

CUG 2009 Proceedings 1 of 7

Exploiting Extreme Processor Counts on Cray XT
Systems with High-Resolution Seismic Wave

Propagation Experiments

Mike Ashworth, STFC Daresbury Laboratory, Daresbury
Science and Innovation Campus, Warrington WA4 4AD,
UK, Mario Chavez, Institute of Engineering, Universidad
Nacional Autónoma de México, UNAM, C.U., 04510,
México, DF, México, Eduardo Cabrera, DGSCA, UNAM,
C.U., 04510, México, DF, México

ABSTRACT: We present simulation results from a parallel 3D seismic wave
propagation code that uses finite differences on a staggered grid with 2nd order
operators in time and 4th order in space. We describe optimisations and developments to
the code for the exploitation of extreme processor counts. The ultra-high resolution that
we are able to achieve enables simulations with unprecedented accuracy as
demonstrated by comparisons with seismographic observations from the Sichuan
earthquake in May 2008.

KEYWORDS: earthquakes, seismology, wave propagation, Cray XT, parallel
computing, parallel performance

1. Introduction
On 19th September 1985 a large Ms 8.1 subduction

earthquake occurred on the Mexican Pacific coast with an
epicentre at about 340 km from Mexico City. The losses
were of about 30,000 deaths and 7 billion US dollars. On
12th May 2008 the Ms 7.9 Sichuan, China, earthquake
resulted in about 80,000 deaths and losses of 120 billion
US dollars. As the recurrence time estimated for these
highly destructive type of events is only a few decades, or
hundreds of years, there is considerable seismological,
engineering and socio-economical interest in modelling
these types of events, particularly, due to the scarcity of
observational instrumental data for them.

Realistic three-dimensional modelling of the
propagation of large subduction earthquakes poses both a
numerical and a computational challenge, particularly
because it requires enormous amounts of memory and
storage, as well as intensive use of computing resources
[1]. Realistic modeling of the seismic wave propagation
for these types of earthquakes should include volumes of

the earth crust of hundreds of kilometers. Three-
dimensional seismic wave propagation problems of
realistic-earth size can be successfully modelled using
finite difference modeling. This method is highly suitable
for parallel execution on today’s distributed memory
parallel computers using explicit message passing
parallelization.

1.1 Wave propagation modelling
The 3D velocity-stress form of the elastic wave

equation consists of nine coupled, first order partial
differential hyperbolic equations for the three particle
velocity vector components and the six independent stress
tensor components. The equations are discretised on a
regular structured staggered grid and solved with an
explicit scheme which is second-order accurate in time
and fourth-order accurate in space. Staggered grid storage
allows the partial derivatives to be approximated by
centred finite differences without doubling the spatial
extent of the operators, thus providing more accuracy.

CUG 2009 Proceedings 2 of 7

1.2 Parallel implementation
The model domain is partitioned in all three

dimensions into individual sub-domains and allocated to
the available processors, using simple partitioning to give
an equal number of grid points to each processor. MPI
point-to-point message passing is used to implement halo-
exchange between neighbouring sub-domains to update
the velocities and stresses calculated at each time step

A hybrid procedure has been used combining long
period simulations from the finite difference code and
high frequency synthetics to obtain 3D synthetic
seismograms for the above-mentioned Sichuan
earthquake [2]. The comparisons between the observed
and the synthetic seismograms are satisfactory, both in
time and frequency domains. Maximum synthetic
accelerations, velocities, displacements and permanent
displacements obtained from the model partially explain
the modification of the topography, and the extensive
damage observed on the infrastructure and towns located
on top of the Sichuan earthquake rupture zone, as well as
the slight damage observed at Chengdu, located at an
epicentral distance of 90 km.

In this paper, we present the results from benchmark
measurements, optimisation and performance profiling
studies performed on the parallel 3D wave propagation
staggered-grid finite difference code. The code was run
on three different Cray XT platforms allowing us to
explore the performance of the code at extreme processor
counts. This work extends that performed elsewhere [3].

