

CUG 2009 Proceedings 1 of 4

Automated Lustre Failover on the Cray XT

Nicholas Henke, Wally Wang, Ann Koehler, Cray Inc.

ABSTRACT: The increasing scale of current Cray XT systems will demand increased
stability from the critical system services. Lustre failover is being deployed to allow
continued operation in the face of some component failures. This paper will discuss the
internal Lustre mechanisms involved during failover and our automation framework. We
will also discuss the impact of failover on a system and the future enhancements that will
improve Lustre failover.

KEYWORDS: XT, Lustre, failover

1. Introduction

As production workloads ask more of Cray XT

systems, the need arises for system services that can
recover from failure. Failures in critical resources often
require system reboots to rectify. These system restarts
impact users by losing current application progress
leading to lost time and productivity. To alleviate such
issues, software must be capable of recovering from
component failures and automated in such a manner that
action is taken as quickly and efficiently as possible.

This paper will discuss the mechanisms of Lustre
failover and how it is automated on the Cray XT. We will
also cover hardware and software configuration
requirements for Lustre failover. Finally, we will cover
some known limitations and discuss exciting new
enhancements that will further improve the Lustre
failover offering.

2. Lustre Background

Building a Lustre cluster requires a Lustre MetaData
Server (MDS) and Lustre Object Storage Servers (OSSs),
each with disk storage. A pool of client systems access
these servers through one of many supported networks
[1]. The storage on each Lustre server is referred to as a
target, giving us a MetaData Target (MDT) on the MDS
and an Object Storage Target (OST) on the OSS. Cray XT
systems are usually configured with one MDS and MDT
combination along with one or more OSS nodes. Each
OSS node is capable of serving requests for one or more
OSTs.

Lustre clients are connected to each service in the file
system over the internal Cray high speed network. The
Lustre clients send parallel data transfers to each service
independently. The primary method of fault detection is
through network timeouts on these file system requests.

3. Impact of Lustre Server Failure

Lustre is the critical system resource that provides
application with high speed parallel file system access.
The loss of any one of the Lustre servers will stall most
file system access, an event which is usually considered a
system-wide outage. A typical customer machine will
have many active applications, each possibly accessing
one or more files within Lustre. When a Lustre server is
lost, the Lustre client will transition into recovery mode
where it will attempt to reconnect to the lost server and
resend the pending transactions. The portion of the
application that is running on a Lustre client in recovery
will be stalled, preventing the application as a whole from
making further progress until the service is restored.

Correcting a Lustre server outage with a system
reboot is a harsh approach. Job progress is often lost,
causing angst for both the system users and system
administrators. The number and duration of machine
interrupts are an often monitored statistic used to make
determinations for Service Level Agreements, often with
contractual impacts.

CUG 2009 Proceedings 2 of 4

4. Overview of Lustre Failover

To alleviate problems due to Lustre server failures,
we will employ the use of Lustre Failover. The primary
objective of Lustre Failover is to regain system
functionality after a failure while minimizing the job loss
due to the interruption. Lustre Failover allows the targets
from the lost server to be accessed via a backup server.
After reconnecting to the targets, Lustre clients will
replay any lost transactions and then resume full
operation.

4.1. Configuration
Lustre failover configuration uses the scheme of a

primary server with one or more backup servers.
Typically each OSS has a partner for failover, such that
they serve as the backup for each other in what is called
an “active-active” configuration. While this arrangement
does result in performance loss, it simplifies hardware
configuration and minimizes the extra resources needed to
provide fault tolerance. Lustre currently allows one MDS
server per file system, so it must make use of an idle
backup node for failover. This arrangement is referred to
as “active-passive”.

4.2. Server death
Lustre server loss is determined by the ability to

service client requests in finite time. Failure in one of the
hardware components (network, processor, memory, etc)
or bugs in the software will crash the node, rendering it
unresponsive to requests. The node may remain nominally
alive, for instance being active on the network, but clients
will stop seeing responses to outstanding requests.

