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Abstract

The Franklin Cray XT4 at the NERSC center was equipped with the server-side 1/0O monitoring infrastructure Cere-
bro/LMT, which is described here in detail. Insights gained from the data produced include a better understanding of
instantaneous data rates during file system testing, file system behavior during regular production time, and long-term
average behaviors. Information and insights gleaned from this monitoring support efforts to proactively manage the
I/O infrastructure on Franklin. A simple model for I/O transactions is introduced and compared with the 250 million
observations sent to the LMT database from August 2008 to February 2009.

1 Introduction

With the advent of petascale High Performance Com-
puting (HPC) systems the gap between an HPC system’s
compute power and aggregate memory, on the one hand,
and the best-case data rates of mass storage devices, on the
other, grows wider than ever [10]. In order to maintain a
balance between compute and storage, the storage side has
become ever larger. This increased parallelism in the stor-
age and I/O subsystem places an ever increasing burden on
the file system software supporting it.

A parallel file system is a complicated combination of
hardware and software. There are many ways for it per-
form below optimum and it can be difficult to determine
what the optimum performance should be in the first place
[7]. Measuring, analyzing, and understanding file system
performance is challenging given the complex interplay of
I/O system components.

The most common technique for measuring parallel file
system performance is to run a benchmark application,
such as IOR [8, 11], across many or all of the nodes of an
HPC system. Simplified somewhat, an IOR test opens the
file or files to be targeted in the parallel file system, writes
a large amount of data from each task on the HPC system,
reads all that data back in, and closes the file(s). IOR mea-
sures the time from the beginning of the first open to the
end of the last close. That time, combined with the aggre-
gate data transferred, gives a figure for the performance of
the file system - often reported as a write and read perfor-
mance numbers (measured in bytes per second). A large
number of such tests at varying concurrencies and with
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varying parameters for transfer size, and such, can give
an overall characterization of the performance of the file
system, and is often summarized with peak write and read
rates observed during testing.

It is not uncommon for such numbers to be published
and for users of the HPC system to subsequently complain
to system staff when their favorite application does not
achieve those published peak rates. In 2007 the National
Energy Research Scientific Computing (NERSC) center
took initial delivery of the Franklin Cray XT4 supercom-
puter (described in Section 2) which uses Lustre [4] for
its /scratch parallel file system. NERSC staff have con-
ducted performance tests on Franklin [3] and observed a
peak write rate in the vicinity of 11GB/s and a peak read
rate around 8G B/ s for /scratch []. NERSC sought to bet-
ter understand the peak rates observed, as well as the de-
partures from peak under some loads, and the apparent
variability [2] of performance results under repeated test-
ing. To that end, NERSC deployed Cerebro (Section 3)
and the Lustre Monitoring Tool (LMT - Section 4). Cere-
bro [6] is a data transport infrastructure, and LMT [12] is
a mechanism for observing and recording server-side per-
formance statistics.

During a benchmark test it can be valuable to see a
moment-by-moment summary of server data rates, and
LMT provides mechanisms and tools for doing so (Sec-
tion 5). Database query tools in LMT can retrieve past [/O
patterns to produce graphs of data rate versus time (Sec-
tion 6), which can assist with the analysis of I/O trouble
reports. In addition to monitoring dedicated time tests and
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Figure 1: The Franklin Cray XT4 has a SeaStar2 interconnect linking compute nodes (CN) and service nodes
(0SS, MDS, Net) in a torus (red links). I/O support is provided by RAID devices connected over 4Gb/ s fibrechannel
(blue). External connections to the wider NERSC network are over ethernet (brown). The Cerebro/LMT service
resides on the I/0 servers (MDS, OSS) and the database server (Almanack).

investigating reported problems, it is useful to review the
I/0 data rates observed over the course of a day (Section 7).
It is possible to gain insights from the data even without be-
ing prompted by tests or trouble. Keeping track of the av-
erage behavior (Section 8) over time can reveal changes in
the system work load. Finally, a statistical analysis of the
observations collected over an extended period can provide
insights into the I/O patterns on the system (Section 9),
which can be compared against a simple model character-
izing those patterns as governed by a Poisson distribution.
This paper touches on all of the foregoing themes and con-
cludes with a selection of additional activities that would
be of interest to NERSC.

The effort to monitor I/O performance and behavior
contributes significantly to the ongoing effort to manage
the Franklin HPC resource in a proactive fashion.

