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ABSTRACT: This paper describes Cray's pre-hardware development environment, the
activities, and the testing for the Gemini software stack. Gemini is the next generation
high speed network for the Cray XT-series The simulation environment is based on
AMD's SimNow™ coupled with a Gemini device model that can be aggregated to form
multi-node systems. Both operating system and programming environment software
components have been developed within this environment. The simulated batch
environment, regression test suite, and development progress are also described.
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1. Introduction

Cray’s next generation high-speed network (HSN) is
based on the Gemini chip. Gemini will replace SeaStar in
XT Series supercomputers in the 2010 timeframe. These
new XT Series supercomputers based on Gemini are
referred to as Baker systems.

From a software perspective, Gemini requires a change
from the SeaStar Portals interface to two new application
programming interfaces (APIs): the user-level Gemini
Network Interface (UGNI) and the Distributed Memory
Application interface (DMAPP). The uGNI APl was
designed for efficient message passing and DMAPP was
designed for Partitioned Global Address Space (PGAS)
languages, Unified Parallel C, and Co-Array Fortran.
Underneath the two programming models, Cray
developed a Linux Gemini network interface (GNI) driver
as well as Linux IP and Lustre drivers tailored to Gemini.
The Gemini software is shown in Figure 1.

Figure 1-Gemini Software Stack
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Due to the long lead time of the Gemini chip, the software
team had to build an execution environment to accelerate
this software development. To that end, Cray developed a
system-level simulation environment. This simulation
environment was critical to the early development of key
Gemini operating system features to be delivered in the
Cray Linux Environment (CLE) Danube release. The
simulation environment also aided corresponding changes
to the programming model libraries and PGAS compiler
to be included in the Cray Programming Environment
(CPE) Diamond release.

This document describes the functional simulator, the
Baker “batch” system, and Cray’s test suite used for
Gemini software development. The primary components
in the simulation environment are AMD’s SimNow™ and
the Cray Gemini device model. The primary components
in Cray’s test environment include the Regression Test
System (RTS) and the Gemini test suite. The software that
is tested includes CLE, CPE, Lustre, and various
applications and test software.

2. Simulation Goals

There were several reasons for building a Baker system-
level simulation environment. First and foremost, this
simulator served as an early software development
vehicle prior to real Gemini hardware. The software team
was able to build software in parallel with the Gemini
chip and riser card development, thus minimizing the
impact on the overall Baker program schedule. Most of
the Gemini software stack was developed and debugged
on the Baker simulator. Specifically, the User-level
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Gemini Network Interface (UGNI), IP over Gemini
(IPoG) driver, and Gemini Hardware Abstraction Layer
(gHAL) were all developed and stabilized using the
simulation environment. These primary software building
blocks provided a foundation for subsequent component
development within the simulation framework.

The simulation environment was later extended to
develop and debug the Gemini Lustre network driver
(LND) on top of uGNI. This “GNI” LND was initially
ported from the Cray XD1 system and then debugged in
the Gemini simulation environment, providing additional
exposure to the kGNI and gHAL interfaces. In this
simulation environment, both client and server Lustre
Gemini stacks (shown in blue in Figure 2) were debugged
simultaneously.

Figure 2-Gemini Lustre Simulation Environment
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Debugging early, through simulation, ensured that Gemini
software was available for operating system boot on
initial prototype hardware, and that many system
integration issues had been resolved prior to the hardware
being available. Adding Lustre to the “ready” software
stack allowed additional behavioural coverage of kGNI
and gHAL, which complemented the earlier MPI and
TCP/IP testing of uGNI and IPoG interfaces. This
advanced development work guaranteed that once a real
Gemini system was available, the development team

could subject the new hardware to both application and
1/0 traffic patterns.

3. Baker System Simulation

The Baker System simulation environment consisted of
multiple nodes. Each node comprised a simulated
processor, memory, and Gemini network device. Some
nodes were configured with I/O as shown in Figure 3. The
processor, memory, and /O simulator components were

provided in AMD’s SimNow™ tool. Cray developed a
SimNow™ compliant Gemini device model to integrate
on each node. Multiple compute and service nodes were
aggregated to form a simulated Baker system.