2. The Benchmark Runs

2.1 The Cray XT Systems
The Cray XT massively parallel computers combine

commodity and open source components with custom-
designed components. The architecture is based on
the Red Storm technology that was developed jointly by
Cray Inc. and the U.S. Department of Energy's Sandia
National Laboratories. The XT system is based around
AMD Opteron 64-bit processors, with each processor
being directly connected via the chip’s HyperTransport to
a dedicated Cray SeaStar chip (based on the IBM
POWER architecture). Each SeaStar contains a 6-Port
router and communications engine.

We have run on the Cray XT4 HECToR1 system in
the UK and on both Jaguar2 systems at ORNL; the older
XT4 system and the new ‘Petaflop’ XT5. The HECToR
system has 2.8 GHz dual-core AMD parts with a total of
11328 cores and 6 GB memory per node. The 6 GB per
node is implemented as two memory banks of 4 GB and 2
GB and performance results reported elsewhere [4] have
revealed that the asymmetric nature of this configuration

1 http://www.hector.ac.uk/
2 http://www.nccs.gov/computing-resources/jaguar/

can result in a measurable performance degradation for
memory intensive codes. The Jaguar XT4 system has
30976 cores composed of 2.1 GHz quad-core chips and
the ‘Petaflop’ system 2.3 GHz quad-core parts with a total
of 150152 cores.

There are some significant differences between dual-
core and quad-core AMD chips apart from the number of
cores per chip. The key features are presented in Table 1.
Performance on the 2.3 GHz quad-core Opterons is of
particular interest in the UK as the HECToR system will
be upgraded to use these parts in the summer of 2009.

Dual-core Quad-core

Core
2.8 Ghz clock frequency 2.3 Ghz clock frequency

SSE SIMD FPU
2 flops/cycle
5.6 GFlop/s peak

SSE SIMD FPU
4 flops/cycle
9.2 GFlop/s peak

Cache hierarchy
L1 Dcache/Icache
64 kB/core

L1 Dcache/Icache
64 kB/core

L2 Dcache/Icache
1 MB/core

L2 Dcache/Icache
512 kB/core

No L3 cache L3 Shared cache
2 MB/Socket

Software Prefetch
and loads to L1

Software Prefetch
and loads to L1, L2, L3

Evictions and Hardware
prefetch to L2

Evictions and Hardware
prefetch to L1,L2,L3

Memory
Dual Channel DDR2 Dual Channel DDR2
10 GB/s peak @

667MHz
12 GB/s peak @

800MHz
8 GB/s nom. STREAM 10 GB/s nom. STREAM

Table 1. Key differences between Cray XT4 dual-

core and quad-core nodes (after [5])

The code was run with the PGI Fortran compiler

version 8 using “-O3 –fastsse” compiler options.

2.2 The Benchmark Case
The actual size of the problem is 500 x 260 x 124

km. In order to test the scalability out to extreme
processor counts, model grids were generated at
decreasing resolutions of 500m, 250m, 125m, 62.5m and
31.25m. The associated timesteps were 0.02s, 0.01s,
0.005s, 0.0025s and 0.00125s, respectively to comply
with the Courant-Friedrich-Lewy condition. At 500m
resolution this leads to a grid size of 1000 x 520 x 248
grid points. The 31.25m resolution model has a grid size
of 16000 x 8320 x 3968 points. Distributions were
designed for different numbers of MPI tasks such that the
number of tasks in each dimension divides exactly into

CUG 2009 Proceedings 3 of 7

the model grid dimension. For example the 31.25m
resolution model could be run on 20480 tasks with the
tasks distributed in a grid of 40 x 32 x 16 yielding sub-
domains of size 400 x 260 x 248.

