG ) 

a.  not exhaustive (can’t answer all questions nor examine all options) 
b.  minimal code modifications 

3.  with a goal of determining:  
a.  performance promise (a lower bound)  
b.  performance characteristics (good and bad) 
c.  usage advice for users 

4.  in the context of an “evolving” system, subject to: 
a.  HW instability 
b.  system software upgrades 

What is an Early Evaluation? 
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Cray XT5 at ORNL (JaguarPF) 
-  18,722 compute nodes, 8 processor cores per node, 2 GB 

memory per core: 
•  149,776 processor cores and 299,552 TB memory 

-  Compute node contains two 2.3 GHz quad-core Opteron 
processors (AMD 2356 “Barcelona”) linked with dual 
HyperTransport connections and DDR2-800 NUMA memory 

-  3D Torus  (25x32x24) with Cray SeaStar2+ NIC (9.6 GB/s peak 
bidirectional BW in each of 6 directions; 6 GB/s sustained) 

-  Version 2.1 of the Cray Linux Environment (CLE) operating 
system (as of February 2009) 

Compared with Cray XT4 at ORNL (Jaguar) 
-  7832 compute nodes, 4 processor cores per node: 31,328 

processor cores 
-  Compute node contains one 2.1 GHz quad-core “Budapest” 

Opteron and DDR2-800 UMA memory 

Target System 
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•  Performance impacts of changes in  
-  Processor architecture (2.3 GHz Barcelona vs. 2.1 GHz 

Budapest) 
-  Node architecture (2 socket and NUMA vs. 1 socket and UMA): 

•  Additional memory contention? Utility of large page support? 
•  OpenMP performance (8-way maximum vs. 4-way maximum) 
•  MPI communication performance 
-  Intranode and Internode  
-  Point-to-point 
-  Collective 

•  Performance characteristics of running at increased scale 
•  Nature and impacts of performance variability 
•  Application performance 

Initial Evaluation Questions 
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•  Evaluation far from complete: 
-  System not open to general evaluation studies, only studies in 

support of early science application codes. 
-  Scaling application codes to 150,000 cores is requiring re-

examination of algorithms and implementations. 
-  No full system scaling studies as of yet because of high cost and 

special requirements (e.g. interactive session). 
-  Performance variability makes aspects of evaluation difficult: 

•  There appear to be multiple sources of variability, some that 
may be eliminated easily, once diagnosed properly, and 
some that may be intrinsic to the system. 

•  May be possible to mitigate impact of intrinsic variability once 
it has been diagnosed adequately. 

•  Too much data to present in 30 minute talk. Will describe highlights 
of preliminary results. 

Status of Evaluation 
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1.  Single node performance 
a.  Kernels: DGEMM, FFT, RandomAccess, STREAM 
b.  Application codes: POP, CAM 

2.  MPI communication performance 
a.  Point-to-point: Intra- and Inter-node 
b.  Collective: Barrier, Allreduce 
c.  HALO 

3.  Application codes: approaches, performance, and progress 
a.  AORSA 
b.  XGC1 
c.  CAM 

Talk Outline 
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 Matrix Multiply Benchmark (DGEMM) 

Evaluated performance of libsci routine for matrix multiply. Achieved 89% of peak, 
Some degradation observed from running benchmark on all cores simultaneously. 
Behavior similar to that on XT4-quad, scaled by difference in clocks. 



Other HPCC Single Node Benchmarks 
(ratio of JaguarPF to Jaguar) 

  Spatial locality  Apps (like STREAM) see small penalty from increased 
contention – memory controller/channel limitation 

  Temporal locality Apps (like FFT) see moderate improvement 
  Even low locality apps (Like RandomAccess) see some benefit 

Core 
Performance 
(1core active) 

Core 
Performance 
(all active) 

Socket 
Performance 
(all active) 

Node 
Performance 
(all active) 

FFT 1.074 1.134 1.134 2.267 
RandomAccess 1.094 1.139 1.139 2.277 
STREAM 0.998 0.937 0.937 1.874 



SMP Performance Ratio 
(MultiCore to SingleCore) 

  SMP efficiency improved for apps that weren't bandwidth limited 
  Memory bandwidth hungry apps suffer from increased contention 
  At JaguarPF  scale, 5% ~ 4000 cores  
  Lessons:  

  Eliminate unnecessary memory traffic  
  Consider replacing MPI w/ OpenMP on node (see MPI results) 

Jaguar JaguarPF % Improvement 

FFT 0.704 0.743 5.6% 

RandomAccess 0.645 0.671 4.0% 

STREAM 0.408 0.383 -6.2% 
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 Parallel Ocean Program 

Using POP to investigate performance impact of memory contention. Using all cores 
in a node can degrade performance by as much as 45% compared to assigning one 
process per node.  It is still much better to use all cores for a fixed number of nodes.  
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 Parallel Ocean Program 

