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Nuclear Physics 101

e Atom = Protons, neutrons, and el*ns

* Protons & neutrons

o0 QCD is a theory of the Hadron

Y fundamental strong (bound state of quarks held
. . force describing the together by the strong
interactions of quarks & gluons )

Meson
(quark —anti quark pair)
Strong nuclear force ‘ protons & neutrons pions, kaons, etc.



What do we want?

* To understand nuclear properties in
terms of the interactions between nucleons.

e Consistent microscopic theory of nuclei and their
reactions.

126
Limits of nuclear ==
existence
' 82

== stable nuclei

. T known nuclei
E - il terra incognita
& | 82
5= o TRICKS OF THE TRADE... Methods
k¥ [;28 —_— No-Core Shell Model (NCSM)

8 AR
2 N
W

Green’s Function Monte Carlo (GFMC)
) Coupled Cluster Methods (CC)

] Towards a unified
Ab initio Model description of the nucleus
few-bod
e Shell Model
atrix

ew-hody
caleulations No-Cor
Ci-matrr

o

Density Functional Theory (DFT)




Weapon of Choice

* Ab initio No-Core Shell Model with 3-nucleon forces
— Why ab initio (first principles)?
e Satisfaction at the end of the day
— Why no-core shell model (NCSM)?

* Proven successful ab initio approach to nuclear structure
* Only method capable of employing ab initio Chiral EFT interactions for

A>4
— Why 3-nucleon forces? oo e s i ety oraoions ety
and modified two-body interaction force unaveidable for point masses.
* Nucleons are not point particles TidaTBuigs rom Men and S
(i.e. not elementary) TR S }
* We neglect some internal degrees }
of freedom (e.g A-resonance, o Ciman

polarization effects, ...) O



Nuclear Shell Model
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What’s your problem man?

* Physics Problem H\Pi = EiLPi

— Given a 2- or 3-body interaction, # of protons & neutrons,
calculate the energy spectrum (E;) and wavefunctions ( ) for
different states of the system

— Use the wavefunctions to calculate observables i.e. rms radii,
moments, transition rates between ground state/excited states, nuclear reactions, ...

e Computational Problem
— Construct large (10° x 10°) sparse symmetric real matrix H

— Obtain the lowest eigenvalues & eigenfunctions (Lanczos)

H

¢ iterations I




Pick Your Poison

* Store matrix elements in memory
— | feel the need for speed
— Limited by available memory

e Store matrix elements on disk
— It just doesn’t all fit
— |t'S SO000000000000 S|0W

* Re-compute on-the-fly
— Efficient determination of non-zero matrix elements

— Also slow... i.e. 9Be: 4064 CPU-hrs: 8128 cores @ 30 min or 48 cores @ 3.5 days

e All of the above



MFDn

Scaled to
30,000 cores

* Many Fermion Dynamics — nuclear
on Jaguar XT4

® Platform-independent FO0 code with MPI
® Scalable (has run successfully on 30k+ processors)
® Load-balanced

-y
H

on single processor on 10 processors

» round-robin distribution of many-body states over d procs
» however, no (apparent) structure in sparse matrix



MFDn Distributes the Fun

* Store lower half of symmetric matrix, distributed over
n =d(d + 1)/2 processors with d “diagonal” processors

e Store lanczos vectors on one of (d+1)/2 groups of d
procs

1 116110
6 |, storage 2|7 /|11
Lanczos
lower 10 7 vectors 318112
triangle 3
matrix 13 | 11 8 |, 41913
15 | 14 | 12 9 5 511514




We need more memory...

Estimates of aggregate memory needed for storage of sparse
symmetric Hamiltonian matrix in compressed column format

nucleus | Nmax | dimension | 2-body 3-body | 4-body
OLi 12 49-10% | 0.6 GB 33TB | 590 TB
12¢ 8 6.0 - 103 47TB 180 TB 4 PB
12¢ 10 7.8-10° 80 TB 5PB | 140 PB
160 8 9.9 103 5TB 300TB 5PB
160 10 2.4-.101° | 230 TB 12PB | 350 PB
SHe 12 4.3 - 103 7TB 300TB 7PB
LI 10 9.3. 108 11 TB 390 TB 10 PB
14Be 8 2.8 10" 32TB | 1100 TB 28 PB
20C 8 2.10M1 2 PB 150 PB 6 EB
280 8 1-10Mt 1PB 56 PB 2 EB

(presented at Extreme Scale Computing Workshop — nuclear physics Washington DC Jan 2009)



%cale Early Science

Cosmlc Radiation

o Energetic Neutron LS B

Neutron capture |i

14
by N Reacts with oxygen

to form CO,

\ Biosphere absorbs 14C

\

Due to its long half-life,
14C has been used in
dating organic materials,
up to 60,000 years old,
since the 1950’s.

