Solution of Mixed-Integer Programming Problems on the XT5
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ABSTRACT: In this paper, we describe our experience with solving difficult mixed-integer linear
programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational
Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs
for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear
programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems

of interest arising from the logistics and supply chain management field.
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1 Introduction

Mixed-integer linear programs arise in many applica-
tions, including logistics, supply chain analysis, and
data mining. For example, consider a mathemati-
cal model used to determine the optimal production
level for a computer factory. While the optimal solu-
tion might recommend producing 2398.72 comput-
ers, in reality we cannot produce a fractional number
of computers. In this case we can simply round the
solution to the nearest integer and be satisfied, but
for other problems we cannot do that. If we are
modeling the placement of biorefineries, a solution
indicating that we should build 0.6 refineries at one
location and 0.35 refineries at another is essentially
meaningless.

Mixed-integer linear programs are computation-
ally intensive and very challenging, but these prob-
lems are seldom solved on a supercomputer. As a
result, practitioners are limited to solving problems
that can fit on their laptop or desktop machines. In
this paper, we discuss the problem formulation, par-
allelization of mixed-integer programming solvers,

and some preliminary results of our work on solv-
ing large mixed-integer linear programs on the XT5.

2 Problem Formulation

Linear programming is a method of solving a con-
strained optimization problem in which the objective
function and the constraints are all linear. Mathe-
matically, we have

min ¢’z subject to Az < b. (1)

We seek a solution that minimizes the inner product
of ¢ and = within the polytope defined by the linear
constraints, or the feasible region. The area outside
the polytope is known as the infeasible region.

In a linear programming problem, the elements
of x can take any real value. In a mized-integer lin-
ear programming problem, some of the elements of
x are constrained to be integral. The problem then
takes the form

min ¢’z subject to Az < b, ;€ ZVjeD, (2)
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where D is the set of indices of the integer variables
in z.

2.1 Solution of Linear Programming
Problems

The canonical method for linear programming prob-
lems is known as the simplexr method. The simplex
method is an iterative method that systematically
examines the vertices of the polytope defining the
feasible region (the region in which the solution must
lie due to the constraints). See Figure 1 for an il-
lustration of an example two-dimensional linear pro-
gramming problem.

The optimal solution must lie at one of the ver-
tices of the polytope. Since the objective function
is linear, the solution must lie on one of the edges
of the polytope. If we found an “optimal” solution
inside the polytope, we could always find a better
one by following the direction of steepest descent of
the objective function. The only way we would be
unable to do that is if our optimal solution lay on
the edge. Furthermore, assuming that the problem
is not degenerate, the optimal solution must be at a
vertex of the polytope, because once we have traced
to an edge and can no longer follow the gradient of
the objective function, the projection of the steep-
est descent upon the edge is a feasible direction that
further decreases the value of the objective function.

In the first step of the simplex method, we find an
initial feasible solution, determine along which edge
defining our vertex we can decrease the value of the
objective function, and proceed along that direction
and find the next feasible solution. We continue in
this manner to traverse the polytope, until we reach
a point at which all possible directions increase the
value of the objective function. At this point, we
have found the minimum and solved the problem.

The method of finding an initial feasible solution
varies. For some problems, it is simple to find an
initial feasible solution, but for those that are more
complicated, the usual methods are to either solve an
auxiliary linear program or to add a penalty against
infeasibility to the problem [6].

The simplex method works well in practice, but
in the worst case, a problem with n variables and m

constraints could require the examination of

vertices. The Klee-Minty problems, developed in
1972, are an example of such problems [4].
Typically, however, the simplex method performs

much better than that. On average, we would ex-
pect to find a solution in an amount of time pro-
portional to a polynomial in n and m: in fact,
the average number of iterations is bounded by
O(min{(m — n)%,n?}) [6].

The uncertainty associated with the worst-case
performance of simplex methods prompted the de-
velopment of alternative linear programming solu-
tion methods. Interior-point methods, first brought
into prominence by Karmarkar [3], are guaranteed
polynomial time algorithms. Closely related to
barrier methods, a class of nonlinear optimization
algorithms, interior-point methods iterate through
strictly feasible points (points within the polytope,
not lying on the boundary). The computational
complexity of interior-point methods is O(n?), where
n is the number of variables. This is much bet-
ter than the worst-case complexity of the simplex
method, but on average, the simplex method out-
performs interior-point methods [6].

