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ABSTRACT: We present simulation results from a parallel 3D seismic wave 
propagation code that uses finite differences on a staggered grid with 2nd order 
operators in time and 4th order in space. We describe optimisations and developments to 
the code for the exploitation of extreme processor counts. The ultra-high resolution that 
we are able to achieve enables simulations with unprecedented accuracy as 
demonstrated by comparisons with seismographic observations from the Sichuan 
earthquake in May 2008. 
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1. Introduction 
On 19th September 1985 a large Ms 8.1 subduction 

earthquake occurred on the Mexican Pacific coast with an 
epicentre at about 340 km from Mexico City. The losses 
were of about 30,000 deaths and 7 billion US dollars. On 
12th May 2008 the Ms 7.9 Sichuan, China, earthquake 
resulted in about 80,000 deaths and losses of 120 billion 
US dollars. As the recurrence time estimated for these 
highly destructive type of events is only a few decades, or 
hundreds of years, there is considerable seismological, 
engineering and socio-economical interest in modelling 
these types of events, particularly, due to the scarcity of 
observational instrumental data for them. 

Realistic three-dimensional modelling of the 
propagation of large subduction earthquakes poses both a 
numerical and a computational challenge, particularly 
because it requires enormous amounts of memory and 
storage, as well as intensive use of computing resources 
[1]. Realistic modeling of the seismic wave propagation 
for these types of earthquakes should include volumes of 

the earth crust of hundreds of kilometers. Three-
dimensional seismic wave propagation problems of 
realistic-earth size can be successfully modelled using 
finite difference modeling. This method is highly suitable 
for parallel execution on today’s distributed memory 
parallel computers using explicit message passing 
parallelization.  

1.1 Wave propagation modelling 
The 3D velocity-stress form of the elastic wave 

equation consists of nine coupled, first order partial 
differential hyperbolic equations for the three particle 
velocity vector components and the six independent stress 
tensor components. The equations are discretised on a 
regular structured staggered grid and solved with an 
explicit scheme which is second-order accurate in time 
and fourth-order accurate in space. Staggered grid storage 
allows the partial derivatives to be approximated by 
centred finite differences without doubling the spatial 
extent of the operators, thus providing more accuracy. 
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1.2 Parallel implementation 
The model domain is partitioned in all three 

dimensions into individual sub-domains and allocated to 
the available processors, using simple partitioning to give 
an equal number of grid points to each processor. MPI 
point-to-point message passing is used to implement halo-
exchange between neighbouring sub-domains to update 
the velocities and stresses calculated at each time step 

A hybrid procedure has been used combining long 
period simulations from the finite difference code and 
high frequency synthetics to obtain 3D synthetic 
seismograms for the above-mentioned Sichuan 
earthquake [2]. The comparisons between the observed 
and the synthetic seismograms are satisfactory, both in 
time and frequency domains. Maximum synthetic 
accelerations, velocities, displacements and permanent 
displacements obtained from the model partially explain 
the modification of the topography, and the extensive 
damage observed on the infrastructure and towns located 
on top of the Sichuan earthquake rupture zone, as well as 
the slight damage observed at Chengdu, located at an 
epicentral distance of 90 km. 

In this paper, we present the results from benchmark 
measurements, optimisation and performance profiling 
studies performed on the parallel 3D wave propagation 
staggered-grid finite difference code. The code was run 
on three different Cray XT platforms allowing us to 
explore the performance of the code at extreme processor 
counts. This work extends that performed elsewhere [3]. 

2. The Benchmark Runs 

2.1 The Cray XT Systems 
The Cray XT massively parallel computers combine 

commodity and open source components with custom-
designed components.  The architecture is based on 
the Red Storm technology that was developed jointly by 
Cray Inc. and the U.S. Department of Energy's Sandia 
National Laboratories. The XT system is based around 
AMD Opteron 64-bit processors, with each processor 
being directly connected via the chip’s HyperTransport to 
a dedicated Cray SeaStar chip (based on the IBM 
POWER architecture). Each SeaStar contains a 6-Port 
router and communications engine.  