3. Optimization

3.1 Vectorization
One of the key success factors in achieving high

performance from the AMD Opteron is the vectorization
of key computationally intensive loop nests. This is
especially important for the quad-core parts as the
Streaming SIMD Extensions (SSE) execution width
doubles to 128 bits. The most compute intensive parts of
the 3D wave propagation code are triply nested loops
calculating terms in the finite difference equations. We
have found that all important loops are reported as being
vectorized.

3.2 Halo Exchange
The original code [1] uses MPI_SendRecv for the

halo exchange. Whereas this is elegant it may be
inefficient for two reasons:

a) It may not make the best use of the underlying
message passing hardware.

b) It is implemented by passing array sections into
the MPI routine e.g. a(0,:,:). This non-sequential memory
access may not be best handled by the compiler, e.g. if it
results in an additional memory-to-memory copy.

For a halo exchange communication pattern on the
Cray XT series it is advisable to post receives first as
early as possible using MPI_IRecv and then issue the
sends. Pre-posting the MPI receives means that data can
be copied direct into the application-space buffer.
Otherwise an additional copy into unexpected buffer
space may be required [5]. This leads to a strategy for the
halo exchange as follows:

post receive into buffer 2
copy data to be sent into buffer1
post send from buffer1
wait for receive
copy received data from buffer2
wait for send
The probability that the buffer is available on the

receiving processor could be improved by overlapping
with calculations, but this has not been tried in the current
implementation

3.3 Boundary Conditions
The code contains three subroutines which provide

exponential damping in each of the three dimensions at
the edges of the model domain. They are only called for
sub-domains which lie at the edges of the domain, so this
is a source of load imbalance across the processors. The
boundary condition code contained a single DO-loop for
the dimension perpendicular to the boundary and used
Fortran 90 array syntax for the other two dimensions.

This introduced some non-sequential memory accesses in
one out of the three dimensions. This was rectified by
replacing the loops by a Fortran 77 triply-nested loop so
that the order of memory accesses could be made explicit.

3.4 Excessive subroutine calling
Performance profiling using the tau3 profiling tool

gave a profile of the time spent in each subprogram
including the number of times each subprogram was
called. Two subroutines were being called over 320
million times each. Calling a Fortran subroutine this many
times can lead to a large overhead, due to the prolog and
epilog code added by the compiler to handle passing
arguments, creation and destruction of local variables etc.
This overhead increases with the number of arguments in
the subroutine call. The calls occurred in a doubly-nested
loop within the time-stepping loop. Automatic in-lining of
these tools using PGI compiler options did not help so the
code was modified by pushing the loop nest inside one of
the subroutines and manually in-lining the other, which
was much smaller. Some modification of the argument
lists was required in order to achieve this.

4. Performance Benchmarks
Performance benchmark runs were carried out using

the model domain and resolutions described in section
2.2. Run lengths were 500 timesteps for the coarser
resolutions reduced to 100 timesteps for the finest 31.25m
resolution, in order to reduce the total run-time. Note that
there is limited I/O in these benchmarks, with limited
statistics being output sufficient to validate the runs.
Realistic production jobs would require check-pointing
and much larger quantities of output.

Total execution time was measured using
MPI_WTime() and a performance metric was calculated.
This is the product of the total number of gridpoints and
the number of timesteps, this representing the total work
involved, divided by the execution time. Scaling the
performance metric with the number of gridpoints and
timesteps is a valid means for comparing the performance
of the different benchmarks, assuming that the amount of
work (number of floating point operations) scales linearly
with the number of gridpoints and timesteps.

The cumulative effectiveness of the performance
optimizations described in the previous section is shown
in Figure 1, which shows performance of the 62.5m
resolution model on up to 8192 processor cores on
HECToR. The original code is compared with three
optimized versions. Opt 1 contains just the improved halo
exchange. Opt 2 is as Opt 1 combined with the improved
boundary conditions code. Opt 3 is as Opt 2 together with
the optimization to reduce the number of subroutine calls.

