

Exploring Mass Storage Concepts to Support Exascale Architectures

Cray User Group

May, 2009

Dave Fellinger CTO © 2009 DataDirect Networks, Inc. All Rights Reserv

DDN = HPC

- DDN provides more bandwidth to the top500 list than all other vendors combined!
- 8 out of Top10 systems choose DDN
- 50 out of Top100 and more
- 5 systems over 120GB/s
 - top end = 3 x faster than rivals

2

3

- Mix of applications:
 - Government/University
 - Defense/Intelligence
 - Oil Exploration
 - Product Design
 - Archival, Backup

k	Site	Computer	
	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, Pow Opteron DC 1.8 GHz , Voltaire Infiniband IBM	erXCell 8i 3.2 (
	Oak Ridge National Laboratory United States	Jaguar - Cray XT5 QC 2.3 GHz Cray Inc.	EXTREME STORAGE
	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 SGI	EXTREME STORAGE
	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution IBM	EXTREME Storage
	Argonne National Laboratory United States	Blue Gene/P Solution IBM	EXTREME
	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infi Sun Microsystems	EXTREME STORAGE
	NERSC/LBNL United States	Franklin - Cray XT4 QuadCore 2.3 GHz Cray Inc.	EXTREME STORAGE
	Oak Ridge National Laboratory United States	Jaguar - Cray XT4 QuadCore 2.1 GHz Cray Inc.	EXTREME
	NNSA/Sandia National Laboratories United States	Red Storm - Sandia/ Cray Red Storm, XT3/4, 2.4/2.2 Cray Inc.	EXTREME
	Shanghal Supercomputer Center China	Dawning 5000A - Dawning 5000A, QC Opteron 1.9 0 HPC 2008 Dawning	Ghz, Infiniband,

Petascale Storage Blueprint

- World's First PFlop System Without Accelerators
- 240GB/s Site-Wide File System: "Spider"
 - ~2x the other fastest at that time: CEA & LLNL Update... LLNL is catching up!
- Uses 48 x S2A9900 Storage Systems
 - DDR IB-Connected Arrays
 - Over 13.4K HDDs, 10PB Usable
- Enables Site-Wide Scalable File System with High QoS
 - One file system for all clusters
 - Supports 98,400 CPUs
- Selection based on extensive storage bakeoff vs. Competition
 - Storage Energy Consumption
 - Selected on Mixed I/O Capabilities More So than Sequential

Storage Fusion Architecture The Next Generation

DataDirect Networks, Inc. All Rights Reserved

SFA Appliance Architecture

System Simplification/Cost Reduction

© 2009 DataDirect Networks, Inc. All Rights Reserved.

SFA Architecture

Features

- Dedicated resources provided to Storage Services and Application Services
- High-speed internal connections and shared memory architecture
- Protocol conversions eliminated
- Massive and balanced front-side and back-end bandwidth

Benefits

- High performance bandwidth <u>and</u> IOPS
- Stable performance for both Applications and Storage Services
- Reduced latency between application servers and storage
- Reduction in infrastructure and complexity
- Reduced number of individual storage systems required to scale capacity

SFA Application Platform

© 2009 DataDirect Networks, Inc. All Rights Reserved.

Example: Today's State-of-theart Lustre HPC Solution

© 2009 DataDirect Networks, Inc. All Rights Reserved.

Example: Lustre HPC Storage with the SFA Platform

Example: Lustre HPC Storage with the SFA Platform

Example: Lustre HPC Storage with the SFA Platform

© 2009 DataDirect Networks, Inc. All Rights Reserved

SFA Lustre Solution

• Today:

- I/O architecture of existing OSS server platform limits scalability of individual nodes
- Large numbers of systems necessary to scale performance
- Large numbers of OSSs potentially require a large FC switch infrastructure investment
- Installation and administration of Lustre is difficult
- Lustre failover is difficult to set up and to have work properly

• SFA:

- SFA hardware is optimized for I/O. Advanced software technology ensures maximum performance
- Greatly reduces the number of active elements as much as 5 to 1!
- SFA eliminates the need for Fiber Channel infrastructure, significantly reducing overall cost & complexity
- SFA Lustre Appliances will come with Lustre pre-installed
- Lustre failover will be a configurable option within a SFA Lustre Appliance couplet

Example: GPFS HPC Storage with the SFA Platform

Example: GPFS HPC Storage with the SFA Platform

Example: GPFS HPC Storage with the SFA Platform

Scaling Performance with the SFA Platform

A Truly Flexible Storage and Application Platform

Designed for Maximum Storage Application Freedom

Freedom to Mix Physical Storage Tiers

© 2009 DataDirect Networks, Inc. All Rights Reserved.

SFA Couplet

Multi-Platform Architecture

Storage Array	Clustered Filer	Open Appliance
Block Storage	DDN File Storage [Lustre, NAS,	Customer Applications
Fibre Channel	VTL, etc]	Storage Server Virtualization
Infiniband iSCSI	Block Storage Target	Block Storage Target

Flexible Deployment Options: 3 System Modalities

2009 DataDirect Networks, Inc. All Rights Reserved.

SFA Enhances Many Classes of Application

SFA Benefits

• Extreme Performance

- Increased Application Performance
- Mixed Workload Capable
- 10 GB/s of throughput per Couplet
- 300k IOPS (Burst to Disk) per Couplet
- 1M IOPS (Burst to Cache) per Couplet

Consolidation

- Reduced infrastructure to manage and lower administrative overhead
- Lower power, space and cooling requirements
 - Up to 5 times reduction
- Density: Up to 2.4PB in two racks using 2TB drives
 - Consolidate multiple arrays into one
- Lower TCO

The SFA10000

	SFA10K
General Availability	Q3 2009
Hosted Applications & Application Resources	8 Cores 16GB FS Cache
File Storage Ports	QDR IB, 10GbE
Host Port Options	16 x FC8 8 x QDR IB
Throughput (block)	10GB/s
IOPs (block)	1M (cache) 300,000 (disk)
Max Spindles	1,200 (600/rack)

© 2009 DataDirect Networks, Inc. All Rights Reserved.

Future Requirements

© 2009 DataDirect Networks, Inc. All Rights Reserved.

Storage Challenges

- Data transfer rates will range to TBs/s
- Drive transfer rates will not exceed 120 MB/s
- Average seek times for SAS will remain at 3mS
- Average seek times for SATA will remain at 11ms
- Any random activity greatly diminishes the effective transfer rate

Evolving Technology

- Faster physical transfer architectures such as IB 32x
- File systems with better transfer aggregation
 - Lustre and GPFS @ 4MB
- Storage integrated with file services to enable intelligent data transfer reordering
- Storage elements are getting faster, better, cheaper, and lower in power consumption
 - SSDs are larger and more reliable and can be utilized in the same architecture
 - Smaller form factor disks are larger, cheaper, and more reliable
 - SRAM costs are decreasing with finer pitch implementations

Future Solutions

- Systems must be kept as small and power efficient as possible
- SCSI Layers must be minimized
- SSD technology must be utilized in conjunction with rotating media to execute a short term HSM
- Al must be used to simplify management
- File system service must be a part of the storage system
- The storage system must be capable of data analysis (reduction, mining, runtime analysis)

Implementation Example

Thank You

Dave Fellinger dfellinger@ddn.com

DataDirect Networks, Inc. All Rights Reserved