We have run on the Cray XT4 HECToR1 system in 
the UK and on both Jaguar2 systems at ORNL; the older 
XT4 system and the new ‘Petaflop’ XT5. The HECToR 
system has 2.8 GHz dual-core AMD parts with a total of 
11328 cores and 6 GB memory per node. The 6 GB per 
node is implemented as two memory banks of 4 GB and 2 
GB and performance results reported elsewhere [4] have 
revealed that the asymmetric nature of this configuration 
                                                 
1 http://www.hector.ac.uk/ 
2 http://www.nccs.gov/computing-resources/jaguar/ 

can result in a measurable performance degradation for 
memory intensive codes. The Jaguar XT4 system has 
30976 cores composed of 2.1 GHz quad-core chips and 
the ‘Petaflop’ system 2.3 GHz quad-core parts with a total 
of 150152 cores.  

There are some significant differences between dual-
core and quad-core AMD chips apart from the number of 
cores per chip. The key features are presented in Table 1. 
Performance on the 2.3 GHz quad-core Opterons is of 
particular interest in the UK as the HECToR system will 
be upgraded to use these parts in the summer of 2009. 

 
Dual-core Quad-core 

Core 
2.8 Ghz clock frequency 2.3 Ghz clock frequency 

SSE SIMD FPU  
2 flops/cycle 
5.6 GFlop/s peak 

SSE SIMD FPU  
4 flops/cycle 
9.2 GFlop/s peak 
 

Cache hierarchy 
L1 Dcache/Icache 
64 kB/core 

L1 Dcache/Icache 
64 kB/core 

L2 Dcache/Icache 
1 MB/core 

L2 Dcache/Icache 
512 kB/core 

No L3 cache L3 Shared cache 
2 MB/Socket 

Software Prefetch 
and loads to L1 

Software Prefetch 
and loads to L1, L2, L3 

Evictions and Hardware 
prefetch to L2 

Evictions and Hardware 
prefetch to L1,L2,L3 

Memory 
Dual Channel DDR2 Dual Channel DDR2 
10 GB/s peak @ 

667MHz 
12 GB/s peak @ 

800MHz 
8 GB/s nom. STREAM 10 GB/s nom. STREAM 

 
Table 1. Key differences between Cray XT4 dual-

core and quad-core nodes (after [5]) 
 
The code was run with the PGI Fortran compiler 

version 8 using “-O3 –fastsse” compiler options. 

2.2 The Benchmark Case 
The actual size of the problem is 500 x 260 x 124 

km. In order to test the scalability out to extreme 
processor counts, model grids were generated at 
decreasing resolutions of 500m, 250m, 125m, 62.5m and 
31.25m. The associated timesteps were 0.02s, 0.01s, 
0.005s, 0.0025s and 0.00125s, respectively to comply 
with the Courant-Friedrich-Lewy condition. At 500m 
resolution this leads to a grid size of 1000 x 520 x 248 
grid points.  The 31.25m resolution model has a grid size 
of 16000 x 8320 x 3968 points. Distributions were 
designed for different numbers of MPI tasks such that the 
number of tasks in each dimension divides exactly into 
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the model grid dimension. For example the 31.25m 
resolution model could be run on 20480 tasks with the 
tasks distributed in a grid of 40 x 32 x 16 yielding sub-
domains of size 400 x 260 x 248.  

3. Optimization 

3.1 Vectorization 
One of the key success factors in achieving high 

performance from the AMD Opteron is the vectorization 
of key computationally intensive loop nests. This is 
especially important for the quad-core parts as the 
Streaming SIMD Extensions (SSE) execution width 
doubles to 128 bits. The most compute intensive parts of 
the 3D wave propagation code are triply nested loops 
calculating terms in the finite difference equations. We 
have found that all important loops are reported as being 
vectorized. 