For a single process, XT5 performance is nearly the same as the XT4. However, 
when using all cores in a socket XT5 performance was greater than 1.3X that of the 
XT4 in Oct. 08, and greater than 1.15X in Feb. 09 and May 09, both of which are 
greater than the difference in the clock speed. 
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 Community Atmosphere Model 

For the Finite Volume dynamics solver, XT5 is 1.38X faster than the XT4 on a single 
quad-core processor, and 1.36X faster on two quad-core processors. Using the 
same number of nodes (but only two cores per processor) increases the advantage 
to 1.44 and 1.45, respectively. Physics dominates runtime in these experiments. 
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Computation Benchmarks: Summary 
1.  DGEMM “sanity check” looks good. 
2.  FFT, RandomAccess, and STREAM demonstrate steadily decreasing 

advantage of XT5 node over XT4 as contention for (main) memory 
increases. 

3.  XT5 per node performance is better than the XT4 per node performance 
no matter how measure it, for both POP and CAM. Memory contention 
(?) can degrade performance, especially for POP.  

4.  For this level of parallelism, OpenMP did not improve performance of 
CAM for same number of cores (not shown). 

5.  POP all-core performance has degraded by 15% since October. 
Performance when not using all cores in a socket is essentially 
unchanged. CAM performance has not changed significantly over this 
period, but CAM is more compute intensive for this problem granularity 
than is POP. 
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 MPI Point-to-Point Performance 

Bidirectional bandwidth for single process pair when single pair communicating and 
when multiple pairs communicating simultaneously. One pair, two pairs and eight 
pairs achieve same total internode bandwidth. These experiments were unable to 
saturate network bandwidth.
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 MPI Point-to-Point Performance 

Same data, but in log-log plot. Intranode latency over 10 times lower than internode 
latency. Internode latency of single pair is half that of two pair, and 1/5 that of 8 pair. 
Latency is (also) not affected by number of nodes communicating, in these 
experiments.
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 MPI Point-to-Point Performance 

Log-log plots of bidirectional bandwidth between nodes for different platforms, both 
for a single pair and when all pairs exchange data simultaneously. XT5 and XT4-
quadcore demonstrate same total internode performance, resulting in XT5 per pair 
performance to be half that of XT4 for simultaneous swaps.
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 MPI_Barrier Performance 

Observed minimum and average MPI_Barrier performance for one MPI process 
per node and for 8 MPI processes per node. Note preference for power-of-two 
number of nodes for minimum. Data not collected on a dedicated system.
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 MPI_Barrier Performance 

Observed minimum, average, and worst case MPI_Barrier performance for one 
MPI process per node and for 8 MPI processes per node. Worst case tends to 
increase with node count, but high costs can occur for relatively small node counts 
also. 
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 MPI_Barrier: Platform Comparison 

Lower latency? less frequent or smaller performance perturbations? give advantage 
to Catamount and to BG/P results. 
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 MPI_Barrier: Platform Comparison 

Minimum times are comparable between Catamount and CLE results. Big difference 
is in maximum times. 
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 MPI_Allreduce rate (larger is faster) for summing REAL*8 vectors of length 2 when 
using one process per node and when using all processes per node. Optimal 
performance is not that much different in the two cases. Average and worst case 
performance are worse when using all processes per node. Data not collected on a 
dedicated system.


MPI_Allreduce (16B) 
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 Worst case MPI_Allreduce rate for summing REAL*8 vectors of various lengths when 
using one process per node and when using all processes per node. Not as sensitive to 
process count? 

MPI_Allreduce (Worst Case) 
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HALO  Benchmark 
•  Alan Wallcraft’s HALO benchmark is a suite of codes that measures 

the performance of 2D halo updates as found in 2D domain 
decompositions of, for example, finite difference ocean models.  
Implementations exist for multiple message layers, and for multiple 
implementations for a given layer. The benchmark measures max time 
(over all processes) for a small number of repetitions, normalized by 
the number of repetitions.  

•  We used HALO to examine impact of process count on performance 
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 HALO Benchmark: Scaling Comparison 

-N 8 experiments for SMP process mapping. The halo exchange is “logically” a local 
operator, so would like performance to not vary with process count. Process mapping 
determines actual locality. Ignoring “noisy” runs, cost appears to grow in a 
deterministic fashion as a function of process count, even for relatively small halos 
(because ???). Source of noise in noisy data? 
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 HALO Benchmark: Scaling Comparison 

-N 4 and –N 1 experiments for SMP process mapping. Separation by process count 
holds in both of these cases as well, but “noise” is less evident except for >= 8192 
processes for –N 4 . 
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Communication Benchmarks: Summary 
1.  Point-to-point performance makes sense, though these experiments do 

not stress the network. XT5 (8-way) node demonstrates approximately 
the same maximum internode bandwidth as quad-core XT4 node, and 
individual processes in an XT5 node may suffer from as much as twice 
the contention as processes in an XT4 node. 

