
Interesting Characteristics of

Barcelona Floating Point Execution ∗

Ben Bales and Richard Barrett
Oak Ridge National Laboratory

Oak Ridge, TN 37931

Presented at Cray User Group, Atlanta, Georgia, USA on May 7, 2009

In almost all modern scientific applications, developers achieve the greatest performance
gains by tuning algorithms, communication systems, and memory access patterns, while
leaving low level instruction optimizations to the compiler. Given the increasingly varied
and complicated x86 architectures, the value of these optimizations is unclear, and, due to
time and complexity constraints, it is difficult for many programmers to experiment with
them. In this report we explore the potential gains of these “last mile” optimization efforts
on an AMD Barcelona processor, providing readers with relevant information so that they
can decide whether investment in the presented optimizations is worthwhile.

1 Introduction

Commodity x86 processors have made huge inroads into the supercomputing market. As
many programmers look for easy to program, general purpose processors, the x86 lineup
has become increasingly attractive. While programming on alternate architectures such as
GPUs and in-order vector processors, knowledge of execution mechanisms and instruction
timing is very important. However, this same information is often glossed over or ignored
in x86 architectures. In this paper, we attempt to fill in the cracks to give programmers
some idea of the characteristics of floating point execution in an AMD Barcelona core.

For good reasons, developers spend much of their time tuning algorithms, communi-
cation systems, and memory access patterns. Tuning algorithms is a very natural thing,
because if there is less to be done for a program, that program can generally be executed
in less time as well. Adjustment of communication systems and memory access patterns
are the first step in fitting purely theoretical execution models to the real hardware plat-
forms that will actually execute the code. However, beyond this point, most projects never
venture. Low level assembly optimizations have always been leveraged in BLAS libraries,
but they are not used much past that. In this light, we try to answer whether or not these
optimizations will benefit regular, less generic code.

∗This research used resources of the National Center for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

1
Cray User Group 2009 Proceedings

2 THE BARCELONA FPU

The paper is organized as a presentation of the relevant hardware features of the
Barcelona core, followed by a number of small benchmarks meant to test these features,
and concluded with two pseudo real-world benchmarks meant to test these features in a
more practical environment.

2 The Barcelona FPU

The AMD Barcelona is an out of order, superscalar processor complete with SIMD instruc-
tion extensions and a three level cache hierarchy. Generally speaking, this is as far into the
architectural description that anyone needs to go to write decent code. However, a slightly
more detailed model will be useful in explaining and examining the results of the following
tests.

The basic execution model of the FPU in the Barcelona looks something like Figure 1.

Figure 1: Overview of the Barcelona FPU

The renamed register file is the set of registers from which the processing pipelines oper-
ate. As instructions are read, the software accessible registers referenced by the instructions
are remapped in different locations to allow a pipeline free access to the original register
contents. The software visible registers xmm0-xmm15 are not real, but are allocated within
the register file which the internal processing mechanisms operates from. On each clock
cycle, instructions in the scheduler check to see if their dependencies have been filled and,
if they have, jump into one of the FMOV, FADD, or FMUL processing pipelines. Only
one instruction can jump into each pipeline at a time, but each pipeline can accept one
instruction per cycle. This constitutes the superscalar nature of the Barcelona processor:
more than one instruction can execute per cycle. Naturally (as the names indicate), the

Presented at Cray User Group 2 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

3 INSTRUCTION ORDERING

FMOV pipeline takes move instructions, the FADD pipeline takes add instructions and the
FMUL pipeline takes multiplication instructions. In all actuality, most moves and logical
instructions can be performed in more than one pipeline, while pure adds and multiplies
are restricted to their special pipelines. The SIMD nature of the processor lies one level
deeper, as each operation in the FMUL or FADD pipeline can account for up to two double
or four single precision operations. Most of the commonly used instructions have four cycles
latencies, while simple register to register moves have two cycle latencies. Vector operations
that create dependencies between data in the same register are emulated through shuffles
and SIMD instructions.