3.1 SimNow™ Environment

AMD’s SimNow™ instruction set simulator provides
Cray engineers an early platform development
environment using AMDG64 processors. The following is
a general description of SimNow™ from the AMD
website:

The SimNow™ simulator is a fast and configurable x86
and AMD64 dynamically-translating instruction-level
platform simulator. With SimNow™ users can connect
complex software models to form a PC platform
emulation environment. SimNow™ emulates AMD
Athlon™ 64 and AMD Opteron™ uniprocessor and
multiprocessor based systems that run several
commercial operating systems and applications.
Specifically, AMD and its partners use SimNow™ for:

e BIOS and device driver development.
o Prototyping software visible architectural changes.

e Non-intrusive and deterministic measurement and
testing of software at the instruction-level.

Modeling of future platform tradeoffs for correctness
and performance analysis.

The simulator contains all the classic pieces of a PC
system (CPU, memory, Northbridge, Southbridge,
display, IDE drives, floppy, keyboard, and mouse
support). Images (hard disk, DVD/CD-ROM, and floppy)
can be created in custom sizes with the DiskTool program
that is provided with the simulator. A simulation can be
saved at any point in the simulation to a media file, from
which the simulation can be re-run at a later time.;

Cray uses the AMD SimNow™ Binary Release for
Linux-64 (revision 4.4.4) and hosts the tool on
commodity AMDG64 servers. Cray also takes advantage
of the wvirtualized 1/O provided in the default
configurations to substitute for boot devices and other
standard devices, such as a serial console.

3.2 Cray Simulation Hosts

Cray has six Newlsys 1U servers with dual-core Opteron
processors with 16GB memory on each. The server node
names are satinOl-satin06, as shown in Figure 4.
Likewise, Cray has five Dell 4U servers with quad-core
Opteron processors each with 32GB memory. These node
names are velvet0l-velvet05. Cray runs a standard Linux
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distribution (OpenSuSE) on all of these nodes. All these
nodes are interconnected via 10-Gigabit Ethernet.

This loosely coupled cluster of Satin and Velvet nodes
comprises a total of 32 cores: 12 cores on Satin nodes and
20 cores on Velvet nodes. For the best performance
during simulation, a single instance of SimNow™ is
launched per core. Although it is possible to run multiple
SimNow™ instances on a core, overall simulation
performance degrades almost linearly as the real
processor cores are oversubscribed with virtual cores.
Hence, the largest practical system simulation with these
resources is 32 nodes. Typically, most simulations were
run with fewer nodes.

3.3 Gemini Device Model

Cray developed a SimNow™ compliant Gemini device
model that integrates with an instance of the simulator.
This “device” combined with SimNow™ processor,
memory, and 1/O components form a Gemini node, as
shown in Figure 3.

Figure 3-A Gemini Node or Donut
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For Gemini simulation, one real Opteron core running an
instance of SimNow™ s used to host a single Gemini
node. Each Gemini node will boot a Cray Linux
Environment (CLE) image, either for a compute node
(CNL) or a service node. These images are built from the
common Cray XT source repository for Baker platforms.
Each image has the Gemini software components built-in,
which are loaded at image boot.

In the Gemini simulation environment these simulated
Gemini nodes are referred to as donut nodes, and are
assigned node names, donut0l-donutxx. These donuts
are assigned as either compute nodes or service nodes, as
shown in Figure 4. Cray has run simulations with as many
as sixteen donut nodes communicating over the simulated
Gemini network. The Gemini network is implemented by
the Gemini device model via registration to a SimNow™
service, which uses the Ethernet between host servers as a
message transport and proxy for a high speed network.

Figure 4-Lustre Simulation Environment
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4. Lustre Simulation Environment

In order to simulate Lustre operation in a Baker system
environment, Cray developed a multi-node simulation
comprising both service and compute nodes as shown in
Figure 4. Service nodes ran CLE service node Linux and
compute nodes ran CNL. One service node was
configured as a boot node and was used to configure two
other service nodes as a Lustre MDS node and single OSS
nodes. Additional nodes were configured as compute
nodes that ran the Lustre client and mounted the Lustre
file system on the service nodes. Applications were
launched on compute nodes that performed 1/0O to the
Lustre file system over the simulated Gemini network.

