
Simulating Population Genetics on the XT5

E. A. Duenez-Guzman, A. D. Vose, M. D. Vose, S. Gavrilets

The University of Tennessee, Knoxville

ABSTRACT: We describe our experience developing custom C code for
simulating evolution and speciation dynamics using Kraken, the Cray XT5
system at the National Institute for Computational Sciences. The prob-
lem’s underlying quadratic complexity was problematic, and the numerical
instabilities we faced would either compromise or else severely complicate
large-population simulations. We present lessons learned from the compu-
tational challenges encountered, and describe how we have dealt with them
within the constraints presented by hardware.

KEYWORDS: simulating population genetics, numerical integration,
residue calculus

1 Introduction

Simulating natural selection, genetic drift, mutation,
and gene flow can be computationally intensive. The
model developed by Sergey Gavrilets in collabora-
tion with Jonathan Losos (Harvard University) to in-
vestigate adaptation and speciation in Anolis lizards
has underlying quadratic complexity with respect to
both deme size (all-pairs interactions are important
to within-deme mating and viability) and spacial ex-
tent (area – hence the number of demes – varies
quadratically with radius).

Trading deme size for more demes within a given
area is an appealing way to tame the complexity, if
one has access to computational resources enabling
the processing of demes in parallel by mapping each
deme to a processor.

This strategy is not a panacea, however.
Between-deme migration of genetic material comes
at the price of interprocess communication. Unless
ecological properties are uniform from one deme to
the next, there is also the price of increased model
complexity. Moreover, the dynamics of selection, ge-
netic drift, and gene flow are influenced by deme size
and the number of demes. Nevertheless, mapping
demes to processors on hardware like the Cray XT5
system at the National Institute for Computational
Sciences makes simulations feasible on a scale which

otherwise would be impossible.
From an implementation perspective, a natural

unit of computation in the Anolis model is the eval-
uation of a double integral

I(α, β, γ, δ, ξ)

It turns out that the various probabilities required
to simulate the discrete-time, explicit-genetics,
individual-based, stochastic model can be obtained
from the integral, where various rational func-
tions of additive phenotypic characters of individu-
als and model parameters determine the arguments
α, β, γ, δ, ξ.

2 Canned Routines

Integration subroutines provided by computation
packages and scientific libraries are widely used, but
it is a mistake to suppose they can be trusted. An
incorrect answer may be returned (in some cases ac-
companied by a small error estimate), misleading
the caller. For example, we naively believed Maple
would give a reasonable answer using 16 digits of
decimal precision (default precision is 10).

> Digits := 16;

> I_(0.91381,0.095649,0.57591,4.1584,1.4782);

0.00097...

1

Cray User Group 2009 Proceedings

Thinking that result too small, we tried repeatedly
but doubled each time the number of digits:

> Digits := 32;

> I_(0.91381,0.095649,0.57591,4.1584,1.4782);

0.00687...

> Digits := 64;

> I_(0.91381,0.095649,0.57591,4.1584,1.4782);

0.0219...

> Digits := 128;

> I_(0.91381,0.095649,0.57591,4.1584,1.4782);

0.0322...

The relative error of the last answer – compared with
the true answer – is over 6%, and Maple is excru-
ciatingly slow.1 Routines from NAG and the Gnu
Scientific Library are comparable and relatively fast,
taking 0.036 seconds to do the outer integral when
provided with an explicit solution for the inner in-
tegral. But they return 0.00013... with estimated
relative error below 2.0e−08. That is unacceptable;
we need the correct answer 0.034... and we need it
produced thousands of times faster!

By interchanging the order of integration and
hand-coding 128-point Gauss-Laguerre quadrature,
we achieved results faster, which seemed accurate.
Alas, our application was later observed to gener-
ate integrals for which that method yielded answers
having more than 160% relative error. To make mat-
ters worse, it had become apparent that significant
additional speedup was essential.