After instructions finish running through the execution pipelines, they land in the retire-
ment buffer (which is actually part of the renamed register file). Though values headed for
the retirement buffer can be fed back into dependent instructions, until they are officially
retired out of this buffer and back into the regular register file, they are not guaranteed to
have an effect on software execution. A branch mis-prediction, for instance, invalidates the
speculative values in this buffer. Instructions retire out of this buffer in-order, and there are
no superscalar limitations implied at retirement (three multiplies or three adds may retire
together).

3 Instruction Ordering

We examine out-of-order scheduling and vectorization strategies here.

3.1 Out-of-Order Limits

As previsouly discussed, achieving peak performance on a Barcelona core requires both
a vector add and multiply execute in each cycle. Traditional in-order processors require
instructions be shuffled in this manner, but in theory, the out-of-order scheduler on the
Barcelona should work just as fast with code organized in blocks of adds followed by blocks
of multiplies. We constructed a computation consisting of SSE multiplications followed by
the same number of SSE additions (blocked), and compared it to the same computation
with the additions interlaced one to one into the multiplications (shuffled). Varying the
sizes of the add/multiply blocks exposes the processor’s ability to schedule look ahead so
that both FMUL and FADD pipelines are full, as illustrated in Figure 2.

The AMD manual claims the scheduler can look up to 72 macro-ops (a type of internal
instruction) into the future. In these tests, performance died off around blocks of fifty
instructions, indicating that the scheduler was no longer able to see far enough into the
future to effectively fill the SSE pipelines.

These tests required no data movement, a situation rarely encountered in practice. For
a more practical comparison, we measured the performance of two parallel dot product
kernels, one with blocked instructions and the other with shuffled ones (which both make
quite heavy use of the memory subsystem).

These tests revealed a performance difference between the two approaches. The shuffled
code achieved 16.0 GFLOPS while the blocked code performed at around 15.1 GFLOPS,
a difference of about five percent. Because data movement is present, it is difficult to

Presented at Cray User Group 3 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

3.2 Vectors 3 INSTRUCTION ORDERING

Figure 2: Ordered vs. shuffled code execution

attribute this difference purely to the scheduler. However, as real code has memory moves,
this difference is probably more representative than that of the benchmarks in Figure 2.

3.2 Vectors

The SSE instruction set is built in the spirit of Single Instruction Multiple Data (SIMD)
operation. Multiple values can be held in one register, but they are only together so they
may be referenced at one time, not so that they assist each other in any way. Prior to
the specification of SSE3, the instruction set did not link elements in the same register
by anything other than move and shuffle operations. However, many simple computations
such as dot products and complex multiplication create dependencies between neighboring
elements in a register. The associated realtime re-ordering and shuffling (which can become
expensive) has made buffering of a set of this shuffled data quite popular. Unfortunately,
it is very difficult for compilers to recognize and effectively implement these temporary
buffers, and manual implementation can be very costly both in terms of code quality and
maintainability.

We configured two tests to examine the effectiveness of these extraneous shuffle and
move instructions by comparing a simple complex dot product code with one that takes
advantage of memory reordering and buffering. The first uses an SSE2 single precision
complex dot product found in the AMD 10h optimization guide[1]. The second uses the
same basic code structure, but incorporates buffers to store reordered copies of the original
data to simplify the on-the-fly shuffling. The difference amounts to trading a shuffle and
four register moves for two cache loads. We executed the tests for different reorder buffer
sizes.

As seen in Figure 3(a), for small buffer sizes the code gets up to a seven percent per-
formance boost. However, as the buffer sizes grow and more information gets reordered
in temporary buffers, the on-the-fly code works better. The broken L1 cache causes the
buffered code to run significantly slower than the original. (This is the point where the
shuffle instruction and four register moves are cheaper than the two cache loads.)