3.2 Halo Exchange 
The original code [1] uses MPI_SendRecv for the 

halo exchange. Whereas this is elegant it may be 
inefficient for two reasons: 

a) It may not make the best use of the underlying 
message passing hardware. 

b) It is implemented by passing array sections into 
the MPI routine e.g. a(0,:,:). This non-sequential memory 
access may not be best handled by the compiler, e.g. if it 
results in an additional memory-to-memory copy. 

For a halo exchange communication pattern on the 
Cray XT series it is advisable to post receives first as 
early as possible using MPI_IRecv and then issue the 
sends. Pre-posting the MPI receives means that data can 
be copied direct into the application-space buffer. 
Otherwise an additional copy into unexpected buffer 
space may be required [5]. This leads to a strategy for the 
halo exchange as follows: 

post receive into buffer 2 
copy data to be sent into buffer1 
post send from buffer1 
wait for receive 
copy received data from buffer2 
wait for send 
The probability that the buffer is available on the 

receiving processor could be improved by overlapping 
with calculations, but this has not been tried in the current 
implementation 

3.3 Boundary Conditions 
The code contains three subroutines which provide 

exponential damping in each of the three dimensions at 
the edges of the model domain. They are only called for 
sub-domains which lie at the edges of the domain, so this 
is a source of load imbalance across the processors.  The 
boundary condition code contained a single DO-loop for 
the dimension perpendicular to the boundary and used 
Fortran 90 array syntax for the other two dimensions. 

This introduced some non-sequential memory accesses in 
one out of the three dimensions. This was rectified by 
replacing the loops by a Fortran 77 triply-nested loop so 
that the order of memory accesses could be made explicit. 

3.4 Excessive subroutine calling 
Performance profiling using the tau3 profiling tool 

gave a profile of the time spent in each subprogram 
including the number of times each subprogram was 
called. Two subroutines were being called over 320 
million times each. Calling a Fortran subroutine this many 
times can lead to a large overhead, due to the prolog and 
epilog code added by the compiler to handle passing 
arguments, creation and destruction of local variables etc. 
This overhead increases with the number of arguments in 
the subroutine call. The calls occurred in a doubly-nested 
loop within the time-stepping loop. Automatic in-lining of 
these tools using PGI compiler options did not help so the 
code was modified by pushing the loop nest inside one of 
the subroutines and manually in-lining the other, which 
was much smaller. Some modification of the argument 
lists was required in order to achieve this. 

4. Performance Benchmarks 
Performance benchmark runs were carried out using 

the model domain and resolutions described in section 
2.2. Run lengths were 500 timesteps for the coarser 
resolutions reduced to 100 timesteps for the finest 31.25m 
resolution, in order to reduce the total run-time. Note that 
there is limited I/O in these benchmarks, with limited 
statistics being output sufficient to validate the runs. 
Realistic production jobs would require check-pointing 
and much larger quantities of output.  

Total execution time was measured using 
MPI_WTime() and a performance metric was calculated. 
This is the product of the total number of gridpoints and 
the number of timesteps, this representing the total work 
involved, divided by the execution time. Scaling the 
performance metric with the number of gridpoints and 
timesteps is a valid means for comparing the performance 
of the different benchmarks, assuming that the amount of 
work (number of floating point operations) scales linearly 
with the number of gridpoints and timesteps.  

The cumulative effectiveness of the performance 
optimizations described in the previous section is shown 
in Figure 1, which shows performance of the 62.5m 
resolution model on up to 8192 processor cores on 
HECToR. The original code is compared with three 
optimized versions. Opt 1 contains just the improved halo 
exchange. Opt 2 is as Opt 1 combined with the improved 
boundary conditions code. Opt 3 is as Opt 2 together with 
the optimization to reduce the number of subroutine calls.  