3 http://www.cs.uoregon.edu/research/tau/home.php

CUG 2009 Proceedings 4 of 7

0

10

20

30

0 2048 4096 6144 8192

Number of processor cores

Pe
rf

or
m

an
ce

 (G
gr

id
po

in
ts

-s
te

ps
/s

ec
)

Opt 3

Opt 2

Opt 1

Original

Figure 1. Performance of the wave propagation code at 62.5m resolution on HECToR for different code optimizations

(see text)

0

10

20

30

0 4096 8192 12288 16384

Number of processor cores

Pe
rf

or
m

an
ce

 (G
gr

id
po

in
ts

-s
te

ps
/s

ec
)

Cray XT4 HECToR

Cray XT4 jaguar

Figure 2. Performance of the wave propagation code at 62.5m resolution on the HECToR and Jaguar systems

CUG 2009 Proceedings 5 of 7

0

5

10

15

20

25

0 1024 2048 3072 4096 5120 6144 7168 8192

Number of processor cores

Pe
rfo

rm
an

ce
 (G

gr
id

po
in

ts
-s

te
ps

/s
ec

)

62.5

125m

250m

Figure 3. Performance of the wave propagation code at different resolutions on the HECToR system

0

10

20

30

40

0 4096 8192 12288 16384 20480 24576

Number of processor cores

Pe
rf

or
m

an
ce

 (G
gr

id
po

in
ts

-s
te

ps
/s

ec
)

31.25m

62.5m

125m

250m

Figure 4. Performance of the wave propagation code at different resolutions on the Jaguar system

CUG 2009 Proceedings 6 of 7

The cumulative effect of these optimisations is

around a 10% improvement at 1024 cores rising to 15%
at 8192.

Figure 2 shows the performance of the 62.5m
resolution model on both the HECToR and Jaguar
systems. The model does not fit into the 2GB/core limit
on the quad-core system and 8192 is the largest batch job
size on HECToR, so they two systems can only be
compared between 4096 and 8192 cores. HECToR is
faster by 11% at 4096, falling to 6% at 8192 cores. This is
despite the Linpack performance (as obtained from the
TOP5004 list) being 37% faster on the Jaguar system.

The comparison with Linpack is more significant
than might at first appear. The value of an Allocation Unit
on the HECToR system is tied to its Linpack
performance. So when the system is upgraded from dual-
core to quad-core, unless the performance improvement
of a user’s application follows that of Linpack the user’s
allocation will effectively be devalued.

Recalling that HECToR has the faster clock speed, in
order to obtain higher performance on the quad-core
system one must a) vectorize all important loops to take
advantage of the doubling of flops/cycle; b) be unaffected
by the reduced memory bandwidth per core; and c) be
unaffected by contention among the cores for network
connections. As the wave propagation code vectorizes
well we conclude that the performance per core is
probably limited by memory traffic; a known issue for
many finite difference structured grid codes.

We have used Cray’s Craypat performance analysis
tool to obtain figures from the hardware counters for the
62.5m resolution model on 2048 cores. The cores execute
at around 550 Mflop/s or 9.9% of peak performance. The
Level 1 cache hit rate is 96% showing that sequential
vectorization is successful, but the computational
intensity is only 0.2 ops/cycle and the instructions
executed per cycle is only 0.45 confirming that the
execution rate is probably limited by the rate of memory
accesses.

The performance of the code at different resolutions
is shown for the HECToR system in Figure 3 and for
Jaguar in Figure 4. As expected, the smaller grid sizes run
out of scalability at lower core counts. For a fixed
problem size as the number of tasks increases the local
grid size at each task reduces. For a three-dimensional
grid the amount of work is proportional to the volume
whereas the communications load depends on the surface
area. As the local grid size reduces the ratio of
communication to computation increases and the
execution time is eventually dominated by
communications costs.