Presented at Cray User Group 4 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

3.3 Ordering Conclusions 3 INSTRUCTION ORDERING

(a) Barcelona (b) Athlon

Figure 3: Buffered vs. on-the-fly complex multiplication

Figure 4: Athlon and Barcelona: buffering

As illustrated in Figures 3(b) and 4, this optimization appears to have been more relevant
on the older Athlon 64 style processors. While this buffering would almost guarantee a
speedup on the Athlon, improved shuffle instruction throughput on the Barcelona makes
consideration of these instruction-trade optimizations something only very high end code
would need to worry about.

3.3 Ordering Conclusions

We see two conclusions from these tests. First, manual instruction ordering (at least of
adds and multiplies) will probably not result in imrproved performance. Strong performance
requires balancing multiplies and adds, unrolling enough to allow the pipelines to stay busy,
and keeping instruction blocks within about a 50 instruction look ahead range (this really
depends on the number of macro-ops in an instruction).

Presented at Cray User Group 5 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

4 BRANCH PREDICTOR

Second, re-ordering and buffering data can provide some performance gain, though it is
hard to quantify this gain in any general sense. In the case of the complex multiplication on
a Barcelona processor, the seven percent speedup is probably not sufficient motivation to
implement these optimizations. However, the changes would have been worth considering
on the older Athlon 64 style Opterons. For the most part, the extra shuffle and move
instructions associated with non-reordered code will not be the difference between success
and failure in tuning an application, but the difference does exist. Unfortunately, these
code changes may be awkward to implement and can easily lead to additional problems in
the cache heirarchy.

Overall, the Barcelona provides a nice out-of-order execution environment. If a program
feeds the processor within the limits of the look-ahead buffer, the processor will probably
run it efficiently.

4 Branch Predictor

Advanced branch prediction is one of the strong selling points of new x86 processors, allow-
ing a core to guess how to branch while only requiring corrective action when the respective
conditional is fully evaluated. Most code uses only the simplest features of the predic-
tor, or is otherwise memory bound such that the cores have an excess of time to work on
conditionals. However, understanding the branch predictor may improve performance for
compute-bound code with sufficiently patterned conditionals. The following is a description
of the Barcelona branch predictor largely sourced from information compiled on the Athlon
64 branch predictor by Hans de Vries[2].

Static branches are not a real issue on the Barcelona processor, and they are detected and
predicted separately from the dynamic branches. To handle dynamic branches, each core
maintains a table of Global History Bimodal Counters (GHBC) holding two-bit unsigned
integers which are associated with dynamic branches in code. When the core encounters a
branch and the respective counter is either zero or one, it does not take the branch, and
when the counter is two or three it does1. When the conditional is finally evaluated and
the core knows which way the conditional went, it either increments the counter (branch)
or decrements it (no branch). The counter does not overflow from three to zero or vice
versa. However, were the branch predictor heuristic this simple, even alternating between
branching and not branching on a single conditional would baffle the core. To account for
patterns, the last few bits of the global branch history are used in combination with bits
from the instruction address as the address then used to select the appropriate GHBC entry
(hence “Global History” in the name). This means if a core encounters a conditional after
branching, it will use a different GHBC entry than if it had not previously branched but
still reached the same conditional. Each dynamic branch occupies multiple entries in the
GHBC. This gives the branch predictor state, and by knowing where it has been, it can use
the GHBC to guess more intelligently where to go.

Running a simple simulation of the GHBC on random data and then sending the same
data to the processor and timing execution shows that the Barcelona probably feeds back
twelve or thirteen bits into its GHBC (shown in Figure 5). This means the processor

1We are unsure exactly which numbers cause what behavior, but the basic idea is correct.

Presented at Cray User Group 6 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

4.1 Branch Types 4 BRANCH PREDICTOR

can remember relatively large conditional patterns (that may even be longer than twelve
conditionals).