3 Complex Variables

Cauchy’s integral theorem is a well-known tool for
integration. A lesser-known method described by
Boas and Schoenfeld [1] dispenses with having to
choose suitable contours by focusing instead on
residues of functions related to the integrand defined
over the Riemann sphere. They discuss integrals of
three types, the second of which is covered by the
following theorem.

Theorem 1. Let F be holomorphic in the ex-

tended plane except for a finite number of singulari-

ties, let F be holomorphic on (a, b) except for simple

poles, and let F be holomorphic at a and at b. Then

P.V.

∫ b

a

F (t) dt = −(R + r)

where R is the sum of the residues of

F (z) log{(z − a)/(z − b)}

for z in the extended plane but not on [a, b], and r
is the sum of the residues of

F (z) log{(z − a)/(b − z)}

for z on (a, b).

Our integration problem can be reduced to eval-
uating the form

∫ v

u

exp(−(
t − a

b
)2 + (t−1 − d)2) erfc(t−1 − d)

dt

t

Difficulty using Theorem 1 arises from the inte-
grand’s essential singularities at 0 and ∞. Be-
cause determining residues at essential singularities
for general parameter values a, b, d, u, v is problem-
atic, we first approximate the integrand by functions
which are meromorphic on the Riemann sphere (i.e.,
rational [3]).

This approach introduces other difficulties. Suit-
ably approximating the integrand involves a trade-
off between either the number of poles or complexity
of residues and the number of sub intervals involved;
a rational approximation suitable over all of (u, v) –
one sub interval – would have high degree – either
many poles or computationally expensive residue(s).

Fortunately, exp satisfies a functional equation
enabling approximation with a single rational func-
tion (at the potential price of many sub intervals of
(u, v)):

exp(−f(t)) = exp(s) exp(−s − f(t))

≈ exp(s) rational0(f(t) + s) (1)

If rational0(t) suitably approximates exp(−t) over
[x, y], the approximation above is valid for t ∈ [u′, v′]
provided f maps [u′, v′] into [x − s, y − s]. By first
subdividing (u, v) into sub intervals over which f is
monotonic, we may assume f is invertible. Hence

{u′, v′} = f−1({x − s, y − s}) (2)

and s parametrizes a sub range t ∈ [u′, v′] ⊂ [u, v]
of integration. Both subdividing (u, v) into sub in-
tervals over which f is monotonic and determining
[u′, v′] via (2) are done at run-time.

1For the example above, we discovered later that Maple returns a reasonable answer using default precision if specialized

syntax is used. Unfortunately, that syntax only shifts problems elsewhere; unacceptable results are returned when using that

syntax with other parameter values.

2

Cray User Group 2009 Proceedings

Approximations for g(x) = exp(x2)erfc(x) were
based upon the value of w = t−1 − d:

2 exp(w2) if w ≤ −3

rational1(w) if −3 ≤ w ≤ 0

rational2(w) if 0 ≤ w ≤ 10

rational3(w) if 10 ≤ w

Except for rational3 which is the first two terms from
the series expansion of g at ∞, we used Maple’s im-
plementation of the Remez algorithm (provided by
the numapprox package) to obtain rational approx-
imations (see [2] for a survey of widely used meth-
ods for generating rational or polynomial approxi-
mations to continuous functions). Our approxima-
tions are holomorphic in the sub intervals over which
they are used, hence there is no contribution to the
integral from r as described in Theorem 1. As func-
tions of t, each of our rational approximations has
a numerator with degree not exceeding that of its
denominator. Therefore

−t−2 rational(t−1)/t−1 log
1 − ta

1 − tb

is holomorphic at t = 0, hence there is no contribu-
tion from poles at ∞ to R as described in Theorem 1.