The Cray test group manages a virtual “batch system”
consisting of group of donut nodes in a similar
configuration to that shown in Figure 4. This batch system
is a fully functional Cray XT operating system
environment with both service and compute nodes. The
service nodes include Lustre, boot/SDB, and even login
nodes. Developers can simply logon to this simulated
Baker system and run programs as if they were logged on
to an XT system running CLE and CPE. This is
particularly useful for the test group and programming
environment developers, as this batch system has proven
to be relatively stable and requires no special knowledge
of the simulation environment.

One of the drawbacks of this full environment is that it is
relatively slow in execution. This is acceptable for batch
operation, but a bit cumbersome for interactive debug. As
a result, some developers simply reserved several donut
nodes and debugged in a standalone environment, which
provided more control and better performance. This was
also a safer method for operating system development, as
it is common to re-boot or even crash nodes during
normal debugging and this induced instability would not
have been tolerable in a shared batch environment.
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In order to further improve the simulation experience for
Lustre development and debug, another Lustre file system
configuration was created using external Lustre (eLustre)
servers as shown in Figure 5. For Gemini Lustre debug,
this configuration was very effective and involved
replacing multiple Lustre server nodes with a single node
configured as a Lustre router. In this setup the Lustre
router can actually route out of the simulation
environment to real external Lustre servers.

Figure 5-Gemini Lustre Routing to eL.ustre
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This significantly improves the overall simulation
execution speed while at the same time allowing for
debug of the Lustre router software. This mode also
places a slightly different load on the simulated Gemini
software components.

5. Gemini Software Testing

Gemini testing was done at the component level by
developers and at the system level by Cray’s operating
system test group. Both developers and testers have used
the simulation environment for their development, debug,
and testing of the Gemini software. Developers used a
wide variety of tools and techniques to debug their
software. The test group used a common set of tools
across projects. The following is a summary of the test
infrastructure that leveraged the simulated Baker systems.
The same infrastructure will be used with real Gemini
based systems as they become available.

5.1 Regression Test System (RTS)

Cray’s Regression Test System (RTS) provides a
mechanism for running tests and analyzing the results.
RTS is used for running the Gemini test suite on the
Baker simulated systems. The suite consists of over
seventy tests that focus on the uGNI interface, and

additional tests that target IPoG and DMAPP interfaces.
Beside targeted API tests, the test suite also runs both
MPI1 and DMAPP applications. For testing Lustre, generic
I/0 exercisers, targeted I/O functional tests, and a few
MPI applications were run that perform 1/O to a Lustre
file system. Additionally, a Lustre scratch file system was
built and mounted in the simulated batch user
environment, which allowed users to launch applications
stored on that Lustre file system.

Table 1-Bugs Found in Simulation

Bug Description SW/HW
741977 Pallas hang with uGNI MPICH Gemini
Driver

743697 GNI_MemRegisterSegment behaves Gemini
differently using 1 segment than with > 1 Driver
segment

743755 Kernel crash using Gemini
GNI_MemRegisterSegments Driver

743977 Short message send does not update mbox Gemini
credits correctly for certain configurations Driver

743983 Smsg mbox credits are updated incorrectly Gemini
in certain configurations Driver

744014 Smsg buffer credits are lost(?) in certain Gemini
sequences of transactions Driver

744500 Memory registration num_pages improperly | Gemini
calculated (?) with libhugetlbfs Driver

745897 FMA window allocations can exhaust Gemini
memory Driver

747647 NULL gc_handle parameter to uGNI
GNI_CqCreate dies ungracefully

747689 Test mem_reg_validate fails on hardware Test issue
with data miscompare

747707 Upper limit on the number of CQs is 959, uGNI
960'th gets "No space left on device" error

747772 dmapp_get of byte-arrays fails with DMAPP
DMAPP_RC_ALIGNMENT _ERROR
when target declared on the stack

During this testing, a variety of software bugs were
discovered in the Gemini software stack. The majority of
these bugs are listed in Table 1. In addition, a large
number of additional unreported bugs were identified and
fixed by developers in debug and unit testing within the
simulation environment prior to software integration
testing. Performing this software bug identification and
resolution in simulation keeps this activity off the project
critical path and will allow the focus of Gemini bring-up
to be on the hardware.

