

Cray User Group

May 2009

James H. Laros III Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Motivation

- Average power consumption of a Top 9 system, 1.33 Mega-Watts (June 2008)
 - -1^{st} time power is reflected on the list
- Average power consumption of a Top 9 system, 2.48
 Mega-Watts (Nov 2008)
- 54% Increase in 6 months!
- Jaguar (ORNL) 6.95 Mega-Watts for 1.059 Peta-FLOPS
 - Projecting for 10 Peta-FLOPS 69.5 Mega-Watts
 - Seriously?
- Clearly we will be considering 10's of Mega-Watts for multi Peta-FLOP class systems
 - What about Exe-FLOPS?
 - What about cost (delivery infrastructure etc)?
 - What about cooling (power in power out)

Power Collection Methods

Past and Present

- Measured by Meter
 - Cabinet level
 - Coarse collection
 - Extrapolate to larger system estimate
 - Component level
 - Single components measured
 - Again, extrapolate to larger system estimate
- Performance Counters
 - Typically also used as basis for system level estimates
 - Should be verified
 - Can at an individual node scale but not at system scale

Real Power Collection

- Not currently a feature of CRMS but we can leverage the existing infrastructure (H/W and S/W)
- Additional daemon on each L0 (probing)
 - Registers a call-back in the main event loop
 - Uses event router to get information back up the hierarchy
- Additional daemon on SMW (coalescence)
 - Collects the events and writes them out to flat file
- Results
 - Granular collection (per-node socket)
 - Also Mezzanine (Seastar) but flat line current draw
 - High Frequency (1-100 samples per second)
 - Can collect current and voltage measurements
 - Scalable

CRMS Cray Reliability Availability and Serviceability Management System

XT4 Board

Real Power Collection

- Output
 - Timestamped Hex values for current
 - and optionally voltage
 - Current in amps +/- 2amp accuracy
- Post process output
 - Graphs (per node, per board)
 - Calculate application energy
 - More later
 - Ultimately, sum energy per job
 - Real time stats?
 - Better integration, output to DB...

Now that we have it what do we do with it?

Catamount Idle

- We "thought" it was inefficient
 - Now we know it was
- Linux employs power saving during idle cycles
 - Use for a benchmark to measure our success
- Modified Catamount
 - Relatively straight forward (for OS code :)
 - Only two areas kernel enters during idle
- Contrasted with CNL
 - Discovered our modifications are effective
 - Discovered Linux didn't act as we thought?

Initial CNL and Catamount IDLE Draw

Halt Individual Cores

Application Signatures

- Noticed graphs of each application has its own, repeatable, recognizable shape
 - Even when run on different OS
- Can we learn anything?
 - Can this be used for debugging?
 - Performance tuning?
- We can calculate application energy
 - Amount of energy used over duration of application
 - Sure, find area under the curve
- We now have "real" power used by applications
 - Use as an additional metric
 - Feed into power aware scheduling

Application Energy

CNL

Catamount

Application Energy

- HPCC
 - 16% Faster on Catamount
 - 13% Less energy on Catamount
- Obvious but important, longer run time = more energy used
- Performance can have other benefits
- How do other things that affect performance affect power use?

Closer examination

Future Work

- Quantify in dollars
- Impact of OS noise on Power
 - We know OS noise can impact performance
 - What is the associated impact on power efficiency?
- Does network imbalance impact Power?
 - Less bandwidth?
 - Higher latency?
- Can we save power when running applications?
 - Go into lower power state while waiting...
- Reduce frequency runs without affecting performance?
 - Little to no impact on run-time, large power savings?

Acknowledgments

- Other Contributors
 - Kevin Pedretti
 - Sue Kelly
 - John Vandyke
 - Courtenay Vaughan
 - Mark Swan (Cray)
- Local Administration Staff

Questions?