2.  Best observed MPI_Barrier performance is reasonable – comparable to 
that on XT4-dual core when running Catamount operating system. 
Unfortunately, barrier performance is subject to significant variability, 
even at small process counts. 

3.  MPI_Allreduce has performance characteristics similar to that of 
MPI_Barrier, even for large vectors. Worst case performance appears to 
be relatively insensitive to processor count. 

4.  Cost of “logically local” halo update increases with total number of 
processes. This could be a sign of a poor logical to physical mapping, 
but regularity of growth may be better explained by an OS jitter-like 
performance degradation. 

5.  All performance variability-related issues under active investigation. 



AORSA: All Orders Spectral Algorithm* 
(Fusion energy modeling) 

Ax=b 
Fourier 
space Physical space 

Solver options: 
1.  HPL 
2.  Mixed-precision HPL (mphpl) 
3.  Mixed-precision ScaLAPACK (mpscal) 
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 *SciDAC SWIM project 
   (NSTD@ORNL, Fred Jaeger, Lee Berry)  



AORSA : Solver performance, 16k cores 
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AORSA : Solver performance 
 Ti

m
e 

(s
ec

s) 

Cores per socket configuration 

31 



XGC1: First full-f gyrokinetic simulation 
of whole device tokamak plasma 

•  XGC1 is a particle-in-
cell code developed by 
S. Ku and C.S. Chang 
as part of the the 
Center for Plasma 
Edge Simulation 
project. It is used to 
study turbulent 
transport in magnetic 
confinement fusion 
plasmas, and is 
capable of treating the 
edge region in tokamak 
devices accurately.  

Turbulent electrostatic potential 
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Scaling XGC1 to 150,000 cores 
•  XGC1 uses PETSc to solve an elliptic problem at each timestep. 

Performance experiments are typically weak scaling in total particle 
count and strong scaling in grid size. 

•  High performance communication algorithms failed when using more 
than 8000 processes. Developed equally high performing alternatives 
(utilizing flow control) that scale to over 32768 processes (largest 
tried). See R. Mills talk.  

•  Solution of Poisson problem on fixed size grid scaling poorly at large 
process counts, and is primary “site” of performance variability. 
Introducing OpenMP parallelism to minimize number of MPI 
processes. Also considering alternative solvers. 

•  OpenMP parallelism of loops over particles dominated by search for 
particle location in underlying grid are less efficient when using 8 
threads than when using 4 threads, possibly due to NUMA effects 
when threads not local to a single socket. 
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XGC1: Current performance scaling 
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•  Reasonable scalability out to 131,072 cores when using OpenMP (4 or 8 
threads). Still working to improve both scalability and performance. 
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Community Atmosphere Model (CAM) 
•  Global atmosphere circulation model 

developed at National Center for Atmospheric 
Research, with contributions from DOE and 
NASA funded researchers. Used as 
atmospheric component of CCSM. 

•  Tensor product longitude x latitude x vertical 
level grid over the sphere 

•  Hybrid MPI/OpenMP parallelism and 1D or 2D 
domain decomposition. 

•  Timestepping code with two primary phases: 
-  Dynamics: advances evolution equations for atmospheric flow; 2D 

lat-lon decomposition in one phase and 2D lat-vert in another 
phase, requiring two remaps per timestep when using 2D decomp. 

-  Physics: approximates subgrid phenomena, such as precipitation, 
clouds, radiation, turbulent mixing, …; support for arbitrary 
decomposition on horizontal grid.  

-  “coupling” between the dynamics and the physics requires remap 
when physics load balancing is enabled.  



Scaling CAM to 40,000 cores 
•  Fixed “0.5 degree” problem can use a maximum of 3328 MPI 

processes in phase of code with most limited parallelism. Utilizing 
more processes in other phases and 4-way OpenMP parallelism 
permits approximately 40,000 cores. 

•  Communication between phases and gathers/scatters associated 
with I/O required introduction of flow control, for reliability and for 
performance. See R. Mills talk.  

•  In original implementation, OpenMP and MPI parallelism were applied 
to the same loops. Have been moving OpenMP to other loops, for 
cases when MPI exhausts parallelism in original loops. 

36 



37 

CAM Performance Scaling  

Contributions to performance from exploitation of increasing amounts of parallelism.  



Application Codes: Summary 
•  AORSA 

-  Periodically revisiting code is important, including evaluating and 
exploiting external libraries and technologies. 

-  Both memory contention within the node and contention within the 
network are evident. A coordinated approach is needed: 
OpenMP? 

•  XGC1 
-  Flow control is important in communication algorithms for large 

process counts. 
-  OpenMP important to control cost of Poisson solve and other MPI 

communication overheads. 
-  NUMA affects performance when using OpenMP with only one 

MPI process per node. 
•  CAM 

-  Flow control is important in communication algorithms for large 
process counts, especially gathers and other mismatched 
numbers of senders and receivers. 

-  At scale, need to revisit placement of OpenMP parallelism in 
code. 