2  Franklin

The Franklin Cray XT4 supercomputer (Figure 1) at the
National Energy Research Scientific Computing (NERSC)
center is a 9660 node system employing a quad-core
2.1 GHz AMD Opteron processor in each compute node

(CN). The nodes communicate via a 3-D torus over the
Cray SeaStar2 interconnect, which is a 6.4 GB/s bidirec-
tional Hypertransport interface. In the Autumn of 2008
Franklin was upgraded to the quad-core architecture from a
dual-core architecture, and the memory was doubled from
4M B /node to 8. The data summarized in this report were
gathered both before and after the upgrade.

An HPC-oriented Storage Area Network (SAN) file
system needs the high throughput achieved from simulta-
neous access to a large number of disks. The throughput
requirement must be balanced against ease of use, and a
parallel file system is tasked with managing the data across
all disks while presenting a single POSIX-complaint name
space to the application programmer. Franklin employs the
Lustre parallel file system for its temporary file space, and
mounts it as the /scratch file system. /scratch was config-
ured with:

20 Object Storage Servers (OSSs) These are Franklin
service nodes with two external 4Gb/s fibrechan-
nel links each and are responsible for managing bulk
data objects for the file system.
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Figure 2: Cerebro is a lightweight, extensible daemon for data gathering. On the OSS it will attempt to load any
library in the /usr/lib/cerebro directory. Since the OSS is not an MDS nor is it configured to be a monitor, two of
the libraries exit immediately. The other two begin sending data via UDP packets managed by Cerebro.

4 Object Storage Targets (OSTs) per OSS These pro-
vide kernel services mediating access to the SCSI
disk resources.

A 4T B Logical Unit (LUN) for each OST The RAID-
based disk resource is presented to the node as a
SCSI disk device.

1 Meta Data Server (MDS) This is another service node
and provides object location and name space ser-
vices for the file system.

Additional resources provide a Lustre-based “home” file
system. The Franklin I/O resources were substantially ex-
panded in April of 2009, but the results reported here are
all from before the update.

Figure 1 depicts the Franklin Supercomputer with two
of the 9660 CNs on the left connecting to the torus along
with two of the 20 OSSs and the MDS. The Lustre servers
(OSSs, MDS) run a data collection daemon called Cere-
bro and use a set of Cerebro plug-in modules collectively
named the Lustre Monitoring Tool (LMT). Those dae-
mons communicate via a network service node, which has
a 10Gb/s link to the wider NERSC network. A firewall
called Liberty controls access to a private “10.0.x.y” net-
work that is dedicated to monitoring and instrumentation

data collection. The Almanack database server on the pri-
vate network also runs a Cerebro daecmon and saves the
LMT data in a database for the /scratch file system. The
next sections describe Cerebro and LMT in more detail.

3 Cerebro

Cerebro (Figure 2) is a lightweight user-space appli-
cation written in C. It resembles Ganglia [1] in that it is
primarily a data communication facility with a few rudi-
mentary functions intrinsic to its own operation. One core
function is a heart beat mechanism that the data collector
(the daemon running on Almanack) can use to determine
if a node is up or down. Some plug-in service activities are
also invoked at each heart beat interval.

Most of the functionality available through Cerebro is
provided by plug-in modules. A module can be (i) a met-
ric module - gathering data to be forwarded, (ii) a moni-
tor module - accepting gathered data and doing something
useful with it, or (iii) an event module - recognizing and
acting upon some condition. The modules can themselves
be very lightweight. Cerebro recognizes and loads mod-
ules because they are present in a specific modules direc-
tory, for example /usr/lib/cerebro. Any .so file in that di-
rectory is loaded at Cerebro start-up. The LMT modules
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Figure 3: The LMT metric modules gather Lustre statistics from /proc.The OSS module gets data from stat
and meminfo, and the OST module gets data from the files under the obdfilter directory, which has a separate

sub-directory for each OST.

are just such libraries and are all written in C. This can be
a significant saving compared to the overhead required to
run a data collection mechanism based on a scripting lan-
guage. The downside is that programming to the Cerebro
module API is a more complex development task.