4 http://www.top500.org/

5. Conclusions
We have run a series of benchmarks for a wave

propagation code used to simulate seismic waves from
large subduction earthquakes. This has allowed us to
explore the performance of the code from hundreds of
processor cores up to a maximum of 25,600 cores.
Further tests being carried out on the Jaguar Petaflop
system could not be included in the paper but may make it
into the conference presentation.

We have found that, in common with other structured
grid finite difference codes, provided the problem size
can be scaled to maintain the size of the local problem for
each task, the code can scale to large numbers of cores.

Although the finite difference code vectorises well
the performance of individual cores is limited by the rate
of memory accesses and the intrinsically low
computational intensity of the method. This is especially
apparent when moving from dual-core to quad-core chips,
where the improvement of performance for this code is
much less than the headline Linpack figure.

In the future we will be able to run at increased
resolution on Petascale systems and large-scale
calculations will enable more realistic simulations of
earthquake events to be carried out.

Acknowledgments
This research used resources of the National Center

for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science
of the Department of Energy under Contract DE-ASC05-
00OR22725. The authors also acknowledge support from
the Scientific Computing Advanced Training (SCAT5)
project through Europe Aid contract II-0537-FC-FA.

We are grateful to John Levesque of Cray Inc. for
performing benchmark runs on the Jaguar Petaflop
system.

References
[1] 3D Parallel Elastodynamic Modeling of Large

Subduction Earthquakes, E. Cabrera, M. Chavez, R.
Madariaga, N. Perea and M. Frisenda, in Proceedings of
Euro PVM/MPI 2007, LNCS 4757, F. Capello et al.
(eds), pp. 373-380, 2007, Springer-Verlag Berlin
Heidelberg 2007

[2] 3D Wave Propagation Modeling Of The 12 05
2008 Sichuan Ms 7.9 Earthquake, M. Chavez, E. Cabrera,
H. Chen, N. Perea1, A. Salazar, D. Emerson, M.
Ashworth, Ch. Moulinec, M. Wu and G. Zhao, American

5 http://www.scat-alfa.eu

CUG 2009 Proceedings 7 of 7

Geophysical Union, Fall Meeting 2008, abstract #U23B-
0051

[3] Benchmark Study Of A 3d Parallel Code For
The Propagation Of Large Subduction Earthquakes, M.
Chavez, E. Cabrera, R. Madariaga, N. Perea1, Ch.
Moulinec, D.R. Emerson, M. Ashworth and A. Salazar, in
Proceedings of Euro PVM/MPI 2008, … complete

[4] Application Performance on the UK’s New
HECToR Service, F. Reid, M. Ashworth, T. Edwards, A.
Gray, J. Hein, P. Knight, A.D. Simpson, K. Stratford and
M. Weiland, Proceedings of the Cray User Group,
Helsinki, 5-8 May 2008

[5] Cray and the Quad-core Experience, Jason
Beech-Brandt, HECToR User Meeting, 22nd April 2009,
London

[6] Optimization for the Cray XT4™
MPP Supercomputer, John M. Levesque, Cray Center of
Excellence Training Materials

About the Authors
Mike Ashworth has led the Advanced Research

Computing Group in the Computational Science &

Engineering Department at STFC’s Daresbury Laboratory
since 2002. The Group is engaged in the development and
optimization of large-scale applications for high-
performance systems across a wide range of scientific
disciplines. His own work focuses on the development
and optimization of environmental modelling and CFD
codes, including performance engineering and application
of Grid technologies. He also serves on the CUG Board
of Directors as Director-at-Large. E-Mail:
mike.ashworth@stfc.ac.uk.

Mario Chavez is leading a group at the Institute of
Engineering of UNAM, engaged in the development and
application of hybrid computational modelling of the 3d
wave propagation of extreme earthquakes for risk
estimation purposes. E-mail: chavez@servidor.unam.mx

Eduardo Cabrera works at the Supercomputing
Department in DGSCA of UNAM. He optimizes high-
performance scientific applications. E-mail:
eccf@super.unam.mx