6. Lustre Debug under Simulation

The most significant Lustre related development for
Baker was the GNI LND. The GNI LND was a port of the
Cray XD1 LND to Gemini. Although the preliminary port
of the driver was done on the XD1, with KGNI running on
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the native HAL, the final debug and integration of Cray
XT series Lustre features was done under the Gemini
simulation environment. Both the internal and external
Lustre service modes for fabric attached and remote
Lustre servers were exploited to debug and test the GNI
LND.

6.1 Gemini Lustre Debug

During the development, debug, and testing of Lustre on
the Gemini stack, a number of bugs (listed in Table 2)
were found in the Gemini software components. Again,
finding these bugs early in simulation prior to Gemini
hardware helped to avoid spending time debugging
software issues while on the critical path with prototype
hardware.

Table 2-Lustre Bugs Found in Simulation

Bug Description SW/HW
745553 Lustre 10 hangs kGNI
747905 oops in kGNI
{:kgni:kgni_error_processing+127}
747176 gni_ep_bind:kgni_reqlist_alloc failed (- kGNI
12)
747175 NULL pointer 0x40 @ kgnilnd: GNI LND

kgnilnd_active_conn_handshake+1065
747559 kgnilnd_check_fma_rx()) ASSERTION GNI LND
(conn->gnc_rxmsg == NULL)

747698 RIP: <ffffffff880ae0fd> GNI LND
{:kgnilnd:_kgnilnd_debug_msg+109}

In addition to explicit Lustre 1/O testing, the simulated
batch environment also mounted Lustre as scratch 1/0 for
users and as a home for test applications and log files.

Two examples of Gemini development are provided at the
end of this paper. These annotated examples are of a
Lustre debug session (Appendix A) and a comprehensive
I/0 test suite run (Appendix B). The debug session
example provides additional insight as to the level of
developer interaction possible in the Gemini simulation
environment by showing process output from two nodes.
The test run example illustrates the scope of system test
supported within the simulation environment and provides
some sample application output.

7. Gemini Simulation Summary

The Baker Simulated Batch environment and dedicated
simulated Gemini nodes proved to be critical to Gemini
software development. This environment was used by
software developers and testers for all aspects of Gemini
development, from the Gemini Hardware Abstraction

Layer (gHAL) all the way up the stack to Cray’s PGAS
compiler.

This strategy was validated when the first Gemini chips
arrived. Once the chips were powered up and initialized,
the operating systems booted on the first day. Shortly
thereafter multiple nodes were connected via real Gemini
chips and applications were launched and run. As more
and more Gemini paths have been validated, the Cray
software stack has run on that hardware and served as a
stable platform for Gemini hardware debug.

Functional simulation played a significant role in the
development of Gemini software as well as on prior
systems such as the Cray X1/X1E. Cray plans to employ
this same strategy for future projects such as the Aries
chip, the second generation of the Gemini high speed
network.
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Appendix A: GNI LND Debug Session with
LNET Self-Test

The following output represents snippets of log files from
a Lustre client and server running the full Gemini
software stack (gHAL, KGNI, GNI LND, and LNET).
The LNET Self-Test, LST is a generic utility for testing
LNET services on different platforms. In this example,
LST will be used to initiate an LNET function to test the
Gemini Lustre Network Driver (GNI LND) and
underlying kernel Gemini Network Interface (kGNI) and
Gemini Hardware Abstraction Layer (gHAL) on both the
client and server.

In this example, LST is used to generate a 1MB message
write from one node (nid00055) to another node
(nid00056) using an LNET RPC. For reference, the nodes
have the following NID assignments.
e nid00055 has the LNet NID 10.128.1.108@gni (a
donut node)
e nid00056 has the LNet NID 10.128.1.109@gni
(another donut node)

Besides these excerpts, there are also three supplemental
files that are relevant to this example.

1. Gemini_Lustre_Sim_nid00055_lctl.txt is a Lustre
internal trace file for node 1

2. Gemini_Lustre_Sim_nid00056_lctl.txt is a Lustre
internal trace file for node 2

3. Gemini_Lustre_Sim_LST Write_1m_1.txt is the LST
output file

The two Lustre internal trace logs had the following
settings:

e sysctl -w Inet.debug=-1
e sysctl -w Inet.subsystem_debug=-1
o sysctl -w Inet.debug_mb=40

The two trace files contain client and server logs for the
LNET reader and writer. These files are rather lengthy
and difficult to visually synchronize, so key client/server
transactions were extracted and provided below. Set-up
portions of the LST output file are also included.