2.2 Solution of Mixed-Integer Linear
Programming Problems

Mixed-integer  linear  programming problems
(MILPs) are much more challenging than linear
programming problems with purely continuous vari-
ables. In fact, they are NP complete, so we must
rely on heuristics.

Most MILP solvers rely on the branching con-
cept. The idea behind branching is that we can di-
vide up our discrete domain into pieces. For exam-
ple, if an integer variable is constrained to the range
[L,U], then we could divide our domain into two
pieces, [L, (L + U)/2]] and [[(L + U + 1)/2],U],
and explore these two spaces separately. Combin-
ing this branching with a means of computing lower
(and optionally, upper) bounds, we can develop an
optimization method known as branch and bound.

2.2.1 Branch and Bound

In a branch and bound method, we seek to improve
the global upper and lower bounds by systematically
performing bounding and branching operations on
subproblems.

Typically, we use a relaxation of the MILP as the
bounding function, meaning that we solve the LP re-
sulting from relaxing the integrality constraints on
the integer variables. This is a viable bounding be-
cause the integer solutions must lie within the LP
polytope — integrality constraints restrict the viable
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Figure 1: Example linear programming problem. Diagonal lines represent gradient of objective function.
Dashed lines represent constraints. Pentagon represents polytope bounding feasible region.

Figure 2: Example of branching. The feasible region within the pentagon is divided into four pieces (dotted
lines represent cuts).
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solutions to a region contained by the polytope. So
if we solve the LP for its minimum, we will obtain a
reasonable lower bound on the objective function.

We can use the bounding functions to eliminate
nonviable pieces of the domain (nodes in the branch-
ing tree) from consideration. In other words, if the
lower bound on a given node is greater than the value
of the best feasible solution we have found so far,
then we can eliminate that node from consideration,
because there is no way that it can contain the op-
timal solution. We can then subdivide other viable
nodes further, and continue to refine the viable re-
gions of the problem domain recursively, stopping
only when our upper and lower bounds equal one
another (or are within a certain tolerance of one an-
other).

The remaining element of the algorithm to be
defined is the search strategy. We need to exam-
ine the branches in a systematic manner, which we
hope will reduce the amount of time spent on futile
searches. A common method used is known as best-
first search, in which we choose to process branches
with the smallest lower bounds first. This strategy
reduces the number of branches that are searched,
at the sacrifice of incremental improvements to the
upper bound on the solution. Depth-first search, on
the other hand, chooses the next branch to search
based on its depth in the tree. Diving to the depths
of the tree may result in many suboptimal solutions
early in the search process, but it permits more im-
provement to the upper bound than does best-first
search. Other search strategies have been developed
that attempt to make a strategic selection of nodes,
such as best-projection and best-estimate methods.
These estimate-based methods select nodes based
on measures of node quality, such as lower bounds,
degree of infeasibility, and estimates of the optimal
solution to the subproblem [7].

2.2.2 Branch and Cut

Often, the lower bound generated by the relaxation
of a MILP to its corresponding LP is too loose to
allow for efficient solution of the problem. In many
cases, we can improve the bound by adding valid
inequalities to the problem as we go, strengthening
the LP relaxation [7]. This technique is known as
branch and cut. For example, in Figure 3, we can
add the red dotted-dashed line to the MILP with-
out excluding any feasible points, and tighten the
bounds.

2.3 Parallelization of MILP Solvers

A naive parallelization of the branch and bound
method would subdivide the feasible region and dis-
tribute these branches across all processes. Each
process can find the local optimum within its branch,
and communicate at the very end of the computa-
tion, at which point the optimum is determined.

But this method results in a lot of redundant
work. One process (its identity unknown at the be-
ginning of the computation) holds the branch con-
taining the optimal solution, so the work done by
all the rest of the processes is futile. This approach
results in little speedup. In fact, in a worst case
scenario, it could result in slowdown: perhaps the
solution of the optimum in one of the branches not
containing the minimum takes a lot longer than the
branch containing the optimum.

In fact, the good parallelization of MILP solvers
is much more complicated than that. There are
many factors to consider, and tradeoffs to balance,
but the parallel algorithm can be broken into three
main steps: ramp-up, search, and ramp-down.