A configuration file (/etc/cerebro.conf) determines if a
particular instance will only run metric and event modules
(a speaker), only run monitor modules (a listener), or both.
The configuration file determines the destination for any
outbound messages a speaker will send, and the source
for any inbound messages a listener will accept. There
are generally many more speakers than listeners. A given
speaker can send to more than one listener and vice-versa.
A Cerebro daemon that is both a speaker and a listener acts
as a relay for Cerebro messages. Sources and destinations
can be specified as multicast.

Cerebro comes with many other modules besides those
for LMT data collection. There are modules for monitor-
ing network interfaces, memory utilization, swap, and even
a module for automating the configuration of the genders
cluster management software. The rest of this report will

confine itself to LMT data collection.

4 The Lustre Monitoring Tool (LMT)

On the OSSs and MDS, Lustre is implemented as a
set of kernel services, and those services maintain an ex-
tensive array of statistics in the /proc file system™. The
LMT modules (Figure 3) know how to harvest this data
and pass it along to Cerebro. At start-up, Cerebro loads
all the modules it finds including the LMT modules. Part
of the Cerebro module API includes a start-up function
for the module. On each server only the relevant mod-
ules end up loaded. As an example, consider an OSS node
as the daemon starts: Cerebro will load every module in
/usr/lib/cerebro, including the LMT module for MDS data
acquisition, but as part of the MDS module start-up pro-
cess the module recognises that this is not an MDS and
that module exits immediately without any error.

Cerebro will interact with a metric module in one of
two ways. Either it invokes the module get_metric_value
method with each heartbeat interval, or it invokes the

*1 was recently told [9] that the /proc interface may be deprecated in favor of a Lustre internals APIL.
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get_metric_thread method which allows the module to start
up a persistent activity of its own. The metric module for
the OSS employs the former technique, and the OST mod-
ule uses the latter.

LMT only collects a few statistics from an
OSS. The metric module for OSS statistics is cere-
bro_metric_lmt_oss.so. It opens /proc/stat and gathers
values for cpu utilization - summing the values for usr,
nice, sys, iowait, irq, and softirq - leaving out only idle.
It keeps around the previously sampled value of these and
uses the difference to calculate a percent CPU utilization
value.

usage = usr + nice + sys + iowait + irq + softirq

total = usage + idle
CPU utilization = 100 x A(usage)/A(total)

A similar calculation with the contents of /proc/meminfo
gives a percent memory utilization value. The OSS met-
ric module passes a message to Cerebro with the foregoing
values, along with the host name, and the Cerebro protocol
version, as a tuple: (ver;host,cpu;mem). The result resem-
bles the following:

1.0;,nid04187;4.990020;39.303989

Cerebro transports this message to the daemon running
on Almanack which passes it, in turn, to the LMT mon-
itor module cerebro_monitor_Imt.so. The monitor mod-
ule connects to the MySQL server at start-up and reads
a configuration file /mtrc to determine the names of the
databases to connect to. Each file system gets a sepa-
rate database, though a given OSS can participate in more
than one file system. At start-up the module queries the
databases for their specific details. In particular, a table
called OSS_INFO lists the host names of the OSSs for that
file system. Those names are gathered in a hash table (in
Cerebro) and associated with a link back to each file sys-
tem (database) a given host participates in.

When an OSS-related message arrives: it is parsed, the
hash for the host is identified, and the new data is added
to the OSS_DATA table in each appropriate database. The
LMT database keeps all entries indefinitely, which is dif-
ferent from the round-robin database strategy employed in
Ganglia and Cacti [5]. In the eight months since beginning
operation the LMT database has collected approaching 250
million OST samples and a corresponding number of MDS
samples. It is on track to gather about 100G B of LMT data
a year and is provisioned for three years.

The metric module for OST statistics is cere-
bro_metric_Imt_ost.so. At module load time this library

spawns a thread for each OST on the OSS. The thread for
an OST collects data and forms a message to pass to Cere-
bro every five seconds. Note that this is not part of the heart
beat process. The five second interval is “hard coded” into
the module. An OST message carries the following values:

Protocol version The version string for the module.

Host name The name of the service node on which the
OST data acquisition thread runs. There will be
more than one OST on the node, in general.

UUID The universally unique identifier for the OST.

Bytes read This is a 64 bit quantity for the total number
of bytes read from the OST since the last reset. The
counters are usually only reset at boot time. This
value and the next come from the stats file in the di-
rectory /proc/fs/lustre/obdfilter/ost, where there is a
separate directory for each ost.

Bytes written A 64 bit value for total bytes written to that
OST since reset.