                                                 
3 http://www.cs.uoregon.edu/research/tau/home.php 
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Figure 1. Performance of the wave propagation code at 62.5m resolution on HECToR for different code optimizations 

(see text) 
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Figure 2. Performance of the wave propagation code at 62.5m resolution on the HECToR and Jaguar systems 
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Figure 3. Performance of the wave propagation code at different resolutions on the HECToR system 
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Figure 4. Performance of the wave propagation code at different resolutions on the Jaguar system 
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The cumulative effect of these optimisations is 

around a 10% improvement at 1024 cores rising to 15% 
at 8192. 

Figure 2 shows the performance of the 62.5m 
resolution model on both the HECToR and Jaguar 
systems. The model does not fit into the 2GB/core limit 
on the quad-core system and 8192 is the largest batch job 
size on HECToR, so they two systems can only be 
compared between 4096 and 8192 cores.  HECToR is 
faster by 11% at 4096, falling to 6% at 8192 cores. This is 
despite the Linpack performance (as obtained from the 
TOP5004 list) being 37% faster on the Jaguar system.   

The comparison with Linpack is more significant 
than might at first appear. The value of an Allocation Unit 
on the HECToR system is tied to its Linpack 
performance. So when the system is upgraded from dual-
core to quad-core, unless the performance improvement 
of a user’s application follows that of Linpack the user’s 
allocation will effectively be devalued. 

Recalling that HECToR has the faster clock speed, in 
order to obtain higher performance on the quad-core 
system one must a) vectorize all important loops to take 
advantage of the doubling of flops/cycle; b) be unaffected 
by the reduced memory bandwidth per core; and c) be 
unaffected by contention among the cores for network 
connections. As the wave propagation code vectorizes 
well we conclude that the performance per core is 
probably limited by memory traffic; a known issue for 
many finite difference structured grid codes. 

We have used Cray’s Craypat performance analysis 
tool to obtain figures from the hardware counters for the 
62.5m resolution model on 2048 cores. The cores execute 
at around 550 Mflop/s or 9.9% of peak performance. The 
Level 1 cache hit rate is 96% showing that sequential 
vectorization is successful, but the computational 
intensity is only 0.2 ops/cycle and the instructions 
executed per cycle is only 0.45 confirming that the 
execution rate is probably limited by the rate of memory 
accesses. 

The performance of the code at different resolutions 
is shown for the HECToR system in Figure 3 and for 
Jaguar in Figure 4. As expected, the smaller grid sizes run 
out of scalability at lower core counts. For a fixed 
problem size as the number of tasks increases the local 
grid size at each task reduces. For a three-dimensional 
grid the amount of work is proportional to the volume 
whereas the communications load depends on the surface 
area. As the local grid size reduces the ratio of 
communication to computation increases and the 
execution time is eventually dominated by 
communications costs. 

                                                 
4 http://www.top500.org/ 

5. Conclusions 
We have run a series of benchmarks for a wave 

propagation code used to simulate seismic waves from 
large subduction earthquakes. This has allowed us to 
explore the performance of the code from hundreds of 
processor cores up to a maximum of 25,600 cores. 
Further tests being carried out on the Jaguar Petaflop 
system could not be included in the paper but may make it 
into the conference presentation.  

We have found that, in common with other structured 
grid finite difference codes, provided the problem size 
can be scaled to maintain the size of the local problem for 
each task, the code can scale to large numbers of cores.  

Although the finite difference code vectorises well 
the performance of individual cores is limited by the rate 
of memory accesses and the intrinsically low 
computational intensity of the method. This is especially 
apparent when moving from dual-core to quad-core chips, 
where the improvement of performance for this code is 
much less than the headline Linpack figure. 

In the future we will be able to run at increased 
resolution on Petascale systems and large-scale 
calculations will enable more realistic simulations of 
earthquake events to be carried out. 
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