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Motivation

• Design trends are leading to non-power of 2 core counts for 

multicore processors, due to layout constraints – e.g., AMD 

Istanbul (6), Intel Dunnington (6), ...

• This complicates memory configuration choices, which often 

have multiple of 2 restrictions on populating the DIMM slots for 

compute nodes

• In 2009 NICS will upgrade from Barcelona CPU (4 
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• In 2009 NICS will upgrade from Barcelona CPU (4 

cores/socket) to Istanbul (6 cores/socket), to bring Kraken to a 

1 PF system

• The purpose of this study is to evaluate memory configurations 

for the new system, to determine how to  maintain at least 1 

GB memory per processor core and also give good memory 

performance



Cray XT5 Compute Blade

• Each blade has 4 compute 

nodes

• Each node has 2 CPU sockets

• The 2 CPU sockets of a node 

each access 8 DDR2 memory 

slots
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slots



Cray XT5 Compute Node Architecture

• 2 CPU sockets of the node are 

connected to SeaStar2+ 

interconnect

• 2 CPU sockets of the node are 

connected to each other via 

HyperTransport link
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• Each CPU has its own on-chip 

memory controller to access its 

memory



Cray XT5 Compute Node Memory

DIMM

DIMM

DIMM

DIMM

DIMM

DIMM

DIMM

DIMM

• Each CPU socket directly accesses 

2 banks of 2 DIMM memory slots 

each, total 4 DIMM slots per socket

• NUMA configuration – each socket 

can access the other socket’s 

memory, but at lower bandwidth
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CPU CPU
• Each bank “should” be either empty 

or fully populated with DIMMs of the 

same capacity

• What is the best way to populate the 

DIMM slots?



Processor Types Considered

• AMD Barcelona, 4 cores/die, 2.3 GHz

• AMD Istanbul, 6 cores/die
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Benchmark Systems

• For experiments, use ORNL “Chester” 

Cray XT5, 448 compute core TDS --

small version of JaguarPF

• Swap DIMM configurations, run 

experiments
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Memory Types

• Chester:

• DDR2-800 4GB DIMMs

• DDR2-667 2GB DIMMs

• DDR2-533 8GB DIMMs

• Goal: evaluate performance of XT5 

system for different configurations of 
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system for different configurations of 

memory DIMMs for each socket of a 

compute node



Memory Configurations

• Chester node:

• 4-4-0-0, 4-4-0-0, (2    GB/core balanced)

• 4-4-0-0, 2-2-0-0, (1.5 GB/core unbalanced)

• 2-2-2-2, 2-2-0-0, (1.5 GB/core unbalanced)

• 2-2-2-0, 2-2-2-0, (1.5 GB/core balanced)

• 4-4-2-2, 4-4-2-2, (3    GB/core balanced)

• 8-8-0-0, 8-8-0-0, (4    GB/core balanced)
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Our particular concern: What is the penalty of using off-socket memory for the 

unbalanced cases?



Codes for Benchmark Tests

1. STREAM Benchmark.

• Measures memory bandwidth for several kernels

• Use TRIAD kernel z = y + a x

2. DAXPY kernel y = y + a x.

3. LMBENCH – measures memory latency.

4. S3D application code – petascale combustion application that uses 
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structured 3-D meshes.  Performance is typically memory-bound.



Experiments: Memory Spillage Effects

• Execute benchmark on one CPU 

socket

• Ramp up problem size / memory 

usage until memory spills off-socket

• Measure effects of using off-socket 

memory

DIMM

DIMM

DIMM

DIMM

DIMM

DIMM

DIMM

DIMM
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memory

CPU CPU



Memory Spillage Effects: STREAM

• Run on 1-8 cores

• Chester, balanced config -- 4-

4-0-0, 4-4-0-0

• Peak memory bandwidth:

• 25.6 GB/sec theoretical

• 21.2 GB/sec actual
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• See up to 15% decrease in 

performance when spilling 

memory references off-socket

• Note: STREAM puts related 

array entries z(i), x(i), y(i) all on 

same memory page – Linux 

first touch policy
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Memory Spillage Effects: STREAM
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• Same experiment, change 