The carbon
in buried matter

Beta Decays: *C 2 “N + e +7V,



Puzzling to Scientists...

Chart of light nuclei that decay via

beta emissions
n>p+e +v,

What is the nuclear
structure of C that

leads to its anomalously o B Halfife - seconds
Iong half_llfer; i: B Half-life ~ years
. EEEE -
2, EEE o
Typ = 5730 yEars = = m —m 0 L 31 _ -> Ll '
o 6
g - EN :
~N 4 .. Be
10Be and #C have extremely long half-lives i ..= :e
compared to other light nuclei (1.6 x 10° years / ) H

5,730 years) . Their long half-lives make both

. . . . 1 2 3 4 5 6 7 8 9 10 11 12 13 14
isotopes useful for radioactive dating.

N (neutron number)

o Ocerimental  Caleulated 1

2
B(GT) : 1°Be - 198 0.08 0.06 B(GT) ~ ‘MGT‘ - i
(3-body: 0.066) 1/2

Mg, 14C > 14N 0.002 0.07 Mer ~ <'/’f O"//i>




Growing Pains

14C (Z=6.N=18)

1B

——— dimension
*—8 Fnonzero’s NN [
# - - % # nonzero’s NNN
# matrix elements

10° T T T 10
107 F . 107
ml:_ | mlz_
10°F = 10°F
- ——— dimensicn
10°k - *— # nonzero’s NN__| 10k
- # - - # #nonzero’s NNN
el —— # mainx elements
3 . I I \ 3
10 1 g 12 107G
basis space truncation I
jiathd
14C Est. Non-Zero M.E. 14N Est. Non-Zero M.E.
Nmax [Dim 2B 3B Nmax [Dim 2B 3B
0 0
2| 5.80E+03| 4.00E+05| 2.90E+06 2| 8.40E+03| 7.00E+05| 5.20E+06
4| 7.32E+05| 1.62E+08| 2.80E+09 4] 9.75E+05| 2.29E+08| 4.10E+09
6| 3.37E+07| 1.55E+10] 4.42E+11 6| 4.32E+07| 2.07E+10| 6.08E+11
8| 8.73E+08| 6.97E+11] 2.90E+13 8| 1.09E+09| 9.01E+11] 3.90E+13
10| 1.54E+10 1.94E+13- 10| 1.89E+10| 2.45E+13

basis space truncatio

~ 103 non-zero

matrix elements

8 12
n N
max

....109

~ 500 iterations




Back of the envelope...

memor m.e. dim
y = 2(4) +5(4)—— cores = el 4, ,d = diagonal
core cores diag
Matrix elements input/output 148,785 cores / d = 545
vectors

3-body, Nmax=8

(o)
e
ug, MEMOTY _ 5 2.9¢13 (%) 8738 _, soam o\,e(‘(\
core cores diag »\606
Xx ~.
1y, MEmory _ 24) 3.9e13 +5(4) 1.99e9 ~ 2 14GB
core cores diag

Needed: 260 -340 TB



Fitting in

* Sucking in our breathe
— Integer compression (integer*4 - integer3?)
* Exercise & Diet

— Out-of-core

e Exorcism
— New algorithms
— Return to the physics

 Have we jumped the shark?
— Wait for the next upgrade & cross our fingers



Out-of-core... Need More Envelopes!

3-body, Nmax

. MEmory 2(8) 5(4) 1.(?999 ~ 2 14GB
core lag
0.04 GB

Move 0.5GB/core to disk > AGGREGATE: 74392.5 GB read

200 GB/s maximum throughput = 6.2 min/read

ITERATIVE: 2 reads/iteration (move in/out data as needed) 30 Million
CPU-HR
12.4 min/iteration... 500 iteration for Lanczos Allocation

103 hrs for Lanczos + 4 hr for other stuff ~ 107 hrs

= 15+ Million CPU-hrs/run ... need 12 runs for full study of *N!!! ... maniacal laughter!!



What on earth am | going to do?

* Physics don’t fail me now!

e Rather than asking questions... your suggestions are
welcome!
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