Adding nodes:

10.128.1.109@gni are added to session

Group [ servers ]
12345-10.128.1.109@gni: Active

Total 1 nodes [ servers ]

10.128.1.108@gni are added to session

Group [ clients ]
12345-10.128.1.108@gni: Active

Total 1 nodes [ clients ]

Test creation:
Ist add_test --batch write_test --concurrency
1 --loop 1 --from clients --to servers brw
write check=simple size=1m

This is the test sequence showing Lustre transactions over
Gemini from alternate Lustre trace log files. The full
code flow is in the logs sorted by time (4th field). Here
are the main RPCs that result in the 1MB write.

nid00055 calls LNetPut, which generates FMA to

10.128.1.109@gni:
00000400:00000200:0:1235132804.358898:0:14968:
O:(lib-move.c:2202:LNetPut()) LNetPut ->
12345-10.128.1.108@gni
00000800:00000200:0:1235132804 .359529:0:14962:
0:(gnilnd_cb.c:1494:kgnilnd_sendmsg(Q)) $$
FFFf81002d86cc00 sending FMA FFFF81000159bd10
02 id 200 [FFff81001ch8all0 for 168]
msg@FFFF81000159bd10 m/v/ck/pl
0be91b94/3/1b034d40/168
X30:GNILND_MSG_IMMEDIATE from
10.128.1.108@gni (1235132248969285)
00000800:00000200:0:1235132804 .359602:0:14962:
0:(gnilnd_cb.c:1374:kgnilnd_check fma_send_cq(
)) SMSG Completed 200
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gets the LNetPut, turns it into a LNetGet and sets up

the PUT_REQ:
00000800:00000200:0:1235258772.077889:0:20392:
0:(gnilnd_cb.c:1750:kgniInd_check_fma_rx()) $$
RX on FFff810035cedc00 from 10.128.1.108@gni
msg@FFFfc200c6403640 m/v/ck/pl
0be91b94/3/1b034d40/168
Xx30:GNILND_MSG_ IMMEDIATE from
10.128.1.108@gni(1235132248969285)
00000400:00000200:0:1235258772.078301:0:20399:
O:(lib-move.c:2379:LNetGet()) LNetGet ->
12345-10.128.1.108@gni
00000800:00000200:0:1235258772.078562:0:20392:
0:(gnilnd_cb.c:1494:kgnilnd_sendmsg()) $$
TFFf810035cedc00 sending FMA FFFF810035d75910
07 id 246 [0000000000000000 for O]
msg@fFFFF810035d75910 m/v/ck/pl
0be91b94/3/a5cf361f/0 x31:GNILND_MSG_GET_REQ
from 10.128.1.109@gni (1235258178730530)
00000800:00000200:0:1235258772.088135:0:20392:
0:(gnilnd_cb.c:1374:kgnilnd_check fma_send_cq(
)) SMSG Completed 246

nid00055 sees the PUT_REQ and pushes out the

RDMA:
00000800:00000200:0:1235132804 .361943:0:14962:
0:(gnilnd_cb.c:1750:kgnilnd_check _fma_rx()) $$
RX on FFfff81002d86cc00 from 10.128.1.109@gni
msg@FFFFc200c64036d0 m/v/ck/pl
0be91b94/3/a5cF361F/0 x31:GNILND_MSG_GET_ REQ
from 10.128.1.109@gni(1235258178730530)
00000800:00000200:0:1235132804.361981:0:14962:
0:(gnilnd_cb.c:816:kgnilnd_recv()) $$ conn
FFFf81002d86cc00, rxmsg FFFFc200c64036d0,
Intmsg fFff81001c1c2a00 niov=256
kiov=FFff81001cf76078 10v=0000000000000000
offset=0 mlen=1048576 rlen=1048576
msg@fFFFFc200c64036d0 m/v/ck/pl
0be91b94/3/a5cF361F/0 x31:GNILND_MSG_GET_ REQ
from 10.128.1.109@gni(1235258178730530)
00000800:00000200:0:1235132804.361991:0:14962:
0:(gnilnd_cb.c:218:kgnilnd_setup_phys buffer()
) niov 256 offset 0 nob 1048576
00000800:00000200:0:1235132804.362030:0:14962:
0:(gnilnd_cb.c:583:kgnilnd_rdma()) Post RDMA
(type = 0x09) tx = OxFFff810001534400,
dlvr_mode 0x0

