
Exploring Mass Storage Concepts
to Support Exascale Architectures

Dave Fellinger, DataDirect Networks

ABSTRACT: There are many challenges that must be faced in creating an architecture of
compute clusters that can perform at multiple petaflops and beyond to exascale. One of these
is certainly the design of an I/O and storage infrastructure that can maintain a balance
between processing and data migration. Developing a traditional workflow including
checkpoints for simulations will mean an unprecedented increment in I/O bandwidth over
existing technologies and designing a storage system that can contain and deliver the product
of the computation in an organized file system will be a key factor in enabling these large
clusters.

Potential enabling technologies will be discussed which could achieve dynamic scaling in
both I/O bandwidth and data distribution. Concepts will also be presented that could allow the
distribution elements to act upon the data to simplify post processing requirements and
scientific collaboration. These technologies, if effected, would help to establish a much closer
tie between computation and storage resources decreasing the latency to data assimilation and
analysis.

Current Technology
It has become common practice to operate a “scratch” file
system in conjunction with a simulation environment. This
file system is generally used to store checkpoint data as the
simulation is run so that a recovery from an application
error, power failure, etc. can be accomplished. The problem
is that the checkpoint must be synchronous and the
simulation must be paused to allow this function. This infers
a duty cycle of compute and an I/O operation and, of
course, the I/O operation is interrupting the computation. As
supercomputer architectures have grown in node count the
requirement for increased file system bandwidth has also
grown to maintain machine balance. There are concerns that
future file system implementations will not scale to satisfy
the needs of multiple petaflop machines and that this critical
checkpoint process may not be possible considering the
time required to execute the cycle.

Current file systems are implemented through servers
attached to the switching backbone of the compute cluster.
The physical attachment is generally either Ethernet,
Infiniband, or some proprietary bus depending on the
cluster interconnects. These servers run a scalable file
system such as Lustre or GPFS and the checkpoint files are
stored with associated metadata. In the case of Lustre this
metadata is stored on a separate service node and is
therefore asymmetrical to the data with respect to the
switching paths. Each of the service nodes is connected to

block level storage with some high performance physical
interconnect that can support a SCSI protocol. The latest
implementations consist of block devices directly connected
to the servers through the use of Infiniband at either double
or quad data rate. The connection is additionally
complicated by the need for redundancy at both the server
and block storage levels. This redundancy is usually
accomplished by requiring that two servers are connected to
redundant storage control systems that can share a common
disk drive pool. The end result is that the failure of either a
server or storage controller will not affect the availability of
the file system. Figure 1 (see page 2) illustrates the
connection of two file system service nodes in redundant
service. Each service node can access both storage
controllers and both are on a common network such that
data requests can be routed to either in the case of node
failure.

A typical checkpoint operation consists of a series of data
writes from the cluster nodes to the file system. In the case
of Lustre the write request is first made to the metadata
server then to the specific server assigned to that operation.
The node executes the write to the storage controller
through a SCSI process and the storage controller in turn
executes the write to the disk system through another SCSI
process adding redundant elements in the execution of a
RAID algorithm. The interface from the storage controller
to the disk is generally a native disk physical connection
and protocol such as Fibre Channel, Serial Attached SCSI,

Exploring Mass Storage Concepts to Support Exascale Architectures

1

or Serial ATA. The node acts to aggregate transfers through
the use of cache and organize the write operations to the
storage controller. The controller again caches and
reorganizes the data to minimize the mechanical process of
disk seeking. The typical SCSI transaction to the storage
controller is from 1 to 4 megabytes for data and much
smaller requests for journal entries. Data reads are simply
executed in reverse order with the cluster client first
accessing the metadata server then accessing the server
maintaining the specific file requested.

Figure 1

Bottleneck Analysis
Examining the sequence of events for any data movement
we see that a TCP request from the client opens two layers
of SCSI protocol, the first from the server to the storage
controller and the second from the storage controller to the
disk drive pool. A system bottleneck analysis requires the
examination of each transition individually.

The physical connection from the server to the storage
controller is implemented by some bus adaptors that can
reside on the server’s internal bus. As mentioned, this can
be Infiniband, Fibre Channel, or some implementation of
Ethernet. The storage controller must contain a similar
adaptor to enable the data transitions to its internal bus. The
interconnect is generally implemented through two optical
fibres for bidirectional operation each stimulated by a
semiconductor laser and decoded through the use of a PIN
diode on the receiving end. The external data path is usually

directly coupled; however, it is possible to add a switch
layer to enable multiple paths to the storage controller. The
software interface to the adaptors is a driver that maps data
by maintaining a vector memory location in either the server
or the storage controller servicing the data buffer until the
confirmed completion of the data transition. Inefficiencies
can be found in the execution of this data transition. First,
since the bus can be operated in a switched environment, a
protocol must be maintained for each transaction. The bus
must be opened, serviced, and closed for each SCSI
command. In addition the SCSI command also requires a
protocol including a command descriptor and semaphores to
enable efficient data reorganization. This can result in
payload to protocol ratios as small as one for metadata
transactions.