Kbytes free The free space on the device managed by the
OST, measured in K B.

Kbytes used The amount of space in use on the device.

Inodes free The number of inode objects available in the
file system on the device managed by the OST.

Inodes used The number of inode objects in use.

The monitor module running on the Almanack database
server queries each file system’s OST_INFO table to get the
list of UUID values for that file system. In this case they
had better be unique, since the UUID is used as the hash
value for the OST'. When a message arrives, the hash for
that UUID is retrieved identifying the file system that gets
the new information. An entry with the new values goes
into the OST_DATA table.

The metric module for the MDS statistics (Table 1) is
cerebro_metric_Imt_mds.so. That module operates in the
same mode as the OSS: At each heart beat it harvests its
assigned data from /proc and passes a message to Cerebro,
which puts the new values into the appropriate database
based on the UUID for the MDS. The MDS_INFO table
identifies the MDS for the database. In the case of MDS
data the statistics gathered are quite extensive. Some data
ends up in the MDS_DATA table, but only the tuple (kbytes
free, kbytes used, inodes free, inodes used). There are
many other values that arrive with an MDS message. The
OPERATION_INFO table lists all the kinds of operational
data the MDS provides. For each value, a tuple (timestamp,
op, value) gets put in the MDS_OPS_DATA table. Table 1

T An early configuration error on Franklin had the same names - 0st01, 0st02, ... - on every file system. The result was that data from multiple file
systems accumulated in each database. Worse, since each UUID is unique in the hash table, the values from the multiple file systems were in a “race”

to see which value would be recorded in any particular interval.
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mysql> select * from OPERATION_INFO;

OPERATION_ID | OPERATION_NAME | UNITS | OPERATION_ID OPERATION_NAME UNITS
1 req-waittime usec 26 mds_getattr_lock usec
2 req-qdepth reqs 27 mds_close usec
3 req-active reqs 28 mds_reint usec
4 reqbuf_avail bufs 29 mds_readpage usec
5 ost_reply usec 30 mds_connect usec
6 ost_getattr usec 31 mds_disconnect usec
7 ost_setattr usec 32 mds_getstatus usec
8 ost_read bytes 33 mds_statfs usec
9 ost_write bytes 34 mds_pin usec
10 ost_create usec 35 mds_unpin usec
11 ost_destroy usec 36 mds_sync usec
12 ost_get_info usec 37 mds_done_writing usec
13 ost_connect usec 38 mds_set_info usec
14 ost_disconnect usec 39 mds_quotacheck usec
15 ost_punch usec 40 mds_quotactl usec
16 ost_open usec 41 mds_getxattr usec
17 ost_close usec 42 mds_setxattr usec
18 ost_statfs usec 43 ldlm_enqueue usec
19 ost_san_read usec 44 Idlm_convert usec
20 ost_san_write usec 45 ldIm_cancel usec
21 ost_sync usec 46 1dlm_bl_callback usec
22 ost_set_info usec 47 1dlm_cp_callback usec
23 ost_quotacheck usec 48 1dlm_gl_callback usec
24 ost_quotactl usec 49 obd_ping usec
25 mds_getattr usec 50 llog_origin_handle_cancel usec

50 rows in set (0.03 sec)

Table 1: The OPERATION_INFO table lists all the kinds of operational data that LMT monitors on the MDS.
Every MDS message received on Almanack contains a value for each of these. The tuple (timestamp, op, value) for

each is entered into the MDS_OPS_DATA table.

shows the names of the MDS operation values collected. It
is beyond the scope of this report to give a detailed seman-
tics for each MDS “op”, but the names correspond closely
to the /proc entries they were harvested from. Consult the
Lustre documentation [?] for more details.

5 Real-time Data Observation

One use for the Cerebro/LMT data collection infrastruc-
ture is to monitor a file system in real time. The LMT code
base includes three Java-based programs for such monitor-
ing: Istat, ltop, and Iwatch. The two command line utilities
Istat and ltop function analogously to the UNIX utilities
they were named for. Both sample the current latest values
in the LMT database and present the results, optionally up-
dated periodically. The GUI-based Iwatch “Lustre Dash-
board” (Figure 4) is a comprehensive interface for display-
ing real time data on multiple file systems. It has a sepa-
rate panel for the data on each of the MDS, the OSSs, and
the OSTs. To compose the OST panel, for instance, the

dashboard queries the database periodically for the current
read_bytes and write_bytes values for each OST. It takes
the difference from one sample to the next to present a data
rate for each OST and sums all those values to present a file
system wide data rate.