The most complicated residues arise from sub
intervals involving both rational0 and rational3;
residues are needed at t = 1/d for

rational3(t
−1 − d)/t

ξ

((t − a)/b)2 + s − ζ
log

t − u′

t − v′

Simpler residues arise from sub intervals involving
rational0 and rationalk for k ∈ {1, 2}; residues are
needed at t = a ± b

√
ζ − s for

rationalk(t−1 − d)/t
ξ

((t − a)/b)2 + s − ζ
log

t − u′

t − v′

and at t = 1/(d + ζ) for

rational0(((t − a)/b)2 + s)
ξ

t−1 − d − ζ

1

t
log

t − u′

t − v′

These residues are obtained easily via the following
lemmas (Lemma 3 is from [1]). The first lemma
allows one to focus on the factor containing the sin-
gularity, the second deals with forms having singu-
larities – such as ξ/(z + s − ζ) – that have been
complicated by function composition – such as z =
((t − a)/b)2.

Lemma 2. Let ψ have a simple pole at ζ with

residue ξ. If φ is holomorphic at ζ, then the residue

of ψ(z)φ(z) at z = ζ is ξφ(ζ)

Lemma 3. Let ζ be a point of the Riemann

sphere where either φ′(ζ) 6= 0 or else φ has a simple

pole. Let ω = φ(ζ) and let ψ either be holomorphic

at ω or have an isolated singularity there. If ϕ is a

local inverse of φ in a neighborhood of ω, then the

residue of ψ(φ(z)) at z = ζ is equal to the residue of

ψ(z)ϕ′(z) at z = ω.

The residues arising from sub intervals involving
rational0 alone are those of

ξ

((t − a)/b)2 − (t−1 − d)2 + s − ζ

1

t
log

t − u′

t − v′

and are easily obtained using Lemmas 2 and 3. The
product of the first two factors in the expression
above is equal to

b2ξ

t4 − 2at3 + (a2 − b2(ζ + d2 − s))t2 + 2b2dt − b2
t

Focusing on the first factor (via Lemma 2), we take
ψ and φ of Lemma 3 to be

ψ(z) =
b2ξ

z − b2

φ(z) = z4 − 2az3 + (a2 − b2(ζ + d2 − s))z2 + 2b2dz

The ζ of Lemma 3 are roots of φ(z) = b2, the ϕ′(ω)
of Lemma 3 is 1/φ′(ζ) (which follows from the chain
rule, since ϕ is a local inverse to φ), and ω is b2.

In summary: residues are precomputed for
parameter-free rational approximations to the inte-
grand, parameters are incorporated by way of func-
tion composition, and their influence on residues is
computed at run-time (via Lemma 1 and Lemma 2).

If A approximates a positive integrand F , then

∣

∣

∣

∣

1 −
∫

A
∫

F

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

F {1 − A/F}
∫

F

∣

∣

∣

∣

≤
∫

F |1 − A/F |
∫

F

≤ ‖1 − A/F‖∞

To achieve an integration tolerance of 1% relative er-
ror, we conservatively used rational approximations
having less than 0.1% relative error. Underpinning
assumptions of our calculation (like φ′(ζ) 6= 0 in
Lemma 3 for instance) are checked at run-time. Typ-
ical time to evaluate I(α, β, γ, δ, ξ) by way of residues
is 0.000048 seconds (on a single 2.5 GHz AMD K10
core).

3

Cray User Group 2009 Proceedings

4 Lazy Evaluation

Having achieved acceptably accurate integration,
subsequent optimism was based on the expectation
that the carrying capacity of a deme acting together
with selective pressure would constrain speciation
and limit the number of phenotypes. Since the num-
ber of distinct integrals was quadratic in the number
of distinct phenotypes, integrals were computed as
needed and saved for later use to avoid recomputa-
tion.

We implemented a multi-level least-recently-used
caching scheme using threaded splay trees. The first
level stored integrals associated with a phenotype
and created a perfect hash hp for each phenotype p
in the cache. The second level had keys of the form
〈hp, hp′〉 and stored integrals related to the interac-
tion of p with p′.