Figure 5: Branch mispredictions
Error between measured and simulated GHBC.

The weakness of the branch predictor lies in the fact that the branch history is global.
For branches inside long loops (which are quite often the most costly branches), the loop
conditional will hold half of the global branch history as either constant zeros or ones (be-
cause loops are based on very constant branches, with only the last break conditional being
unique). This reduces our twelve bit history to a six bit history! Fortunately, loop unrolling
make the loop branch history less relevant in comparison to the full global branch history.
Also, if unrolling allows conditionals to be separated a significant amount, prediction rates
should also go up based on the fact the GHBCs of multiple branches are being trained
rather than those of just one.

It is important to put Figure 5 in perspective. We purposefully generated worst case
input for the branch predictors. Real pseudo-random branching will probably not exhibit
such sharp performance differences between each global history length. If a code follows
some pattern for some short amount of time, the branch predictor will probably pick up
on it. Also, a branch misprediction will not cost code of any reasonable size that much
time. The AMD 10h Optimization guides says a branch misprediction will cost at most
ten cycles. As our test code, we used a simple conditional addition statement. Even with
all the misses, execution time only doubled in the worst case scenario. For code containing
a serious number of addition or multiplication operations, branch misprediction problems
would probably disappear.

4.1 Branch Types

Aside from the regular floating point comparison hardware, there are two other ways to
optimize floating point conditionals on the Barcelona. First, and most important, is recog-
nition of conditional moves. Second is use of the integer comparator unit instead of floating
point (as described in [1]).

Presented at Cray User Group 7 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

4.1 Branch Types 4 BRANCH PREDICTOR

Conditional Move: In some cases, branches are used to simply choose data rather than
operate on it. An example is “use s1 unless c is true, then use s2”. The SSE
instruction set was designed to accommodate this structure, and the equivalent SSE
conditional move runs much faster than the equivalent code branches due to both
SIMD parallelism and pipelinability.

The steps for the Conditional Move Operation for this statement are

1. Initialized data to a default value (s1),

2. Evaluate the conditional, using a SIMD comparison, leaving a mask in a target
register indicating elements the need to change,

3. AND with values of (s2 - s1) in an offset register, and

4. Add the offset register to the original (s1), leaving the correct value in the final
register.

Integer Comparison: Using the integer unit for floating point comparisons as described
by AMD[1] is somewhat effective. It does break full IEEE-754 compatibility, but the
performance gains are meaningful and it is easy to implement these changes in real
code.

In C, the conditionals look something like

if (*((INTTYPE *) &floatingdata) < CONSTANT)

where INTTYPE, CONSTANT, and the direction of the comparison depend on the desired
operation. The appropriate values are given the the 10h Optimization Guide.

As a simple test, we fed linear arrays of single precision floats through a conventional
floating point code conditional, an integer-based float point code conditional, a single ele-
ment SSE conditional move, and a four element SIMD SSE conditional move. In order to
take greater advantage of the GHBC, we also included versions of both of the code branchers
unrolled four times.

For one test we used random values for the input float array, and for the other we
used conditionals representative of very looplike code (very infrequent changes). Results of
these experiments are shown in Figure 6. The “blocked” tests reference the full SIMD and
unrolled conditional functions.

From this we observe that

• the SIMD conditional moves scaled naturally (by a factor of 4) with multiple data
inputs, and performed virtually the same on random and non-random data;

• single element conditional move beat the code conditionals on random data but lost
on non-random data;

• for non-random data, all code conditionals performed the same (neither unrolling or
feeding data through the integer comparators helped);

Presented at Cray User Group 8 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

5 TWO MORE TESTS

Figure 6: Branch speed comparison, various conditional types

• for random data, the integer comparators performed better than their respective float-
ing point comparators; and

• for random data, the unrolled comparators performed much better than their rolled
counterparts (indicating the data was not really random, and that the branch predic-
tion unit was able to find patterns).