Inefficiencies can also be found in the second SCSI layer
that is used to connect the storage controller to the disk
subsystem. Again, a physical connection supported by
control electronics must be utilized to transition data to the
attached disk drives. The storage controller contains an
interface that allows its native bus to be connected to the
native bus of the disk drives. This is a serial connection that
can be implemented by a copper or fibre physical layer with
the decision usually driven by the distance between the
controller and the drive enclosures. The disk drive enclosure
has a similar interface which is usually attached to a switch
allowing data steering to a specific target drive. As in the
connection to the server, this bus must also accommodate
both bus and data protocols. In addition, the disk drives
have limited cache and it is never used for data writes. In all
but sequential operations any disk access requires a
positioning of the heads to a specific sector of the platter.
This is a very slow process compared to the peak sequential
performance of any disk drive so the process is mitigated by
the implementation of a command queue. In other words,
the disk drive can reorder its read or write commands to
maximize efficiency. While this does save a great deal of
bus attachment time it infers additional protocol delays in
both bus acquisition and maintenance as well as SCSI
protocol to allow the queue maintenance.

Data Acceleration Techniques
Future file systems must have far greater efficiencies in
executing data push and pull operations. The elimination of
these SCSI and external bus layers would certainly
eliminate two large bottlenecks that exist in today’s
implementations.

An entire SCSI layer can be eliminated by moving the
service node into the storage controller. This could be
accomplished in an SMP environment with dedicated
resources for both the applications.

This implementation must be accomplished without
changing the service node code in any way since it is
always necessary to allow field updates of this code. The

Exploring Mass Storage Concepts to Support Exascale Architectures

2

Exploring Mass Storage Concepts to Support Exascale Architectures

3

interface must be generalized such that any storage socket
can be accommodated supporting any file system service.
The preferred means for establishing this socket interface is
to operate the service node as a virtual machine hosted on
the storage controller. This virtual environment can share a
common memory map with the storage controller.

A typical write operation would be accomplished by the
service node executing either a direct I/O operation or a
kernel controlled operation to a SCSI socket. In this
architecture, however, the socket does not service an
external SCSI bus, but rather becomes a cache segment for
the storage controller. Rather than the typical bus transitions
to execute a serial operation over an external bus the cache
can be utilized for a data write operation to the storage
system as soon as the memory lock is released on the
socket. The entire SCSI bus operation including bus
commands and the generation of the SCSI command
descriptor is completely eliminated resulting in a significant
increase in performance efficiency. Laboratory testing of
this interface has shown an efficiency of 96% for the virtual
machine operations. The loss of 4% is more than
compensated by the elimination of the steps required to
execute the SCSI operation.

This virtual interface is so efficient that it is possible to host
several virtual machines in the same storage controller to
allow shared storage access from service nodes or
applications.

The complete elimination of an external SCSI bus and its
related physical infrastructure and protocol represents a
major step toward increasing the efficiency of data
operations in a cluster environment. A data transaction to
non-volatile media is concluded by the storage controller
opening a SCSI socket with an external SCSI bus
transaction executed to the media. If this media is a spinning
disk, the operation includes disk armature operations and a
physical write or read to the media with a subsequent
acknowledgement of the operation.

Another potential efficiency would be realized by
populating the storage controller node with non-volatile
RAM such that a storage write operation would act to
simply populate data to a specific RAM segment that is in
the memory space of the storage controller. An ideal
implementation of this architecture would be to populate
PCI Express physical sockets with NVRAM media
completely eliminating rotating media. The result would be
a storage architecture that could transfer data from a file
system service node to non-volatile memory without an
external SCSI interface. The data transfer is simply a PCI
operation first to the storage controller where redundant

elements are added then to non-volatile memory through
another efficient PCI operation. There are no Host Bus
Adaptors or Host Channel Adaptors required for this data
operation.

The most cost efficient storage technologies are still rotating
disk drives so the implementation of an entire storage
system on solid state media may be cost prohibitive utilizing
available devices. A hybrid implementation may be the best
approach where the storage controller still maintains an
external SCSI interface to rotating disk drives but also
accommodates some amount of solid state non-volatile
memory. This architecture would allow very high data
transfer bandwidth to the storage system for a period until
the solid state memory was filled then a reduced bandwidth
to rotating media.

This architecture would be ideally suited for scratch storage
environments accommodating fast data transfers to a storage
system with solid state media sized to match the cache size
of a typical cluster application. During the compute cycle of
the cluster data could be migrated by the storage controller
from the solid state memory to rotating media in preparation
for the next I/O cycle.

Conclusion
Elimination of data transition and file system bottlenecks at
a system level must be a goal in the implementation of large
scale compute clusters. The necessity for check pointing
calculations is clear but this must be done while maintaining
a very high compute duty cycle. The reduction of SCSI
layers and protocol is a clear advantage in the overall data
mobility architecture. Additional bottlenecks in file system
operations must also be studied to streamline data
transactions.

Storage controllers with virtual servers and solid state
memory are being characterized by DataDirect Networks in
laboratory environments and in the field in beta
environments. Test results will be published upon the
conclusion of this testing.

About the Author
Dave Fellinger brings over thirty years of experience in
engineering including film systems, ASIC design and
development, GaAs semiconductor manufacture, RAID and
storage systems, and video processing devices. He has
architected high performance storage systems for the
world’s fastest supercomputers. Mr. Fellinger attended
Carnegie-Mellon University and holds patents in optics,
motion control, video processing, and pattern recognition.

	About the Author