This worked well enough to enable simulations
not previously possible. However, as the number of
simulated generations increased, so too did the num-
ber of phenotypes, and it became apparent that the
limited amount of memory per node did not per-
mit a sufficiently large second-level cache (we began
development on Kraken before the upgrade; it pre-
viously had 1GB of memory per core, and not all
of that was dedicated to the process running on the
core). Cache thrashing was destroying performance
for long runs, and eliminating the cache was not an
option; computing integrals without reusing them
was too slow.

To increase second-level cache size, we imple-
mented it as a distributed cache. Whereas that
scheme in some sense eliminated the recomputa-
tion of integrals as a bottleneck, it exacerbated
what problems we faced with communication. Early
versions of our code – computing integrals on de-
mand without caching – were computation-bound,
but could keep a parallel machine 90% busy. Later
versions of our code – using a mulit-level distributed
cache – ran faster and extended the range of simula-
tions, but were communication-bound, and utiliza-
tion was typically less than 10%.

5 Equivalence

We employed the following equivalence principle to
recast parts of our simulation as a computation deal-
ing with equivalence classes. If f : A → B is a
nonempty function, the set

C = {f−1(b) | b ∈ B}

is a partition of A, and the corresponding relation

≡ = {(a, b) | f(a) = f(b)}

is an equivalence relation on A. The most expensive
part of our simulation (measured either in time or
in cache space) was the computation of

∑

I′

∫

Ξ(I|u, v) Ξ(I ′|u, v) dλ(u, v) =
∑

I′

Ne(I, I ′)

where I and I ′ are genotypes. Defining equivalence
between genotypes by

I ≡ J ⇐⇒ Ξ(I|u, v) = Ξ(J |u, v)

makes Ne well-defined on equivalence classes c, c′ by

Ne(c, c′) = Ne(I, I ′) where I ∈ c, I ′ ∈ c′

Let C be the set of equivalence classes, let I ∈ c ∈ C,
and let [expression] denote 1 if expression is true,
and 0 otherwise. It follows that

∑

I′

Ne(I, I ′) =
∑

I′

Ne(I, I ′)
∑

c′∈C

[I ′ ∈ c′]

=
∑

c′∈C

∑

I′

Ne(I, I ′)[I ′ ∈ c′]

=
∑

c′∈C

∑

I′

Ne(c, c′)[I ′ ∈ c′]

=
∑

c′∈C

Ne(c, c′)
∑

I′

[I ′ ∈ c′]

=
∑

c′∈C

Ne(c, c′) |c′ |

where | c′ | denotes the size of class c′. The ad-
vantage is that the number of nonzero terms (i.e.,
integrations) in the last sum above is significantly
smaller than the number of terms in the first sum
above.

We used the equivalence principle in previous im-
plementations, based on the observation that Ne is
well-defined on phenotypes (hence complexity was
quadratic in phenotypes). Phenotypic equivalence
is a refinement of the genotypic equivalence defined
above, however, and it was a mistake to have not
used the coarsest equivalence compatible with the
computation.

We rewrote our simulation so as to take full ad-
vantage of the equivalence principle wherever possi-
ble (using the coarsest compatible equivalence rela-
tion). This reduced memory requirements and also
resulted in significant speedup.

4

Cray User Group 2009 Proceedings

6 Precomputation

Although reimplementation (as described in the pre-
vious section) significantly improved performance
(but utilization remained low), large-scale simula-
tions were infeasible. Moreover, it was not sufficient
to perform a single run for given parameter settings;
many runs were required to obtain average behavior
because of the stochastic nature of the computation.
Thus however long a single simulation might be, ob-
taining usable results took many times longer.

Further progress could be made if both the ef-
ficiency and the effective size of the integral cache
could be increased by:

• Reducing the run time and run space overhead
for caching integrals.

• Reducing cache size by representing integrals
as floats instead of doubles.

• Combining the memory devoted to processors
on a node for caching integrals, and sharing it
among the processors on that node.

• Eliminating recomputation. Computing inte-
grals at run time for insertion into an empty
cache is wasteful; each of the many runs re-
quired to obtain average behavior repeats that
effort.