nid0055 sees the RMDA complete and sends the

GET_DONE:
00000800:00000200:0:1235132804.443792:0:14962:
0:(gnilnd_cb.c:1310:kgnilnd_check_rdma_cqQ))
RDMA completion event for tx
OxFFFF810001534400 type 0x09
00000800:00000200:0:1235132804 .443815:0:14962:
0:(gnilnd_cb.c:1494:kgnilnd_sendmsg()) $$
FFFf81002d86cc00 sending FMA FFFF810001534510
09 id 199 [0000000000000000 for O]
msg@FFFF810001534510 m/v/ck/pl
0be91b94/3/634Ffa92d/0 x31:GNILND_MSG_GET_DONE
from 10.128.1.108@gni(1235132248969285)

nid00056 gets the GET_DONE:
00000800:00000200:0:1235258772.276743:0:20392:
0:(gnilnd_cb.c:1750:kgnilnd_check fma rx()) $3$
RX on FFFf810035cedc00 from 10.128.1.108@gni
msg@fFFFfc200c6403778 m/v/ck/pl
0be91b94/3/634Fa92d/0 x31:GNILND_MSG_GET_DONE
from 10.128.1.108@gni(1235132248969285)

Appendix B: Gemini Lustre Test Session

The following sections of annotated text are snippets of
Gemini_Lustre_Sim_10_Test_Run.txt, the Gemini Lustre
test log file. This log file contains a Lustre file system
mount and a number of file system exercises. The
beginning of the file displays the start-up of the Cray RTS
test manager.

<<<invocation>>>

rts_driver -A suite=10 -0 0S=CNL -0 ARCH=XT3 -
n 4

<<<invocation_end>>>

<<<driver_info_start>>>

rts_driver: Info: TMPDIR and CWD are
/lus/scratch/godfrey/tmp

rts_driver: Info: CURRENT_DRIVER_PID = 23148
<<<driver_info_end>>>
<<<rts_keyword_start>>>

Information used for qualification and PATH
adjustment

<<<rts_keyword_end>>>

The next section is the system execution environment
setup of the test directory paths and the test launch
command, aptrun.

<<<gystem_info_start>>>

INFORMATION ONLY: Stderr from..
/ostest/dev.gemini/basel inux/ostest/RO0T. lates
t/bin..

/rts_config -0 OS=CNL -O ARCH=XT3:
=4=4=4=4=4=+4=4=4=4=4=+4=+=4=4=4=+4=4=4=4=4=+4=4=+
=4=+4+=4=4=+=+=

Start time: 09:06:30

ENVIRONMENTAL INFORMATION:

CURRENT WORKING DIRECTORY =
/lus/scratch/godfrey/tmp

RTS =

/ostest/dev.gemini/basel inux/ostest/RO0T. lates
t

LTPROOT =

/ostest/dev.gemini/basel inux/1tp/RO0T. latest
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APPS =
/ostest/dev.gemini/xtcnl/apps/RO0T. latest

APTRUN ENVIRONMENTAL INFORMATION:

R_APP_RUN_NPES =
R_ARCH_TYPE = XT-alps

UBRUN ENVIRONMENTAL INFORMATION:

UB_CONFEQFAIL =

%EéTbIR = /lus/scratch/godfrey/tmp

The next section is information from the test build

(make).

-rw-r--r-- 1 vers uftest 2026 2008-12-18
10:00..