2.3.1 Ramp-Up Step

In the ramp-up step, we break the feasible region
into pieces until there is enough work to spread
across all processes. As implied by the definition
of this step, there is extensive idle time during this
phase of the computation, at least until we break up
the domain into enough pieces.

The primary difficulty is the fact that process-
ing a single node can be large relative to the over-
all solution time. We can occupy the idle processes
with other tasks that improve the search, such as
problem preprocessing and computation of upper
bounds. These tasks may not be worth the time
taken to perform them, however, so ideally we would
prefer to shorten the ramp-up phase rather than oc-
cupy processes with auxiliary tasks.

Unfortunately, no good ramp-up acceleration
techniques have been developed. One idea is to par-
allelize the branching process itself by distributing
pre-solve candidates across processes. Another idea
is to use a branching scheme that subdivides the
problems into more than two subproblems. This
may increase the size of the tree, but it could re-
sult in candidate nodes that much more quickly [7].
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Figure 3: Example of cutting. The feasible region can be better bounded by the red dotted-dashed line,
tightening the bound without removing any of the possible integer variable feasible points (gray dots).

2.3.2 Search and Process Phase

The main body of the algorithm involves searching
and processing branch nodes, and using and sharing
that information (also known as knowledge manage-
ment). How can we best generate and share node
descriptions and valid inequalities? There are two
approaches to knowledge management: centralized
and decentralized control. A single process control-
ling the algorithm has a much clearer global picture
of the state of the solution than would correspond-
ing decentralized hubs that each had a piece of the
picture. But the manager-worker algorithm is not a
scalable approach, so while more work may be per-
formed by a decentralized algorithm, it may be the
more efficient choice.

In choosing a search strategy, we now have ad-
ditional considerations pertaining to parallelization.
It would be difficult to execute a search strategy in
parallel precisely as it is executed in serial. Global
best-first search, for example, is impractical for more
than a handful of processes. It might be a good local
strategy to adopt, however.

Thus we now have two aspects of the search strat-
egy to consider: global and local. The global strat-
egy would determine how we best shift nodes be-
tween processes in order to pursue our search strat-
egy. The local strategy would determine how to pro-
cess nodes locally.

Working hand in hand with our search strategy
is our load balancing strategy. In a centralized al-
gorithm, it is relatively simple to control the move-

HMLOG CPLEX URL: http://www.ilog.com/products/cplex/

ment of work and ensure balance. A decentralized
algorithm, however, poses problems. Perhaps a local
hub could load balance well within the context of the
nodes available to it and its subset of processes, but
additionally we need to implement a global policy to
meet the global needs of the algorithm.

2.3.3 Ramp-Down Step

The ramp-down step, symmetric to the ramp-up
step, faces similar problems with an insufficient
workload to occupy all available processors. While
this step’s contribution to parallelization is usually
ignored, it can actually lead to serious problems with
scalability [7].

3 Existing MILP Solvers

3.1 CPLEX

CPLEX is the leading commercial package in the
linear programming field.! The mixed-integer op-
timizer contained within CPLEX can solve mixed-
integer linear programs quite rapidly in serial. It in-
cludes mixed-integer problem reduction algorithms,
user-defined branching priorities, node selection al-
gorithms, and variable selection options. A parallel
version can run across many cores in a node, and
while its parallelization strategy yields good speedup
in many cases [5], this is of little help to those who
wish to run on a distributed memory machine.
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A distributed parallel extension to CPLEX,
called ParaLEX, was developed by Shinano and Fu-
jie [8]. Their parallel implementation, a somewhat
primitive manager-worker algorithm implemented in
MPI, was tested on up to thirty parallel processes,
and achieved superlinear speedup on a few problems,
and modest speedup on the rest.

3.2 Gurobi

A new commercial solver, Gurobi, has just been re-
leased in the spring of 2009.2 Named after its three
developers, Robert Bixby, Zonghao Gu, and Edward
Rothberg, Gurobi is competitive with CPLEX on
many problems [5]. Like CPLEX, Gurobi is also ca-
pable of parallelizing across multi-core processors.

