
Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

Institute for Advanced Architectures and Algorithms

DOE IAA: Scalable Algorithms for
Petascale Systems with
Multicore Architectures
Al Geist and George Fann; ORNL

Mike Heroux and Ron Brightwell; SNL

Cray User Group Meeting
May 7, 2009

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

It’s All About Enabling Science

Application Challenges *
• Scaling limitations of present algorithms
• Innovative algorithms for multi-core, heterogeneous nodes
• Software strategies to mitigate high memory latencies
• Hierarchical algorithms to deal with BW across the memory hierarchy
• Need for automated fault tolerance, performance analysis, and verification
• More complex multi-physics requires large memory per node
• Model coupling for more realistic physical processes
• Dynamic memory access patterns of data intensive applications
• Scalable IO for mining of experimental and simulation data

Science is getting harder to solve on new supercomputer
architectures and the trends are in the wrong direction.

* List of challenges comes from survey of HPC application developers

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Algorithms Project Goals

The Algorithms project goal is closing the
“application-architecture performance gap” by developing:

Architecture-aware algorithms and runtime that will
enable many science applications to better exploit the
architectural features of DOE’s petascale systems.
Near-term high impact on science

Simulation to identify existing and future application-
architecture performance bottlenecks. Disseminate this
information to apps teams and vendors to influence future
designs. Longer-term impact on supercomputer design

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Much to be gained – Two recent examples

Exploiting features in the multi-core architecture
• Quad-core Opteron can do four flops per cycle/core
• Shared memory on node
• Multiple SSE units
New Algorithms
• Single precision numerical routines coupled with
• Double precision iterative refinement

New Algorithms and muti-core specific tweaks give a tremendous
boost to AORSA performance on Leadership systems.

Helps multi-core:
Doubles BW to socket
Doubles cache size
Doubles peak flop rate

New AORSA

Orig AORSA

New multi-precision algorithm developed for DCA++ more
efficiently uses the multi-core nodes in Cray XT5

• Science Application sustained 1.35 PF on Jaguar XT5
• Wins 2008 Gordon Bell Award

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Algorithms Project Overview
It all revolves around the science

Algorithms

Architecture

SimulationRuntime
Science

Applications

Multi-core
Processor affinity
Memory affinity
Scheduling

Hierarchical MPI
MPI_Comm_Node, etc
Shared memory
MPI_Alloc_Shared

Extreme Scale
Million node systems
Node level
Detailed kernel studies

Memory hierarchy
Future designs
Interconnect
Latency/BW effects

Influence design

Multi-core Aware
Hybrid, Parallel in time

Multi-precision
Krylov, Poisson, Helmholtz

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Maximizing Near-term Impact

Architecture aware algorithms demonstrated in real applications
providing immediate benefit and impact

Climate (HOMME)

Materials and Chemistry (MADNESS)

Semiconductor device physics (Charon)

New algorithms and runtime delivered immediately to scientific
application developers through popular libraries and frameworks

Trilinos
Open MPI
SIERRA/ARIA

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Technical Details
Architecture Aware Algorithms

Develop robust multi-precision algorithms:
•Multi-precision Krylov and block Krylov solvers.
•Multi-precision preconditioners: multi-level, smoothers.
•Multi-resolution, multi-precision solver fast Poisson and Helmholtz solvers
coupling direct and iterative methods
Develop multicore-aware algorithms:
•Hybrid distributed/shared preconditioners.
•Develop hybrid programming support: Solver APIs that support MPI-only
in the application and MPI+multicore in the solver.
• Parallel in time algorithms such as Implicit Krylov Deferred Correction
Develop the supporting architecture aware runtime:
•Multi-level MPI communicators (Comm_Node, Comm_Net).
•Multi-core aware MPI memory allocation (MPI_Alloc_Shared).
•Strong affinity - process-to-core, memory-to-core placement.
•Efficient, dynamic hybrid programming support for hierarchical MPI plus
shared memory in the same application.

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Multicore Scaling: App vs. Solver

Application:
• Scales well

(sometimes superlinear)
• MPI-only sufficient.

Solver:
• Scales more poorly.
• Memory system-limited.
• MPI+threads can help.

* All Charon Results:
Lin & Shadid TLCC Report *Courtesy: Mike Heroux

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Parallel Machine Block Diagram

Memory

Core 0 Core n-1

Node 0

Memory

Core 0 Core n-
1

Node 1

Memory

Core 0 Core n-1

Node m-1

– Parallel machine with p = m * n processors:
• m = number of nodes.
• n = number of shared memory processors per node.

– Two ways to program:
• Way 1: p MPI processes.
• Way 2: m MPI processes with n threads per MPI process.

- New third way:
• “Way 1” in some parts of the execution (the app).
• “Way 2” in others (the solver).

*Courtesy: Mike Heroux

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Overcoming Key MPI Limitations
on Multi-core Processors

• Hierarchy
– Use MPI communicators to expose locality

• MPI_COMM_NODE, MPI_COMM_SOCKET, etc.