/ostest/dev.gemini/basel inux/ostest/RO0T. lates
t/make. info

----- make.info Begin -----

Wed Dec 17 19:19:48 CST 2008

Linux baffin 2.6.5-7.244-smp #1 SMP Mon Dec 12
18:32:25

UTC 2005 x86_64 x86_64 x86_64 GNU/Linux

A target.mh info #HHHHHHHHHIHH T

# pmake directives generated by target_info on
baffin

# DATE: Wed Dec 17 19:18:09 CST 2008
# CMDLINE:
/ptmp/craytest/xt3.compile/ostest/xt3
linux.src/tools/target_info -t xt3-linux
TARGET_OS = XT3

# -
# End of generated pmake directives

————— make.info End -----

The following is a series of file system mount commands,
beginning with local file systems, followed by NFS file
systems, and lastly the target Lustre file system mount.

-rw-r--r-- 1 root root 0 2008-04-30 09:50
/etc/motd

————— System /etc/motd Begin ----—-

————— System /etc/motd End -----

————— File Systems Mounted Begin -----
/dev/hda2 on / type ext3 (rw,acl,user_xattr)
proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

udev on /dev type tmpfs (rw)

devpts on /dev/pts type devpts
(rw,mode=0620,gid=5)

hugetlbfs on /libhugetlbfs type hugetlbfs
(rw,mode=0777)

velvet05:/ostest on /ostest type nfs
(rw,vers=3,addr=172.30.74.83)
velvetOl:/home on /home type nfs
(rw,vers=3,addr=172.30.74.58)
iss:/.fs/a01 on /cray/iss/a0 type nfs
(rw,vers=3,addr=172.30.31.44)

iss:/.fs/libs_src/ulib on /cray/iss/ulib type
nfs

(rw,vers=3,addr=172.30.31.44)

iss:/.fs/u09/u5 on /cray/iss/u5 type nfs
(rw,vers=3,addr=172.30.31.44)

nfsd on /proc/fs/nfsd type nfsd (rw)
nid00002@gni :/scratch on /lus/scratch type
lustre (rw,flock)

————— File Systems Mounted End -----

Each test is bracketed by <<<test start>>> and
<<<test_end>>>. Any output from the test engine is
preceded by <<<test_output>>> and status is preceded
by <<<execution_status>>>. In each of the tests below,
the tag=CL_LTPFSXnnn is the unique symbolic name
generated for the specific test and stime is the decimal
value of the internal clock when the test was started.
Each cmdline= is the actual command executed by the
test engine. Additional test environment variables and
status is also displayed. In the test output, the pass/fail
status is preceded by the tests symbolic name.

<<<test_start>>>

tag=CL_LTPFSX027 stime=1232118631
cmdline="ubrun -t -x -t -D -T CL_LTPFSX027 -e
LTPROOT_CL

The first test is a Linux file system exerciser, fsx. Note
the test success message PASS printed prior to the
execution status.

<<<test_start>>>

tag=CL_LTPFSX027 stime=1232118631
cmdline="ubrun -t -x -t -D -T CL_LTPFSX027 -e
LTPROOT_CL...

aptrun -n 1 LTPROOT_CL=testcases/bin/fsx ..
-linux -d -1 500000 -r 4096 -t 2048 -w 2048 -W
-N 10000..

Junkfile0.000000"

contacts="darason""

analysis=cuts

initiation_status="ok"

<<<test_output>>>

ubrun: Env
LTPROOT_CL=/ostest/dev.gemini/xtcnl/ltp/ROOT.I
atest

ubrun: Execute Cmd: aptrun -n 1
/ostest/dev.gemini/xtcnl/ltp/RO0T. latest/testc
ases/bin/fsx
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-linux -d -1 500000 -r 4096 -t 2048 -w 2048 -W by inference via the application launch with ALPS

-N 10000
JunkFile%f" command aprun.

CL_LTPFSX027 1 PASS : No failures found

WD e SERETE e godfrey@nid00001:/lus/scratch/godfrey/RUN/d.dppc>

+ The return value was 0 as expected.
<<<execution_status>>>

duration=241 termination_type=exited
termination_id=0 corefile=no
cutime=164 cstime=38

<<<test_end>>>

This test, fcnt114, is another 1/O test. Notice the test
failure informational messages flagged with FAIL prior to
the execution status.