This can be useful for dedicated time testing, where im-
mediate feedback can help guide the testing process. For
example, an IOR test may report upon completion that the
write rate was 2G'B/s on a file system that ought to do
10G B/s. By watching the dashboard one may distinguish
between a test that shows uniform 2GB/s for the length
of the test and a test that shows 10GB/s at first and then
falls off to near zero as one or a few OSTs straggle in.

During regular production time this can also help guide
application development and testing. An application that
seems to be performing poorly may just be suffering from
contention with other jobs on the system. If the dashboard
shows the file system at or near peak, then the application
probably isn’t going to do much better until other I/O ac-
tivity abates. If the dashboard shows little I/O activity, on
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Figure 4: The Iwatch “Lustre Dashboard” is a Java-based GUI program for monitoring file systems in real time.

the other hand, it may indicate the application itself is not
presenting its I/O in the most efficient fashion.

Even when no specific test is going on it can be useful
to watch the file system and keep an eye out for apparent
problems before they rise to the level of a system wide out-
age. The OSS panel will turn a particular OSS row yellow
if its CPU utilization goes above a threshold value. If an
OSS flashes yellow occasionally that is probably indicative
of normal operation, but if one OSS stays yellow that may
indicate a problem - perhaps a stuck thread.

There is a wealth of data gathered for and preserved in
the LMT database. After gathering data for nine months
there is value in mining the data for additional insights
about the file systems being monitored. The next sections
exploit the OST read_bytes and write_bytes values to ana-
lyze recent experience on the Franklin /scratch file system.

6 Bulk I/O Transport

The data rates that LMT reports can be a valuable in-
sight into the performance of the file system, on the one
hand, and the performance of particular applications, on
the other. Some caution is necessary when interpreting the
data rates reported, though. Data sent to the LMT database
on Almanack from the OSTs arrives asynchronously, and
without any specific effort to coordinate across all the data
sources. The monitor module periodically gathers what-

ever data it has on hand and puts it in the database. When
the dashboard or other tools aggregate such data over all
the OSTs there is a tacit assumption that all the updates
marked with the same timestamp value are actually simul-
taneous on the system. In practice, the values may not
be coordinated more closely than one or two sample inter-
vals, which would correspond to five or ten seconds in the
Franklin /scratch file system database. One should keep
this uncertainty in mind when looking at such very short
time scales.

Another difficulty with the way the data is gathered
is that there can be missing updates. The data packets
are sent via UDP, which does not guarantee delivery. In
practice, there is usually less than one percent loss, but
one must still consider carefully how to treat those gaps.
The read_bytes and write_bytes values from the OSTs are
monotonically increasing counters, so a lost packet does
not lead to missed OST activity, but only the loss of time
resolution for when that activity occurred. When calcu-
lating a data rate in the presence of such lost packets it is
necessary to accommodate the gap, though. The tools de-
veloped by the author assume that any change in a counter
happened uniformly over the entire interval from the last
received update. This also introduces a slight uncertainty
to the timing of the reported values.

Figure 5 shows the LMT data for read_bytes and
write_bytes during a sequence of four IOR tests run dur-
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Aggregate OST rates from 2008-07-28 22:45:00
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Figure 5: Four IOR tests were run during “dedicated time”, i.e. there was no other activity on the system. Each
of 1024 tasks wrote and then read 1.27G B during each test. The x-axis is wall-clock time, and the y-axis is the

aggregate data rate across all OSTs.

ing dedicated time on Franklin’s /scratch file system. The
x-axis shows wall-clock time and the y-axis gives the read
and write rates for the OSTs aggregated into a pair of num-
bers as in the dashboard in Figure 4. The IOR tests proceed
one after the other with fewer than five seconds between
the end of one and the start of the next. Each test writes
1.27G B from each of 1024 tasks and pauses at a barrier
waiting for the last to finish before proceeding. When all
the writes are complete, the test reads the 1.27G B back
in, and again pauses at a barrier waiting for the slowest to
catch up. This repeats four times. In this series of tests the
I/O libraries were being varied from one test to the next.
The first test uses POSIX I/O to a separate file for each
task - this is a file-per-process test. The second test uses
POSIX T/O to a single shared file, where each task has an

exclusive range of offsets in the file - this is a single-file
test. The third and fourth tests are also single-file tests and
use MPI-I/O library calls and HDF5 I/O calls respectively.