– Allow application to minimize network communication
– Explore viability of others communicators

• MPI_COMM_PLANE_{X,Y,Z}
• MPI_COMM_CACHE_L{2,3}

• Shared memory
– Extend API to support shared memory allocation

• MPI_ALLOC_SHARED_MEM()

– Only works for subsets of MPI_COMM_NODE
– Avoids significant complexity associated with using MPI and

threads
– Hides complexity of shared memory implementation from

application

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Affinity and Scheduling Extensions

• Processor affinity
– Provide a method for the user to give input about their algorithms

requirements
• Memory affinity

– Expose the local memory hierarchy
– Enable “memory placement” during allocation

• Scheduling
– Provide efficient communication in the face of steadily increasing

system load
– Attempt to keep processes 'close' to the memory they use
– Interaction between MPI and the system scheduler

Ultimate goal is to expose enough information to application scientists
to enable the implementation of new algorithms for multi-core
platforms

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Initial Targets are Open MPI and Cray XT

• Open MPI is a highly portable, widely used MPI package
– Our extensions should work across a wide range of platforms
– Already has hierarchical communicators and shared memory support

at the device level
– We will expose these to the application level

• ORNL and SNL have large Cray XT systems
– We have significant experience with system software environment
– Open MPI is the only open-source MPI supporting Cray XT
– We will target both Catamount and Cray Linux environments

• Standardizing our effort
– Extension – potential proposals for MPI-3
– ORNL and SNL have leadership roles in MPI-3 process

• Al Geist, Steering Committee
• Rich Graham, Steering Committee, Forum Chair, Fault Tolerance lead
• Ron Brightwell, Point-to-point Communications lead

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Technical Details
Influencing Future Architectures

Evaluate the algorithmic impact of future architecture choices
through simulation at the node and system levels

Detailed performance analysis of key computational kernels on different
simulated node architectures using SST. For example, discovering that
address generation is a significant overhead in important sparse kernels

Analysis and development of new memory access capabilities with the
express goal of increasing the effective use of memory bandwidth and
cache memory resources.

Simulation of system architectures at scale (105—106 nodes) to evaluate
the scalability and fault tolerance behavior of key science algorithms.

Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

Progress of Project

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Built a Strong Project Team
Mix of math, CS, and application experts

Climate (HOMME)
• Mike Heroux, Mark Taylor, Chris Baker (SNL)
• George Fann, Jun Jia, Kate Evans (ORNL)

Materials and Chemistry (MADNESS)
• George Fann, Judith Hill, Robert Harrison (ORNL)
• Mike Heroux, Curt Janssen (SNL)

Semiconductor device physics (Charon)
• George Fann, John Turner (ORNL)
• Mike Heroux, John Shadid, Paul Lin (SNL)

Runtime and Affinity
• Ron Brightwell, Kevin Pedretti, Brian Barrett (SNL)
• Al Geist, Geoffroy Vallee, Gregg Koenig, Hong Ong (ORNL)

Simulation
• Arun Rodrigues, Scott Hemmert (SNL),
• Christian Engelmann, Phil Roth, Sadaf Alam (ORNL)
• Bob Numrich (UM), Bruce Jacobs (U Maryland), Sudhakar (GaTech)

Project team
includes key
application
developers

Staying on
track with
Bi-weekly
telecoms

Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

Parallel in Time Method
Spectral Deferred Correction

• Blackbox framework completed
– Templated construction in place
– Preconditioner in time inherited from existing low-order

method
– Parallel interface under development using Trilinos
– Example test codes working in MADNES in parallel

multicore mode
– Building interface to Trilinos to use iterative solvers

Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

• BDF2 time stepping option added, in addition to the existing Crank-
Nicholson

• A prototype flexible code structure has been added to use different
customized iterative solvers and preconditioner in HOMME (e.g. calls
GMRES or CG or … from the Trilinos library) with the Trilinos solver
framework

• Establishing a baseline for future comparisons and benchmarks
• Anticipating multicore kernels from Trilinos

• Add code so the existing semi-implicit methods
can be used as preconditioners

• Extension to iterative solver logic so that a multi-
level method can be added as a black box within
HOMME and interface with Trilinos

Next Steps

Improving Solution Methods in HOMME

Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

Status of level scheduling work

• Completed level scheduling algorithm implementation
• Completed permutation functions to support forming

explicit PAPT into Di and Fi blocks.
• Next step: threaded version of SpMV.
• Continue to make progress on the mixed precision efforts,

adding support for graphs in Tpetra (required to compute
the level schedules)

Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

Application Performance and
Run-time System, Simulator

• Began investigating threading behavior and performance
behavior of MADNESS using simulators (e.g. SNL’s,
ORNL and …). Preliminary assessment on applicability.