3.3 COIN-OR

The purpose of the Computational Infrastructure
for Operations Research (COIN-OR) project is to
spur the development of open-source software for
the operations research community.> Many pack-
ages are available, including several solvers for lin-
ear programming and mixed-integer linear program-
ming problems. In addition, there are solvers for
other classes of problems (e.g., mixed-integer non-
linear programs, sequential quadratic programming
problems).

3.3.1 SYMPHONY

SYMPHONY, available in the COIN-OR project,
can be used as a generic MILP solver, a callable
library, or extensible framework for implementing
custom MILP solvers. It has a large arsenal of solu-
tion techniques at its disposal, an OpenMP shared-
memory implementation, and a distributed parallel
implementation in PVM.

SYMPHONY takes a centralized approach to
knowledge management.

3.3.2 CHiPPS

The COIN-OR High-Performance Parallel Search
Framework (CHiPPS) is a framework for developing
parallel tree-search algorithms. It is implemented in
three layers:

1. The Abstract Library for Parallel Search
(ALPS) layer implements the search handling

2Gurobi Optimization URL: http://www.gurobi . com/
3COIN-OR URL: http://www.coin-or.org/

methods needed for large-scale, data-intensive
parallel search algorithms.

2. The Branch, Constrain, and Price Software
(BiCePS) layer, built on top of ALPS, is re-
sponsible for the data-handling capabilities
needed for relaxation-based branch and bound
algorithms.

3. The BiCePS Linear Integer Solver (BLIS)
layer, built on top of BiCePS, is an instantia-
tion of BiCePS in which the relaxation method
is linear programming.

BLIS takes a highly decentralized approach to
knowledge management[7]. The global list of can-
didate nodes are spread across all processors. Ev-
ery processor that processes nodes has its own lo-
cal node pool from which it selects new candidates
for processing. Load balancing is performed using a
three-level master /hub/worker paradigm.

3.4 PICO

PICO is a distributed parallel MILP solver package
that is capable of scaling up to thousands of pro-
cessors [1]. It leverages the computing power of li-
braries from COIN-OR that perform the underlying
solves. The PICO framework parallelizes by split-
ting the tree into its branch components, distribut-
ing the work, and eliminating dead-ends.

PICQO’s parallelization takes a hybrid approach,
similar to BLIS. Initially, the domain is broken into
branches and the branches are distributed across the
processes. As branches are found to be nonviable,
the idle processes are given sub-branches from pro-
cesses with still-viable branches. The model is that
of a manager-worker algorithm. However, because
this is not scalable to thousands of processors, hubs
(local managers) are spawned, which communicate
to their local worker processors and to other hubs on
behalf of themselves and their local worker groups.

4 Results

We tested PICO and BLIS on two sets of problems.
The first set was a collection of standard MILP test
problems of varying sizes and difficulty. The second
set consisted of 27 problems concerning the place-
ment of facilities in Canadian cities.
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All runs were performed on Jaguar, a 1.4 PF
Cray XT5 with more than 100,000 processors at the
National Center for Computational Sciences at Oak
Ridge National Laboratory.

4.1 Standard Test Problems

These problems were standard test problems that
come with the BLIS distribution. Problems vary
in size with the number of unknowns ranging from
roughly 100 (bell5) to nearly 7200 (air05). Proper-
ties of these problems are shown in Table 1.

4.1.1 Performance of BLIS

We obtained results, as summarized in Figure 4,
with BLIS. Due to time constraints, we were un-
able to obtain consistent results for the last four test
problems in Table 1, so they are not reproduced here.

The overall trend for the performance of BLIS on
these problems is downward, so we find this promis-
ing. It is interesting to note that despite the fact
that air05 is the largest problem, for some processor
counts a considerably smaller problem, fc.60.20.3,
actually takes longer.

4.1.2 Performance of PICO

With PICO, we were unable to solve fc.60.20.3, but
otherwise successfully solved every problem. The re-
sults for PICO are summarized in Figure 5.

For the problems both PICO and BLIS solved,
PICO outperformed BLIS, as depicted in Figure 6.

4.2 Canadian Cities Problems

These problems were challenging, but small enough
that they can be solved in serial with CPLEX on a
desktop machine. Problem sizes varied with the size
of the cities, from 26,000 (in the case of Halifax) to
2.4 million (in the case of Montreal) unknowns and
constraints. Integer variables made up roughly 6—
55% of the total number of variables, with larger
problem sizes having proportionally fewer integer
variables, although the number of integer variables
was larger for larger problem sizes.