STREAM memory initialization 

to put z(i), x(i), y(i) for same i 

on different pages, potentially 

different sockets

• Performance uptick – can get 

higher performance from 
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8 higher performance from 

accessing on-socket and off-

socket memory concurrently

• Not helpful for typical use case 

of using all cores for 

computation



Memory Spillage Effects: DAXPY

• Memory for y(i), x(i) on 

different pages

• Similar uptick in bandwidth for 

off-socket memory references
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Memory Spillage Effects: S3D

• S3D application code

• Chester 4-4-0-0, 4-4-0-0 (DDR2-800)

• Chester 8-8-0-0, 8-8-0-0 (DDR2-533)

• Vary grid cells per core

• Graph: wallclock time microseconds per 

gridcell per core
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gridcell per core

• Run on 1 socket or 2 sockets of node

• Observe spillage effects for 1 socket 

case

• Effects of memory spillage minimal

Cells per core



Memory Configuration Effects: S3D:

Chester 4-4-0-0, 4-4-0-0

• Now compare different memory 

configurations

• Run on both sockets

• Baseline case: 4-4-0-0, 4-4-0-0, 

balanced between sockets
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balanced between sockets

• All memory references are on-

socket
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Memory Configuration Effects: S3D:

Chester 4-4-0-0, 2-2-0-0

• Chester 4-4-0-0, 2-2-0-0

• Unbalanced between sockets

• For large memory cases, socket 

with less memory takes memory 

from other socket
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from other socket

• Memory performance slightly worse 

overall

• Memory performance slightly worse 

when thin-memory socket uses off-

socket memory
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Memory Configuration Effects: S3D:

Chester 2-2-2-2, 2-2-0-0

• Chester 2-2-2-2, 2-2-0-0

• Unbalanced between sockets

• Memory performance slightly worse 

overall
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• Memory performance slightly worse 

when thin-memory socket uses off-

socket memory
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Memory Configuration Effects: S3D:

Chester 2-2-2-0, 2-2-2-0

• Chester 2-2-2-0, 2-2-2-0

• Balanced between sockets

• Unsupported memory configuration 

– one bank is half-full
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• Significantly worse memory 

performance

• Believed to be due to the way 

memory is striped across DIMMs in 

the bank

0
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Memory Configuration Effects: S3D:

Chester 4-4-2-2, 4-4-2-2

• Chester 4-4-2-2, 4-4-2-2

• Balanced between sockets

• Fat-memory configuration

• Similar performance to baseline 
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• Similar performance to baseline 

case
0

Cells per core



Memory Configuration Effects: S3D:

Conclusions

• Performance loss from imbalanced configurations is at most ~ 17%

• Balanced (unsupported) memory configuration has much worse 

performance
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Memory Configuration Effects: LMBENCH:

Chester 4-4-0-0, 4-4-0-0

• Measures array load latency based 

on array length

• Run on 1 core

• Clearly see L-1/2/3 cache effects
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• Higher latency when some of array 

is off-socket

• Baseline case: 4-4-0-0, 4-4-0-0
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Memory Configuration Effects: LMBENCH

• Balanced and unbalanced memory 

configurations

• All cases have similar performance

• Memory configuration has no 

significant impact on latency
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significant impact on latency
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Memory Configuration Effects: LMBENCH

• Detail of previous graph

• On-socket latency ~ 86 ns

• Off-socket latency ~ 102-108 ns 

depending on configuration
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Conclusions

• Impact of unbalanced memory configuration on memory bandwidth less 

than expected: ~ 20% at worst

• Would not affect apps that don’t use much memory

• Would not affect apps that are not memory-bound

• Balanced (but unsupported) memory configuration performs very poorly –

half-empty memory bank appears to run at half speed

25

• Memory latency is unaffected by any change in memory configuration

• In some rare cases there could be advantage to using on- and off-socket 

memory in parallel