<<<test_start>>>
tag=CL_LTPfcntl14 stime=1232119204
cmdline="ubrun -t -D -o -T CL_LTPfcntll4 -e
LTPROOT_CL
aptrun -n 1 LTPROOT_CL=testcases/bin/fcntl14"
contacts="'darason""
analysis=cuts
initiation_status="ok"
<<<test_output>>>
ubrun: Env
LTPROOT_CL=/ostest/dev.gemini/xtcnl/ltp/ROOT.I
atest
ubrun: Execute Cmd: * aptrun -n 1
/ostest/dev.gemini/xtcnl/1tp/RO0T. latest/testc
ases/bin/fcntl14*
CL_LTPfcntli14 1 FAIL : There was a
failure when executing "aptrun®.:

- The return value was 1, expected O.
See output below:
aptrun : Final launch cmd is aprun -n 1
/ostest/dev.gemini/xtcnl/ltp/RO0T. latest/testc
ases/bin/fcntll4 *

fcntll4 0 INFO : Enter block 1: without
mandatory locking

fcntll4 1 FAIL : First parent lock
failed

fcntll4 2 FAIL : Test case 1, errno =
38

fcntl14 0 INFO : Exit block 4

Application 416 exit codes: 1

Application 416 resources: utime 0, stime O
<<<execution_status>>>

duration=11 termination_type=exited
termination_id=1 corefile=no

cutime=26 cstime=17

<<<test_end>>>

The following Lustre simulation example is another run
of GROMACS that was demonstrated at Technical
Milestone 2. Aside from the GROMACS computational
segment, what is of interest here is that GROMACS is
actually run from a Lustre scratch file system mounted in
the simulation environment. In this case, Lustre is tested

aprun -n 4 ../mdrun

[PE_O]: inet_ipaddr_from_dev: ioctl SI0CGIFADDR
call failed 19

NNODES=4, MYRANK=0, HOSTNAME=nid00004

NNODES=4, MYRANK=2, HOSTNAME=nid00006

NNODES=4, MYRANK=3, HOSTNAME=nid00007

NNODES=4, MYRANK=1, HOSTNAME=nid00005

) G R OMAC S (-

GRoups of Organic Molecules in Action
for Science

:-) VERSION 3.2.1 (-:
MEGA-FLOPS ACCOUNTING
Based on real time for parallel computer.

RF=Reaction-field Free=Free Energy SC=Softcore
T=Tabulated S=Solvent W=Water WW=Water-Water

Computing: M-Number M-Flop®"s % Flop®s
LJ 280.116462  8683.610322 9.9
Coullomb 241.217644 6512.876388 7.5
Coulomb(W) 32.240146  2611.451826 3.0
Coulomb(WW) 50.441971 11803.421214 13.5
LJ + Coulomb  138.795587 5274.232306 6.0
LJ + Coul(W) 59.749233  5496.929436 6.3
LJ + Coul(Ww) 112.533799 27570.780755 31.6
Innerloop-latom 63.019825 630.198250 0.7
NS-Pairs 649.734587 13644.426327 15.6
Reset In Box 1.340416 12.063744 0.0
Shift-X 24.614912 147.689472 0.2
CG-CoM 0.664576 19.272704 0.0
Sum Forces 36.922368 36.922368 0.0
Angles 5.895168 960.912384 1.1
Propers 1.758208 402 .629632 0.5
Impropers 0.310272 64 .536576 0.1
RB-Dihedrals 2.482176 613.097472 0.7
Virial 12.318364 221.730552 0.3
Update 12.307456 381.531136 0.4
Stop-CM 12.185600 121.856000 0.1
Calc-EKin 12.429312 335.591424 0.4
Lincs 5.168128 310.087680 0.4
Lincs-Mat 72.142848 288.571392 0.3
Shake-V 12.307456 184.611840 0.2
Shake-Vir 12.307456 221.534208 0.3
Settle 2.425856 783.551488 0.9
Total 87334.11690 100.0
NODE (s) Real (s) %)
Time: 128.000 128.000 100.0
2:08
Performance:
(Mnbf/s) (MFlops) (ps/NODE hour) (NODE hour/ns)
18.772 682.298 5.625 177.778

gcg#132: "It"s Not Your Fault™ (Pulp Fiction)

Application 251 resources: utime 0, stime 0O
godfrey@nid00001:/lus/scratch/godfrey/RUN/d.dppc>
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