• Defining, displaying and understanding “memory and
cache access pattern” that is useful to compilers and
applications for improving performance—DAG analysis

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Runtime Progress
Overcoming key MPI limitations on multi-core processors

Building on Open MPI – a highly portable, widely used MPI package
•Our extensions should work across a wide range of platforms
•The extensions are needed by the architecture aware algorithms
•Our focus is the Cray XT, which SNL and ORNL have large systems

Hierarchal MPI programming
•MPI_COMM_NODE
•MPI_COMM_SOCKET
•MPI_COMM_NETWORK
•MPI_COMM_CACHE

Shared memory
•MPI_ALLOC_SHARED_MEM

This feature will allow algorithm developers to avoid significant
complexity associated with using MPI and threads

Design phase

Design phase

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

Node Simulation Progress
Creating an open source, parallel, modular simulator

Modularity: SST/Macroscale
simulator code has been
redesigned to use a general parallel
discrete event simulator (PDES) core

SST/Micro
Processor

SST/Micro
NIC

DRAMSim
(U. of MD)

SST/Micro
Router

MANIFOLD
(GaTech)

Other ...

Events
Parallel

Core

SST/Macro
Node

SST/Macro
Network

Engaging with labs, universities, and industries, which is key to
having the SST become a popular community resource

Parallel core: Several PDES cores have been evaluated or
developed to study design and performance.

Skeleton applications have been developed
to provide a rapid way to test algorithm design
choices under a variety of conditions

Study of sensitivity to latency and bandwidth
of a nearest neighbor communication pattern

Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

Academic Simulation Partners
• Georgia Tech

– Summer student starting in May
– Work on Qemu emulation front-end
– Allows emulation of x86, PPC,

SPARC, ARM, m68k

• Univ. Maryland
– New version of DRAMSim II
– GUI Front end for visualization and

configuration

• New Mexico State
– Jeanine Cook on sabbatical at SNL
– Extending stochastic processor

models
DRAMSim II

Qemu

Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

Parallel SST Strawman
• Strawman

– “API Testbed”
– < 1000 lines of code
– Demonstrates basic functionality

• Sim startup
• Component partitioning
• Checkpointing
• Event passing

• Current work
– System Description Language
– Refining Parallel DES
– Event interfaces
– Scaling

– Initial/Setup Mode:1. Load config file(s)2.
Generate component graph3. Partition graph

– 4. Instantiate components on each node
• 5. Dump initial checkpoint Run Mode:1.

Read checkpoint from disk2. Apply Edits
3. Run Loop a. advance components
upto time+dt b. exchange messages with
neighbors c. goto (3a)

•Weak Scaling
•Distance Based Opt.
•Minimal Partitioning

Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

Implementation Status

• Components
– DRAMSIM II
– NMSU Stochastic models
– Front Ends

• SST PPC Execution
• ‘Grouped’ Model

– Simple NIC/Net model
• Framework

– SDL
– Checkpointing
– Parallel DES

Official Use Only

Official Use Only

Institute for Advanced Architectures and Algorithms

System Simulation Progress
Investigating algorithm behavior at extreme scale

Evaluating scalability, performance, and fault tolerance of
algorithms on millions of nodes.

ORNL JCAS simulator
evaluating a million core
computer solving a fault
tolerant Poisson algorithm

JCAS runs in parallel on a Linux cluster
and is designed to study fault tolerance of
C and Fortran MPI algorithms at extreme
scale.

Working to replacing JCAS core with μπ a highly scalable PDES that
would extend JCAS to allow performance (timing) studies.
•μπ (MUPI) – “micro parallel performance investigator”

•Improved MPI communication support in the simulator
•Investigating design choices

– interface for simulated machine model and
– support for models generated by cycle-accurate simulations

Official Use Only

Official Use Only

Institute for Advanced Architectures and AlgorithmsInstitute for Advanced Architectures and Algorithms

Questions?

	Institute for Advanced Architectures and Algorithms
	It’s All About Enabling Science
	 Algorithms Project Goals
	Much to be gained – Two recent examples
	 Algorithms Project Overview�It all revolves around the science
	Maximizing Near-term Impact
	 Technical Details�Architecture Aware Algorithms
	Multicore Scaling: App vs. Solver
	Parallel Machine Block Diagram
	Overcoming Key MPI Limitations�on Multi-core Processors
	Affinity and Scheduling Extensions
	Initial Targets are Open MPI and Cray XT
	 Technical Details�Influencing Future Architectures
	Progress of Project��
	Built a Strong Project Team�Mix of math, CS, and application experts
	Parallel in Time Method�Spectral Deferred Correction
	Status of level scheduling work
	Application Performance and �Run-time System, Simulator
	Runtime Progress �Overcoming key MPI limitations on multi-core processors
	Node Simulation Progress�Creating an open source, parallel, modular simulator
	Academic Simulation Partners
	Parallel SST Strawman
	Implementation Status
	System Simulation Progress�Investigating algorithm behavior at extreme scale
	Questions?