Lustre clients detect the loss of a server through
network timeouts. When a message is sent to a server, a
deadline is set for a response. When the response is not
received within the deadline, the Lustre client will mark
the target as down. The client will then enter into a loop
that will attempt to re-establish the connection. All
requests that access the down target will be blocked until
the connection is returned.

Server death is visible to administrators through the
Cray XT state management software. The Cray RAS and
Management System (CRMS) will detect the loss of node
heartbeat and change the state accordingly. Lustre clients
also provide ample notification of service interruption by
posting messages on the CRMS console network.

4.3. Restarting lost services
The targets that were served from the down Lustre

server need to be made available from an alternate node.
To allow clients to reconnect, this backup server will start
the services and begin accepting requests for those
targets. The services are restarted in recovery mode to
ensure that clients can reconnect and then reissue
outstanding requests before sending any new I/O requests.

This replay guarantees that all of the clients see a
consistent state for the restarted target before returning to
normal operation.

4.4. Client reconnect and replay
When attempting to re-establish connections, the

Lustre clients will first re-contact the original server in
hopes the loss was a temporary network issue. If this fails,
the client will attempt reconnection to each of the backup
servers. The connection attempts will continue until a
server responds that it is now the acting host of the stalled
target. The Lustre client is informed that it should wait to
send new requests and that replay mode has been invoked.
Once all of the Lustre clients have reconnected to the
backup server, they are instructed to resend their
transactions in the order they were originally sent. Upon
successful completion of replay, the client resumes
normal operation. The client first resends any blocked
operations and then returns to processing new requests.

5. Automating Lustre Failover

Automation of Lustre Failover is done via an external
framework as Lustre does not provide this service
natively. The configuration and state of the services must
be stored in a central location to provide the automation
agents with the correct information. The automation
framework must then monitor the health of the services
and communicate this to interested agents within the
machine. Once monitoring has deemed a server as
unhealthy, action must be taken to rectify the issue. The
manifestation of this on the Cray XT is failover proxy
named ‘xt-lustre-proxy’. This daemon runs on each Lustre
server and is the active agent for the failover framework.

5.1. Configuration and state management
The Cray System Database (SDB) is used as the

central storage for managing the configuration and status
of the various services. The relationship of primary and
backup servers along with the current active node for each
service is stored in the SDB tables. This information will
allow the failover proxy to understand what action to
invoke upon service failure. During start-up, the proxy on
each Lustre server polls the SDB data to determine what
services it will monitor.

To allow for seamless Lustre failover configuration,
the existing Lustre command and control suite, Lustre
Control, has been modified to support with changes to the
file system definition file. When generating a
configuration, it will produce a set of comma separated
value (CSV) files formatted for the SDB tables. Lustre
Control will push this data into the SDB when the file
system is set and will also start and stop xt-lustre-proxy as
it operates on the Lustre file system. These operations are

CUG 2009 Proceedings 3 of 4

done in such a manner that additional administrator action
is rarely needed.

5.2. Health Monitoring
The most difficult aspect of the failover framework is

health monitoring. It must be sensitive to notice failure
quickly but robust to ensure that false failures are
minimized. The failover proxy uses multiple sources of
data to provide a full health picture of the Lustre server
components. It uses the CRMS heartbeat to determine
basic hardware status and operating system health. A new
heartbeat event is registered with CRMS to track the
health of the Lustre software stack. The proxy utilizes an
existing health check within Lustre to verify it is still
functioning properly. This information is collated by the
proxy while making an allowance for short temporary
failures to help improve the accuracy of the data even
while the machine is under high load or duress. This state
is then sent out via CRMS events to partner proxies that
are also monitoring this service.

5.3. Triggering Action
Once xt-lustre-proxy determines a node is unhealthy,

it will take action to start the services on a backup server.
Care must be exercised to ensure the services are not
running on two servers at once, as the file system will be
corrupted if driven from multiple locations. The proxy
will first send a CRMS event to shoot the primary node
ensuring it does not miraculously return to life, and then
the services are mounted on the backup node. Once
restarted, the proxy resumes monitoring while Lustre
enters recovery and begins the healing process.