Of note, if these conditionals were not independent and could not be pipelined, then
the performance gains of using the SSE conditional moves would drop off severely because
there would be no parallelization to exploit, and the regular conditionals may become faster
in all cases.

5 Two More Tests

We examine two more computations often found in scientific codes, each of which presents
performance challenges to x86 architectures.

5.1 Computing the sine

Virtually all x86 processors have hardware versions of the sine function to retain compliance
with the old 387 floating point unit. This instruction is chosen for simple operations with no
performance constraints because it seamlessly supports full 80-bit floating point numbers.
However, the 387 sine is not pipelined, and sequential FPU sine calculations can occur only
when previous ones have finished.

Because the computation of the sine is based on a simple Taylor expansion, it fits well
to the SSE instruction set and can be separated into two independent stages: take modular
input, then apply Taylor expansion. We organized tests using combinations of several
approaches, listed in Table 1, the performance of which is shown in Figure 7.

Presented at Cray User Group 9 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

5.1 Computing the sine 5 TWO MORE TESTS

Blocked Instructions were arranged with blocks of FADD instructions sepa-
rate from blocks of FMUL instructions.

Shuffled FADD instructions interlaced evenly when possible through FMUL in-
structions.

Staged Rounding Input values were all rounded before any were sent through the
Taylor expansion.

Non-staged Rounding Input values were rounded as they were requested by the Taylor
expansion.

Pipelined Instructions were arranged to virtually guarantee availability of
work for the out-of-order scheduler (mainly through calculation of
different sine values in parallel).

Non-Pipelined Out-of-order scheduler left to recognize independence of operations
itself.

Table 1: Sine function code organization strategies.

Figure 7: Sine implementations
Legend: Stg: Staged, Blk: Blocked, Shf: Shuffled; Pipe: Pipelined. Prepending with an
“N” means that configuration is not implemented.

From this we observe:

• If the pipeline has something to do, code will run relatively efficiently. All the
Pipelined implementations worked about the same.

• Breaking up the dependent stages into different loops (as seen in Staged Rounding,
Non-Pipelined vs. Non-staged Rounding, Non-Pipelined) helps the scheduler work
much more efficiently when pipelining is not already manually implemented.

• The difference in blocking and shuffling instructions was largely irrelevant.

Of practical note, we did not use a sustainable method of modular arithmetic to fit
the Taylor expansion. As inputs increased, the modular operation started destroying a

Presented at Cray User Group 10 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

5.2 CORDIC Arctangent 5 TWO MORE TESTS

y = input_y[j];
x = input_x[j];
z = 0.0;
for(i = 0; i < ITERS; i++) {

if (y < 0.0f) {
s = 1.0f

} else {
s = -1.0f;

}

n_x = x - s * y * pow2i_ss[i];
n_y = y + s * x * pow2i_ss[i];
n_z = z - s * atan_pow2i_ss[i];

x = n_x;
y = n_y;
z = n_z;

}
out_atan[j] = z;

Figure 8: CORDIC computation

significant amount of input precision. Also, convergence of the Taylor expansion is always
an issue, and we spent virtually no time determining if the method or expansion (to the
19th power) was really appropriate. Of note, even values as low as π showed error in the
lowest precision bits.

5.2 CORDIC Arctangent

CORDIC (coordinate rotation digital computer) algorithms are a set of a simple iterative
formulas popular in FPGAs for compactly implementing a wide variety of complex oper-
ations (sine, hyperbolic sine, square root, division, etc.). For a regular processor, it has
limited use. However, it provides interesting tests for the Barcelona because, while lending
itself to the SSE instruction set, a conditional in sequential iteration proves to be a tricky
bottleneck. A C implementation is shown in Figure 8.