This was achieved by precomputing the values of
integral-based functions of equivalence classes, and
memory mapping the read-only file of results. That
file is seen by the processes as a shared read-only
cache. Cache access is (from the application’s point
of view) a simple array look-up. We essentially
co-opted the operating system’s i/o and memory
system to manage caching for us. Moreover, run
time previously spent in recomputing integrals for
cache insertion was thereby eliminated and cache-
thrashing became a non-issue.

To get a rough idea of the workload for a small-
sized simulation, consider a 32 × 32 patch of demes
(1024 demes total), with an average of 4, 150 chil-
dren per deme per generation for a 100, 000 gener-
ation epoch. A naive implementation – computing
integrals on demand (no caching and no equivalence
class optimizations) – would need to plow through
approximately 5, 344, 509, 440, 000, 000 integrations,
nearly all of which are recompuation. Under opti-
mistic assumptions – 90% utilization and no down
time – Kraken’s 66, 048 compute cores would take
over 1.8 months to finish a single small-sized sim-
ulation. Performing ten runs to estimate average
behavior would be difficult – over 1.5 years – and

if the implementation used canned integration rou-
tines, the results could be meaningless.

In contrast, completing ten small-sized runs in
parallel using 10, 250 cores (1, 025 cores for each run)
takes under 1.4 hours using our optimized implemen-
tation, including precomputation time. Moreover,
we have some degree of confidence in the results.

The key question that has yet to be addressed
relates to the complexity of the genome. As the
complexity of the genome increases, the number of
equivalence classes increases, and both simulation
time and the number of precomputed integrals are
quadratic in the number of classes. Because the
memory per node is severely limited (16GB maxi-
mum), a compute node will run out of memory pages
with which to efficiently map the file of integrals, and
thrashing will set in as the complexity of the genome
increases.

The number of distinct equivalence classes in
the Anolis model is (2b + 1)4 where b is the bit-
complexity of each gene. Time given above for a
small-sized simulation is with b = 4. It is doubtful
that simulations for b > 8 would be feasible without
restructuring the implementation to leverage the ag-
gregate memory distributed across many nodes by
implementing a distributed-memory memory map-
ping scheme.

7 Scaling

The following graph gives some indication of how our
simulation scales (the bit-complexity of each gene
was b = 4). The line emanating from the origin
plots the number of compute cores in units of 1, 000
(y-axis) against the number of individuals simulated
(x-axis). The broken-line plots the completion time
in hours (y-axis) against the number of individuals
simulated (x-axis).

5

Cray User Group 2009 Proceedings

The model parameter that varied to generate the
graph was the number of demes (which is one less
than the number of compute cores). The number of
generations was fixed at 100,000 because that is the
epoch of interest (the completion time is linear in
generations – e.g., two epocs takes twice as long).

Linearly approximating the graph data yields:
time to complete an epoch as a function of the num-
ber d of demes (d = compute nodes minus one)

.9181 + 0.000391 ∗ d

and number of individuals simulated per epoch as a
function of d

418629838 ∗ d − 3749585620

By extrapolation (which is probably over opti-
mistic) using all of Kraken’s 66, 048 cores to simulate
an epoch would process over 27.6 trillion individuals
in under 26.8 hours. This represents the evolution
of 66, 047 demes at an approximate rate of 1 second
per generation, where each deme yields 4, 179 chil-
dren per generation and the bit-complexity of a gene
is 4.

We used the CrayPat performance analysis in-
frastructure to estimate cpu-utilization. It decreases
as the number of demes increases. The following
graph plots percent cpu-utilization (y-axis) against
the number of demes (x-axis).

8 Tuning

In a single run, over 2MB of genetic material per
deme per epoch are funneled to a single output node
to be logged to disk. That corresponds to genes hav-
ing low bit-complexity (b = 4), and communication
scales linearly with bit-complexity.