4.2.1 Performance of BLIS

Two of the problems, Calgary and Montreal, failed
at the point of file input when runs were attempted.
For the rest of the problems, we ran them three times
for each processor count and took the average of the

walltimes to determine scalability. Processor counts
varied from 2 to 128. The results for all the problems
are summarized in Figure 7.

The overall trend is no speedup. In Figure 8,
three results have been extracted. The results for
the city of North York show a modest speedup. Ed-
monton exemplifies the trend, remaining basically
constant independent of the number of processors.
Vancouver results are highly irregular. It seems that
at 16 processes, the worst branches were chosen, and
the best performance is actually for two processors.

The reason for this dismal speedup is because the
majority of the time is spent in ramp-up. Ramp-up
is essentially serial. Additionally, the more proces-
sors there are, the more spawning of branches are
required before we can leave the ramp-up phase.

4.2.2 Performance of PICO

PICO was less robust than BLIS. Problems PICO
was unable to solve included Calgary, Edmonton,
Mississauga, Montreal, North York, Toronto, and
Vancouver. Its difficulties with these problems led to
different behaviors: some, such as Calgary, resulted
in immediate segmentation faults, while others, such
as Toronto, were brought down partway through the
computation by apparent memory leaks.
Furthermore, even when PICO was able to solve
a problem, it did so several times slower than BLIS.
PICO showed the same lack of scalability as BLIS,
for the same reasons. Figure 9 shows summary re-
sults for all the city problems solved by PICO.

4.3 Analysis of Application Perfor-
mance

Both applications performed poorly on the city fa-
cility placement problems. In both cases the vast
majority of time was spent in ramp-up activities,
which explains their miserable scaling.

On the test problems, on the other hand, there
was some promise of scalability, particularly for the
more difficult problems. This is because the work
needed to solve the difficult problems dwarfed the
work associated with ramp-up.

While these results suggest that these parallel
MILP solvers show promise when applied to diffi-
cult MILPs, both solvers appear insufficiently robust
to handle large inputs or large problems. Thus we
conclude that parallel MILP solvers show promise in
principle, but more work is needed in practice before
these solvers can operate robustly without the user
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Problem | Number of Variables
Name Equations | Total ‘ Integer
air05 427 7196 7195
bell5 92 105 58

bienst1 577 506 28

fc.60.20.3 414 708 348
neos2 1104 2102 1040

qiu 1193 841 48
sp98ir 1531 1680 1680
vpm2 235 379 168

Table 1: Problem sizes for standard test problems.
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Figure 4: Wall time for solution of select test problems using BLIS, for varying numbers of processors.
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Figure 5: Wall time for solution of select test problems using PICO, for varying numbers of processors.
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Figure 6: Comparison of wall time for solution of select test problems using BLIS (solid lines) versus PICO
(dashed lines), for varying numbers of processors.
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Figure 7: Wall time for solution of all city problems (except Calgary and Montreal, which did not run) using
BLIS, for varying numbers of processors.
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Figure 8: Wall time for solution of three city problems using BLIS, for varying numbers of processors. Ob-
serve the slight speedup for North_york, the flat performance on Edmonton, and the irregular performance

on Vancouver.

worrying that the latest job submitted to the queue
will only waste precious CPU time.

5 Future Work

Clearly, work is needed to before MILP solvers can
be capable of using petascale resources. Existing
MILP solvers are fragile and unpredictable. Thus
code development is needed. We have several ideas
of how to improve the performance of MILP solvers.

One idea is to leverage an existing parallel
framework to parallelize the MILP solvers. MAD-
NESS (Multiscale Adaptive Numerical Environment
for Scientific Simulation) [2] is a promising candi-
date for the job. MADNESS was originally de-
veloped to perform multiscale computations arising
from quantum chemistry applications, but the pro-
gramming environment that underlies the mathe-
matics is sufficiently general to be used for other
purposes. We envision using MADNESS to dis-
tribute branches across processes, while using exist-
ing well-established methods to decompose the do-
main into branches and to compute the upper and
lower bounds of the function.
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