Evaluation of pow2i ss and atan pow2i ss represent lookup tables for
powf(2.0f,-(float)i) and atanf(powf(2.0f,-(float)i)). Scalars x and y are initial-
ized to their respective values for the operation atan2f(y,x), and z is initialized to zero.
After N iterations, z represents an approximation to atan2f(y,x).

There are two ways to utilize the SSE instruction set for this code. First and easiest is
to use three separate registers, each containing a set of independent x, y, and z values for
computing arctangents in parallel. This will not offer any speedup for cases where only one
arctangent needs calculated, but it should give significant gains when four or more values
need computed. The second method is a bit tricker, but overall requires fewer instructions

Presented at Cray User Group 11 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

5.2 CORDIC Arctangent 5 TWO MORE TESTS

for cases where only a single arctangent needs calculated. In this method, dependent values
of x, y, and z would be stored in adjacent elements of one vector register. By absorbing
subtraction into another special lookup table, the processor could use three out of four
possible operations per SSE instruction in solving for a single arctangent. Naturally though,
the vector nature of this second algorithm would require some extra shuffling.

For the parallel case, everything but the if statement transforms directly into SSE
SIMD code. Because adjacent elements are not dependent on each other, the multiplies,
adds, and lookup tables are all very simple. In most cases the existence of if statements
would make it impossible to efficiently use SIMD instructions; however, this if statement
can be implemented as an SSE conditional move discussed earlier.

Again, for the vector case, everything maps well to the SSE instruction set (given a
new lookup table). Conditionals can be implemented as either code branches or conditional
moves.

For some reference, Figure 9 represents the log base two of the average difference be-

Figure 9: CORDIC vs. GCC arctangent computation comparison

tween the CORDIC and the GCC arctangents as a function of the number of iterations
in the CORDIC implementation. The more negative numbers indicate less error, and the
magnitude of the y value should roughly represent the number of effective bits of precision
in the floating point number.

These tests are intended to illustrate the performance of different conditional types in
a few different code arrangements:

Single Element, Parallel One arctangent is calculated at a time using registers as in the
parallel mode described above.

Single Element, Vector One arctangent is calculated at a time using registers as in the
vector mode described above.

Pipelined, Vector This represents the Single Element, Vector code unrolled four
times to improve pipelining of instructions

Results are shown in Figure 10. The horizontal axis represents the manner in which
conditionals were computed. The vertical axis represents the average number of clock cycles

Presented at Cray User Group 12 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

5.2 CORDIC Arctangent 5 TWO MORE TESTS

Figure 10: Effects of different conditional types on CORDIC calculations

each iteration took. While not as absolute or clear as previous ones, they still show a number
of important facts:

• The integer unit is faster than the floating point unit in practice.

• Except where code can be pipelined, regular code conditionals beat single element
conditional moves.

• The performance benefits of increasing operational density through the use of carefully
packed vector data are unclear (since neither single element, non-pipelined configura-
tions decisively beat the other).

While it is evident in the single element case without pipelining that code condition-
als beat conditional moves, this changes entirely when either the full SIMD instructions
are used or code is pipelined. The pipelined single element vector code proved to be the
fastest of the last set of tests, but it is quite easy to do even better with different code types:

Pipelined, Vector Same as Pipelined, Vector above.
Full SIMD, Parallel Full SIMD operations on registers as in the parallel

mode
Full SIMD, Pipelined, Parallel Full SIMD operations on registers as in the parallel

mode while calculating two sets of arctangent values
in a pipelined manner (for a total of eight arctangent
values at a time)

Results for these configurations are shown in Figure 11. Again, the conditional moves in
the full SSE SIMD pipelined code easily surpasses the performance of all the branch based
codes above.

Presented at Cray User Group 13 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

5.3 Discussion 6 CONCLUSION

Figure 11: Comparison of various high end CORDIC implementations

5.3 Discussion

The difference in carefully shuffled instructions versus those carelessly blocked together are
negligible. Also, instructional density differences will probably not be a problem for most
codes, and, especially given the dual load capability of the AMD Barcelona, L1 cache is
starting to be very close to free for all but the highest end applications. In the sine tests,
buffering to level one caches proved to be almost invisible.