During the write phase of each test there is almost no
read traffic and vice versa, and that is because the tests
were run on a dedicated machine. The one significant ex-
ception is during the read phase of the second test (POSIX
single-file) when it appears that some other activity on the
system wrote for a brief but noticeable interval. An eyeball
estimate might suggest about 100GB was written during
the interval. It disrupted the read traffic enough to show
a noticeable decrease in the delivered I/O read rate. Also
note that there is an interval at the end of the second and
third tests, during the read phase, when the read rate falls
off sharply. It would appear that there were a few slow
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OSTs that had difficulty finishing their assigned I/O in a
timely fashion. An examination of LMT data during or af-
ter the test can reveal problems with I/O. This might lead
to an investigation of the choice of I/O model, perhaps the
object placement across the OSTs was not uniform, or it
might call into question the hardware. The details provided
by the LMT data can guide the focus of such an investiga-
tion. By contrast, the data rate that IOR reports at the end
of its run is not nearly as informative.

The foregoing observation about the read rates is indica-
tive of a wider issue with applications performing this kind
of parallel, coordinated I/O. When you look at the I/O per-
formance of a particular job you are seeing the worst case
scenario from among the individual I/O tasks in the job. If
the I/O completion time for task « among N tasks is ¢,
then the job completion time will be Ty = maz,ent,.
If the ¢, vary about some mean with a Gaussian shaped
distribution then the expected value of Ty will depend on
the width of that Gaussian and therefore on the size of the
job N. For a weak-scaling series of such tests, with the
amount of work growing in proportion to the size of the
job, one would expect the delays due to such stragglers to
increase with IV, and this increase is just exactly the sort of
delay that appears to be occurring in the second and third
tests in Figure 5.

7 Incident Investigation

Another useful piece of infrastructure packaged with
the LMT source code is a Perl module, LMT.pm. That
module mediates the connection to the LMT database and
facilitates queries of various sorts. In particular, a query
for all the OST observations during an interval will deliver
a set of tuples (timestamp, OST, read_bytes, write_bytes).
A Perl script, osts.pl, written by the author and using the
LMT.pm module, gathered and manipulated the OST data
and produced the graph in Figure 5. That script is quite
general and very handy. A daily summary of all file sys-
tem activity over a 24 hour period is now a standard part
of the file system monitoring at NERSC.

Figure 6 is the graph for a 24 hour period during which
the read rate was very high for an extended period. That
read activity was unusual enough to prompt NERSC user
services personnel to investigate. It turns out that a chem-
istry application was being used intensively and caused
the unusual read activity. In this case the LMT data was
not used to monitor a specific controlled test or produc-
tion time application. Instead, the data itself was unusual
enough to warrant further investigation. Needless to say, if
LMT weren’t in use or weren’t being tracked closely the
activity would have gone unnoticed.

8 Historical Review

The surprisingly high reads in Figure 6 came to light in
September of 2008. Figure 7 gathers the average observed
data rates for reads and writes over the course of each day
and plots the daily average over the seven months from Au-
gust to February. The high reads of Figure 6 contributed
significantly to the overall average in the late Summer. It
is clear that the load on the file system evolved during that
time, sometimes dominated by reads, less often by writes.

9 A Poisson-based Model for I/0O Transac-
tions

The LMT database on Almanack has a value for the
amount read and written at each five second interval for
the entire period from August of 2008 to the present. This
has now amounted to nearly 250 million samples. It is in-
structive to look at the statistics governing those samples,
and to compare the observations to a simple model. Imag-
ine that the data being sent to each OST occurs as a se-
quence of independent transactions of M bytes each, and
assume further that such a events are random and governed
by a probability distribution such that the average expected
number of such transactions arriving at any particular OST
in any particular 5 second sampling interval is A. The sce-
nario described is that for a Poisson distribution, where the
probability of k£ such arrivals in a given interval is:

Aee—2

If the data arriving at OSTs fit this simple model, and if
an OST could always actually handle all the data arriving,
then the [V samples in the Almanack database should form
a distribution C'(m) that counts the number of occurrences
of m bytes moved for the possible values of m = k x M:

C(m) = N x fx(int(m/M))

Figure 8 shows two Poisson distributions with possible val-
ues for A and M given N = 250M. Note that the figures
are drawn on a semi-log plot. For values of k£ much larger
than A the probability goes to zero quickly, so a semi-
log plot can show more of the structure of the distribu-
tion. Both sets of values were chosen so the distribution
has some samples out near 2GB. In Figure 8(a) A = 2 -
one would expect two transfers in any five second interval.
The transfers are M = 125M B, and the amount delivered
is quantized in units of M, since the Poisson model only
contemplates an integer number of arrivals. With a small
A the distribution has a peak near the y-axis (the mode is
always A), and the curve for m > AM looks almost like a
straight line in the semi-log plot.

Figure 8(b) has a much larger A and correspondingly

CUG 2009 Proceedings 9 of 13
Cray User Group 2009 Proceedings



10000

read rate
9000 L write rate |
8000 * E
7000 - E
/\U? .
o) 6000 * E
3
Q
= 5000 * E
o
o 4000 - E
<
)
3000 + E
2000 + E
1000 E
o o o o o o o o o o o o
© © © O o ©o o o o o o o
(e0) o Q] < © e 0] o N o N < O
o — — — — — N (Q\| o o o o
Time (PDT)

Figure 6: LMT data for a 24 hour period shows high read activity. The x-axis is wall-clock time, and the y-axis is
the aggregate read (red) and write (blue) data rate across all OSTs for the /scratch file system. Each dot represent

the data transferred in a five second interval.

smaller M. This models transactions that are smaller and
more frequent. Recall that the amount of data is quantized
in M in this model, so with a smaller M there are many
more “steps” in the distribution.

Figure 9 shows the distribution of read and write ac-
tivity for the OSTs for seven months of observations -
nearly 250 M observations. The distributions do not per-
fectly match either of the distributions from Figure 8. This
is not surprising considering the simplicity of our model.
The read distribution, in particular, has a slight increase in
counts as m approaches 2G B, then the distribution goes
quickly to zero. The model assumed that an OST could
always accommodate whatever data was arriving, and we
know that is not true. There is indeed a limit of around
400M B/ s for data going to or coming from an individual

OST. In the five second interval this limit gives a maxi-
mum of about 2G' B moved. If more than 2G B arrived in
that interval then the remainder of the transfer will occur in
the next interval, thus the probability for 2G B transfers is
the cumulative probability of any arrival greater than 2G'B
resulting in a slight increase in probability near the cut off.
Call this the “ski jump” effect.

Another deficiency of our model is that during real I/O
transactions are not all quantized at a single value for M.
On the contrary there will be a separate probability distri-
bution for each value of M. Thus A changes for different
values of M, and the amount arriving in an interval must
be summed over all the distributions for the various val-
ues of M. Furthermore, the limit on the maximum amount
that can be transferred is itself dependent on the size of the
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Figure 7: For each day the average read rate and average write rate can be calculated from the LMT data. Reads

appear to dominate in the Summer and occasionally after.

transactions. There appears to be a second ““ski jump” at
around 500M B, which may indicate that under some cir-
cumstances that is the maximum amount that can be trans-
ferred. One speculation is that during a journal commit for
the underlying file system on the device operated by the
OST, the head movement is much larger and the through-
put lower.

The observed distributions of Figure 9 resemble the
Poisson distribution with small X in that the mode is close
to the y-axis, but resemble the one with large A in that the
amounts transferred are obviously not quantized in large
increments. The idea that M varies and has a small A for
each of a range of values of M would seem plausible.

It is apparent from the distribution (and from Figure 7)
that more data is being read than written. It is also apparent
that the OST was more likely to be unable to handle all the

requests for reads as compared with the requests for writes.
That is, the “ski jump” is much more pronounced for reads.
In the case of the 500M B “ski jump” the writes seem
more pronounced. Finally, there are actually three levels
of quantization in the I/O path. The first is the amount a
client seeks to transfer in a given I/O call - this may range
from one byte to the all of memory on a node, the second
is the size of the individual RPCs used by Lustre to carry
out the transfer, and the third is the number of client nodes
collectively participating in I/O. Lustre attempts to make
RPCs all 1M B and there are /proc entries that report the
distribution of RPC sizes. In the case of collective I/O we
have a violation of our Poisson assumption that transac-
tions are independent and random. Nevertheless, the sim-
ple Poisson model is a useful way to begin characterizing
the I/0 patterns of OSTs.
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Figure 8: A Poisson distribution models the amount of data arriving at an OST. The function is only defined for
integral values of k = m /M, thus the stair steps. The x-axis is the amount transferred m in a five second interval.
The y-axis gives the proportion of 250M samples that would report m. (a) With a smaller )\ and larger M the distri-
bution appears to fall off uniformly in this semi-log plot. (b) With a larger )\ the chance of very little data arriving
in the given interval is small, and the correspondingly smaller // makes the individual stair steps narrower.