6. Current Limitations

While Lustre Failover generally available in Cray XT
2.2, there are a few known limitations. There are some
cases where MDS failover is not as robust as we would
prefer and some small deficiencies are present in the
management and operation infrastructure. We are
addressing these issues as a priority and will be working
to ensure solutions are found for all issues.

Currently there are interactions between Lustre
quotas and failover that result in a non-functional file
system after MDS failover. MDS failover with quotas
enabled should be avoided until these issues have been
resolved.

We also understand that the current duration for a
failover event is not optimal. With the current release, it
usually takes ten to fifteen minutes from the time of a
server failure until clients can send new I/O requests. On
very large configurations or under heavy load, we have
seen failover instances that require thirty minutes to
complete. We hope to address this issue with the
improvements described in the Future Work section.

Given the duration of failover, some user job loss is
inevitable. Our goal is for all applications to survive the
failover; however users with tight batch time limits may
result in job failure. The current Lustre architecture
requirement that all clients reconnect for replay also
necessitates that loss of a compute node during a failover
event can cause the replay to fail. In this case, it is
possible for applications to receive errors for file system
operations that were active across the failover. New
applications should remain unaffected.

Finally, there are operations in Lustre failover that
have not been automated or exposed in comfortable
interfaces. The mechanism for failback, the ability to
return services from the backup server to a newly repaired
primary node, is not automatic. A manual process is
documented for administrator use. Status of failover
progress can only be monitored by an administrator with
login access to the Lustre servers.

7. Future work

To address the known issues and to provide an
enhanced Lustre Failover offering, we are exploring
several improvements. We are collaborating with Sun to
develop a feature called Imperative Recovery that aims to
reduce failover duration. The initial milestone is to
achieve failover in less than five minutes with the
ultimate goal of failover completion in the one to three
minute range. The changes needed are primarily in the
notification layer around failover events. It will allow xt-
lustre-proxy to instruct the Lustre clients to forcefully
switch their connection to the backup server, greatly
reducing the amount of time it takes all of the clients to
reconnect and start recovery. The failover proxy will also
be able to take responses to these client reconnections and
use that information to instruct the backup server to stop
waiting for clients to reconnect. This should further
reduce failover duration by eliminating time spent waiting
for clients that will not reconnect.

Sun has also developed a failover related feature
called Version Based Recovery (VBR) that should greatly
improve the recovery behaviour in the face of lost clients.
It allows servers to reduce the recovery quorum to those
nodes that had outstanding uncommitted transactions.
VBR also enables servers to minimize the replay failures
to those clients who had outstanding transactions that
depend on a client who failed to reconnect. The rest of the
clients and transactions should proceed through recovery
unaffected.
 Finally, the Gemini Network will become
available. The driver stack developed for this should
allow for shorter Lustre Network (LNet) timeouts.
Reducing the timeout will allow health detection to take
place quicker through shorter wait intervals. It will also

CUG 2009 Proceedings 4 of 4

solidify the detection of unresponsive peers by returning
positive feedback when the remote host is dead.

Acknowledgments

The author would like to highlight the immense
amount of help that has enabled this paper. In particular,
the wonderful folks in Cray Software Product Support
(SPS) have provided valuable review and feedback on
failover for customers. Many folks in Cray Software
Development have been instrumental in discussing whole
system impact, expected behaviour and potential
solutions. The engineers in the Lustre Group at Sun
provided in-depth help with data analysis and problem
resolution.

References

1. Lustre File system.
http://www.sun.com/software/products/lustre/features
.xml

About the Authors

Nicholas Henke, Wally Wang and Ann Koehler are a
Software Engineers in the Lustre group at Cray Inc. They
can be reached via email at nic@cray.com,
wang@cray.com and amk@cray.com.