Further, the integer comparison unit performs better than the floating point comparator
in practice. This will probably only be true for cases where the conditional is a major part
of the computation (as in the CORDIC case).

Finally, if operations can be unrolled, broken at stages, or otherwise made such that the
code is pipelined and the out-of-order scheduler has more than one series of operations to
work on, then performance will be relatively good.

6 Conclusion

The information in this paper will probably not be useful in immediately improving perfor-
mance in any stable application, as most system libraries probably offer better performing
and more complete sine and arctangent implementations, and most developers have no
need to work at the assembly level. Rather, this paper is meant to highlight how well the
Barcelona processor core is able to use its advanced execution features to make code run
fast and to what extent developers need to be aware of its low level intricacies.

From that perspective, the Barcelona processor is adept at executing balanced mult-add
code at close to peak efficiency, even where the multiplies and adds are not arranged in a
pattern conducive for superscalar execution. In this regard, the processor performs well as
long as application code can feed it a balanced multiply/add stream. When the stream is
either unbalanced, or part of it gets out of the look ahead window (which functioned up to
around fifty instructions into the future), then performance will drop accordingly.

Tricky-to-implement, on-the-fly reordering and buffering accounted for some measurable

Presented at Cray User Group 14 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

REFERENCES REFERENCES

speedups of about seven percent for complex multiplication. However, this can introduce
an extra load on the cache heirarchy, which may prove more detrimental than any shuffling
gain. While these obsessive instruction-saving reorderings may have been relevant on older
architectures, the Barcelona handles shuffling and vector operations in general much more
smoothly.

SSE conditional moves proved to be dramatically more predictable than the branch
predictor, but they did not always perform better than the branch predictor when code was
not pipelined. If code was pipelinable and SIMD friendly, then the various conditional moves
proved to be much faster. However, when pipelining is not easy (and code conditionals are
the better choice), integer based conditionals operate at least as fast, if not faster, than
floating point ones. As the processor cannot translate code branches to conditional moves
on the fly (or floating point branches to integer branches), these modifications must be
explicity configured in an application (perhaps through use of Intel Intrinsics[3] or other
code constructs).

For the most part, all of this means that relatively efficient C code will translate to effi-
cient execution. The Barcelona core hides its intricacies well, so as long as no unreasonable
expectations are placed on the branch predictor, it is safe to program the Barcelona core
as a simple, cached, vector processor.

Acknowlwedgment

This work was significantly enhanced by discussions with Brian Waldecker of AMD.

References

[1] AMD. Software Optimization Guide for AMD Family 10h Processors. www.amd.com/
us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf.

[2] Hans de Vries. Understanding the detailed Architecture of AMD’s 64 bit
Core. www.chip-architect.com/news/2003_09_21_Detailed_Architecture_of_
AMDs_64bit_Core.html, September 2003.

[3] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manuals. http://www.
intel.com/products/processor/manuals/.

Presented at Cray User Group 15 Atlanta, Georgia, USA on May 7, 2009
Cray User Group 2009 Proceedings

www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf
www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf
www.chip-architect.com/news/2003_09_21_Detailed_Architecture_of_AMDs_64bit_Core.html
www.chip-architect.com/news/2003_09_21_Detailed_Architecture_of_AMDs_64bit_Core.html
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/

	1 Introduction
	2 The Barcelona FPU
	3 Instruction Ordering
	3.1 Out-of-Order Limits
	3.2 Vectors
	3.3 Ordering Conclusions

	4 Branch Predictor
	4.1 Branch Types

	5 Two More Tests
	5.1 Computing the sine
	5.2 CORDIC Arctangent
	5.3 Discussion

	6 Conclusion
	Acknowledgment
	References

