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•Software Pipelining

•Vector Operations

•How to Take Advantage of Given Optimizations
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Software Pipelining
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Software Pipelining references attempts to manually 

guarantee the existence of superscalar code within 

the Lookahead window.



Barcelona Overview
Three level cache architecture

•L1/L2 – High speed computational caches (256 and 128bits 

per cycle respectively)

SIMD Instruction Set
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SIMD Instruction Set

•Limited “Vector” operations

•Three SIMD pipelines

This presentation focuses on single precision



Branches

Four sub-topics

•SSE conditional moves

•Integer comparators

•Branch prediction mechanism
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•Branch prediction mechanism

•Case study: CORDIC Arctangent



SSE Conditional Moves

Branches that can be expressed as moves 

conditional on simple floating point comparisons 

SSE friendly

if(a < b) {
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if(a < b) {

sgn = 1.0;

} else {

sgn = -1.0;

}

ans = c + sgn * d;

if(a < b) {

ans = c + d;

} else {

ans = c – d;

}



Integer Comparison Unit

As recommended in the AMD 10h optimization guide, 

floating point comparisons can be performed in 

integer units (chart taken from guide):

Comparison Against Zero
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Comparison Against Zero

Integer Comparison Replaces

if(*((unsigned int *)&f) > 0x8000000U) if(f < 0.0f)

if(*((int *)&f) <= 0) if(f <= 0.0f)

if(*((int *)&f) > 0) if(f > 0.0f)

if(*((unsigned int *)&f) <= 0x8000000U) if(f >= 0.0f)



Branch Predictor

Dynamic branches predicted based on 2-bit Global 

History Bimodal Counters

Value: 0 1 2 3

Action: No

Branch

No 

Branch

Branch Branch
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Branch Branch

Counters updated as branch conditionals evaluated



Branch Predictor cont.

Heuristic improved by addressing GHBC with Global 

Branch History

Global Branch History GHBC

0 1 0 3

1 0 1 0
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1 0 1 0

Unfortunately, loops waste half of the available bits!



Branch Predictor cont.

Dots – Instruction address

Red – Loop branch bits

… 0 1 0 1 0 1 1 1 1 1 0 1
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Green – Legitimate branch bits

Unrolling loops can help improve the Legitimate/Loop 

ratio and make the GHBCs work better



Branch Benchmarks
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CORDIC Arctangent

•CORDIC algorithms popular for implementing trig 

functions with limited hardware

•Basic algorithm is SSE friendly, but includes a tricky 

conditional move 
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conditional move 



CORDIC Arctangent (SIMD)
for(i = 0; i < N; i++) {

if(y < 0.0f) {

s = 1.0f;

} else {

s = -1.0f;

}

n_x = x – s * y * powf(2.0f, -(float)i); //powf and atanf are

n_y = y + s * x * powf(2.0f, -(float)i); //implemented in
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n_y = y + s * x * powf(2.0f, -(float)i); //implemented in

n_z = z – s * atanf(powf(2.0f, -(float)i); //lookup tables

x = n_x;

y = n_y;

z = n_z;

}



CORDIC Arctangent (Vector)
for(i = 0; i < N; i++) {

if(y < 0.0f) {

s = 1.0f;

} else {

s = -1.0f;

}

n_x = x + (-s) * y * powf(2.0f, -(float)i) ;

n_y = y + s * x * powf(2.0f, -(float)i) ;
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n_y = y + s * x * powf(2.0f, -(float)i) ;

n_z = z + (-s) * 1.0 * atanf(powf(2.0f, -(float)i) ;

x = n_x;

y = n_y;

z = n_z;

}



CORDIC Performance
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CORDIC Performance Cont.
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Software Pipelining

•Out-of-Order scheduling is built around the idea of 

automatically pipelining code

•Out-of-Order scheduler is effective while multiple 

independent blocks of code appear in its look ahead 
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independent blocks of code appear in its look ahead 

window

•Questions:

•How far ahead does the scheduler look?

•How effective is “effective”?



Out-of-Order Scheduler
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Memory Dependent Tests

Blocked Shuffled Gain

15.10GFLOPS 16.00GFLOPS 5.62%

10

11

12

0 20 40 60 80 100 120

Instruction Block Size



Software Pipelining

•Scheduler is quite effective as long as instructions 

are available in its window

•Instructions easily made “available” by two 

techniques:
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techniques:

•Unrolling loops

•Staging loops



Software Pipelining
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Software Pipelining
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Vector Optimizations

•Some codes pre-shuffle values to make vector 

operations fit better to SIMD instruction sets

•For multiplication on complex numbers we can trade 

a dependency and a shuffle for a load
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a dependency and a shuffle for a load



Vector Optimizations
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Vector Optimizations
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Vector Optimizations
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How to Use This Stuff

•All these tests were written in C with the help of the 

Intel Assembly Intrinsics

•Unfortunately, the intrinsics do not work well on 

PGI or Pathscale compilers (they do work in GNU, 
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PGI or Pathscale compilers (they do work in GNU, 

Intel, and Microsoft ones)

•Intrinsics, while better than assembly, are clunky 

at best



How to Use This Stuff
for(i = 0; i < ITERS; i++) {

n_two = _mm_set1_ps(-2.0f);

m = (__m128)_mm_shuffle_epi32((__m128i)v1, 0x0);

m = _mm_cmpgt_ps(m, zero);

n_two = _mm_and_ps(n_two, m);

n_two = _mm_add_ps(n_two, p_one);
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n_v = (__m128)_mm_shuffle_epi32((__m128i)v1, 0xF1);

r1 = _mm_load_ps(&lin_lookup[i * 4]);

n_v = _mm_mul_ps(n_v, r1);

n_v = _mm_mul_ps(n_two, n_v);

v1 = _mm_add_ps(v1, n_v);

}



Conclusions

•Conditionals

•Unroll slow conditional loops

•Use integer comparisons

•Code for conditional moves
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•Code for conditional moves

•Pipeline operations explicitly

•Separate staged computations

•Don’t worry about vector operations



Square Root/Reciprocal Time
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