10 Conclusion

The decision by NERSC to deploy the Cerebro/LMT
infrastructure has enabled a wealth of insights into the be-
havior of Lustre on the Franklin Cray XT4. The server-
side data enriches our understanding of the performance
results reported by benchmarks like IOR. It provides feed-
back on the prevailing “weather” during code development
or performance analysis. A periodic review of the data can
identify interesting or anomalous use patterns on the file
system. Detailed statistical analysis of the data collected
provides insight into the file system I/O load.

The work reported here is the beginning of a larger
project in which NERSC would like to further exploit
Cerebro/LMT and further develop its capabilities. A de-
tailed analysis of the metadata server’s performance would
be valuable. There are interesting file system statistics that
LMT does not currently exploit, including RPC statistics
and server-side client statistics. Currently, LMT is a net-
work “bad citizen” in that it sends frequent small packets.
It would be worthwhile to generalize the five second cy-
cle time to be configurable, and it should be possible to
gather several observations into one larger packet sent less
frequently.

It would be interesting to develop a detailed model of
the I/O transactions that closely matches the observed I/O
distribution. If such a model could be uniquely determined

from the data it would be a powerful tool for identifying
file system use patterns. Extending both the model and the
analysis to cover the time since the I/O subsystem upgrade
will give a detailed characterization of the effect of the up-
grade. We continue to develop data mining, visualization,
and data presentation tools both for detailed analysis of the
file system and for end-user feedback.
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Figure 9: The OSTs report bytes read and bytes written in each five second interval since August. The x-axis gives
the amount transferred, and the y axis gives the number of observation of that amount. The fact that the mode
is close to the y-axis argues for a Poisson distribution with small )\, but the fact that the distribution varies with
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References

(1]
(2]

(3]

(4]

(5]

Ganglia. http://ganglia.info/.

K. Antypas. Franklin Performance Monitoring.
https://www.nersc.gov/nusers/systems/
franklin/monitor.php.

K. Antypas, J. Shalf, and H. Wasserman. Nersc-6 workload
analysis and benchmark selection process. In LBNL Tech
report 1014E, 2008.

P. Braam. File systems for clusters from a protocol perspec-
tive. In Proceedings of the Second Extreme Linux Topics
Workshop, Monterey, CA, June 1999.

Cacti, the complete rrd-based graphing solution. http:
//www.cacti.net/.

[6]

(71

(8]

[9]
(10]

A. Chu. Cerebro.
projects/cerebro.
more National Lab.

http://sourceforge.net/
Developed at Lawrence Liver-

1/0 Tips. http://www.nccs.gov/
computing-resources/jaguar/
debugging-optimization/io-tips/.

IOR: The ASCI I/O stress benchmark. http://
sourceforge.net/projects/ior-sio/.

Lustre Users Group. Private communication, April 2009.

H. Shan, K. Antypas, and J. Shalf. Characterizing and pre-
dicting the I/O performance of HPC applications using a pa-
rameterized synthetic benchmark. In Proc. SC2008: High
performance computing, networking, and storage confer-
ence, Austin, TX, Nov 15-21, 2008.

CUG 2009 Proceedings 13 of 13
Cray User Group 2009 Proceedings



[11] H. Shan and J. Shalf. Using IOR to analyze the I/O per- //sourceforge.net/projects/1lmt/. Developed

formance of HPC platforms. In Cray Users Group Meeting at Lawrence Livermore National Lab, LMT includes the
(CUG) 2007, Seattle, Washington, May 7-10, 2007. Cerebro plug-in libraries, the LMT.pm Perl module and the
[12] H. Wartens. LMT - The Lustre Monitoring Tool. http: Iwatch Java script.

CUG 2009 Proceedings 14 of 13
Cray User Group 2009 Proceedings