Logging takes place every 1, 000 generations
(hence 100 times per epoch), and is comprised of
serialized MPI transactions from each deme to the
output node and subsequent writes from the out-
put node to disk (the current implementation inter-
leaves the MPI transactions with disk writes). Con-
sequently, the simulation essentially waits until log-
ging completes before resuming computation. We
believe these MPI transactions and disk writes are
the major factor responsible for the decreasing cpu-
utilization displayed in the previous graph.

A different view of diminishing cpu-utilization is
provided by the following graph, which plots average
time per generation (y-axis) against the number of
demes (x-axis).

A MPI_THREAD_FUNNELED implementation of log-
ging has the potential to dramatically improve per-
formance. The MPI transactions can be eliminated
by buffering output at the deme level – rather than
sending it to an output node – and a thread (at the
deme level) can asynchronously write buffers to disk.
That would have the additional advantage of parallel
disk writes.

Rather than an extrapolated 1 second per gen-
eration corresponding to 66, 047 demes, something
more like the 0.04 seconds per generation corre-
sponding to 256 demes in the graph above should
be achievable. In that case – assuming 0.05 seconds
per generation – the optimistic extrapolated time of
26.8 hours reported in the last section to simulate
66, 047 demes for one epoch drops to 1.34 hours.

We have a good understanding of our simulation
and its dynamics (through theory, experimentation,
and embedded instrumentation) but have no expla-
nation for the approximately linear increase in time
per generation if it is not related to the logging de-
scribed above (which the MPI_THREAD_FUNNELED ap-
proach should help alleviate).

6

Cray User Group 2009 Proceedings

9 Time warp

The Anolis model is spacial (demes correspond to
vertices in a two dimensional grid) and requires
between-deme migration of genetic material between
nearest-neighbors at every generation. Interprocess
communication must complete before computing the
next generation.

We anticipate additional speedup – beyond that
discussed above – could be achieved by implement-
ing asynchronous migration so as to allow compute
threads to proceed independent of whether migrants
had arrived. This would produce a “time warp” in
the sense that migrants from the past could even-
tually show up in the current generation much later
than is credible (imagine injecting the genetic ma-
terial of extinct organisms into an evolutionary sys-
tem).

The potential utility of an asynchronous imple-
mentation relates to its speed. The parameter space
of the Anolis model is too large to be adequately
explored, but increased utilization of compute re-
sources potentially enabled by an asynchronous im-
plementation might allow for a more systematic in-
vestigation.

Whereas asynchronous runs do not yield usable
results – we are not interested in how extinct geno-
types would hypothetically influence the current di-
rection of evolution – they nevertheless could help
to identify interesting areas within the parameter
space to be revisited with the intended synchronous
model.

10 Acknowledgements

This work was supported by National Institutes of
Health grant “New approaches to the modeling of
speciation” (GM56693).

References

[1] R.P.Boas, L.Schoenfeld, Indefinite Integration
by Residues, SIAM Review, v 8 n 2 (1966), 173-
183.

[2] W.J.Cody, A Survey of Practical Rational and
Polynomial Approximation of Functions, SIAM
Review, v 12, n 3 (1970), 400-423.

[3] R.Nevalinna, V.Paatero, Introduction to Com-
plex Analysis, AMS Chelsea Publishing (2007).

About the Authors

Dr. Sergey Gavrilets is a Distinguished Professor of
Ecology & Evolutionary Biology and Mathematics,
and Associate Director for Scientific Activities at the
National Institute for Mathematical and Biological
Synthesis. Edgar A. Duenez-Guzman is a research
associate in the department of Electrical Engineering
and Computer Science. Aaron D. Vose is a research
assistant in the Gavrilets Lab. Michael D. Vose is a
member of the department of Electrical Engineering
and Computer Science.

email: gavrila@tiem.utk.edu, duenez@eecs.utk.edu,
avose@eecs.utk.edu, vose@eecs.utk.edu

7

Cray User Group 2009 Proceedings

