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ABSTRACT: Supercomputer RAS event data contain various signatures regarding system status, thus 

are routinely examined to detect and diagnose faults. However, due to voluminous sizes of logs generated 

during faulty situations, a comprehensive investigation that requires comparisons of different types of RAS 

logs over both spatial and temporal dimensions is often beyond the capacity of human operators, which 

leaves a cursory look to be the only feasible option. As an effort to better embrace informative but huge 

supercomputer RAS data in a fault diagnosis/detection process, we present a GUI tool called RAVEN that 

visually overlays various types of RAS logs on a physical system map where correlations between different 

event types can be easily observed in terms of their quantities and locations at a given time. RAVEN also 

provides an intuitive event navigation capability that helps examine logs by clustering them to their common 

locations, types, or user applications. By tracing down notable event patterns reflected on the map and their 

clustered logs, and superimposing user application data, RAVEN, which has been adopted at National 

Institute of Computational Science (NICS) at the University of Tennessee, identified root causes of several 

system failures logged in Kraken XT5.  
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1. Introduction 

Detection and diagnosis of failures in a supercomputer 

typically involve an analysis of reliability, availability, 

and serviceability (RAS) event logs that contain text 

descriptions about events of both hardware and software 

components [7, 8]. However, fueled by the ever-growing 

scale and complexity of computer systems, the volume 

and complexity of RAS logs already reached the point 

where the manual analysis by a human operator is no 

longer feasible, and will continue to grow [6].  

 

Events described in RAS logs are irregular in their 

occurrences. Near the vicinity of  the time of a failure, 

either before or after, an avalanche of events is generated 

portraying different views of the failure observed from 

different components. Although embarrassingly large in 

size, the entire logs generated during the span of this 

period are mostly redundant leaving only a fraction of 

data relevant for the analysis.  However, sifting such 

spurious events is by no means tractable without a proper 

aid. In cases when not a single but multiple components 

are the source of a failure, the root cause is best identified 

by tracing a stream of highly correlated event types. 

However such correlations are very hard to capture unless 

temporal intervals when the correlations stand out are 

carefully predetermined. Moreover many correlations are 

implicit and spurious masking off real and important 

event correlations. 

 

A much clearer picture of the system status can be 

obtained when contexts of logs are considered. First, in 

many cases logs describe events that have pair wise 

relations. For example, most Lustre messages report the 

failed I/O attempts with the target destinations such as 

between OSS and OSC. All Basic End to End Reliability 

(BEER) messages include the failed communication 

between two nodes. If most BEER messages generated at 

a given time address problems with a single node, it is 

most likely that the mentioned node is not in a normal 

status. Second, events can be clustered based on the 

context of a user application. User applications that are 

not properly tuned for the intended scale tend to impose 

unforeseen overheads to the system. This typically 

involves excessive amounts of communications between 

the nodes occupied by the application or ill coordinated 

checkpoint attempts. In such a case, certain types of 

events (e.g., Lustre, BEER, etc.) can be understood with 

respect to applications. 

 

A plethora of tools have been introduced to aid system 

administrators with analysis of log files. Most of these 

tools are valuable to detect mere occurrences of faults or 

capture a temporal summary of event occurrences. 

However, their usage of tracing event patterns that lead to 
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the root cause of some system failures is highly limited. 

In this paper, we introduce RAS data Analysis through 

Visually Enhanced Navigation (RAVEN) that assists 

users with tracing event patterns through a context-driven 

navigation of RAS logs. By displaying the amount of 

occurrences of an event type observed during a selected 

time interval on the system map (physical layout of the 

system), RAVEN provides a compact and intuitive 

representation of event snapshots. By displaying pair wise 

contexts events or superimposing different event 

snapshots, users can trace coherent event correlation 

patterns. Also by superimposing the displacement of user 

applications on top of event snapshots, events or event 

patterns specific to a certain user application can be 

captured. 

 

RAVEN has been employed at the National Institute of 

Computational Science (NICS) of the University of 

Tennessee for more than 6 months. During the period, it 

identified root causes of several software driven failures 

logged in Kraken XT5. RAVEN has also been adopted by 

the National Center for Computational Science at Oak 

Ridge National Laboratory, and used to monitor and 

analyze RAS logs of Jaguar and Spider.  

 

The rest of the paper is organized as follows. First we 

gives background materials of RAVEN. Then the 

architecture of RAVEN is introduced.  A detailed 

description of the event types used for Cray XT5 will 

follow.  Three cases we examined with RAVEN from the 

Kraken and Jaguar logs will then be introduced. With 

discussion about the future direction of RAVEN, we will 

conclude the paper.  

 

2.  Background 

RAS logs, especially those generated through printk() are 

in free text forms. Many attempts have been made to 

capture semantics from these logs by defining regular 

expressions [2, 5, 9] for the desired events. Often these 

regular expressions are the results of laborious efforts by 

human experts, and thus most reliable to detect mere 

occurrences of critical events. Systems such as Nagios [1] 

are real-time monitoring of the system based on such hard 

descriptions of faulty events. These tools are practically 

useful for immediate discovery of faults. However, they 

by no means be used to understand the system status or 

the cause of the events in a broader sense.  

 

To provide a wider view of the system status, a number of 

visualization tools for monitoring log data have been 

introduced. OVIS [3] gives 3D visual display about state 

variables (temperature, fan speed, CPU utilization) and 

their simple statistics. By providing a close-to-real 

rendering of the system, it has been found to be a useful 

tool not only for monitoring state variables, but also 

tuning system set-up. Splunk aims to assist the 

identification of event occurrence pattern. For this, it 

parses logs, state variables, and other data and indexes 

them for an efficient searching. 

 

To extract informative clues for the cause of a system 

failure, a tool that provides not only abstract views of the 

system but also the detailed information is desired. Most 

existing tools are practically useful in detecting faults, 

capturing system snapshots, or retrieving logs that match 

user defined regular expressions. However, their usages to 

navigate logs by tracing both temporal and spatial event 

patterns and retrieve detailed information of the system at 

the chosen location and time is highly limited. 

 

RAVEN Architecture  

 
To provide a fast,  intuitive, and context assisted 

navigation capability is the main design goal of RAVEN. 

RAVEN consists of two parts: the backend database 

server and the frontend user interface. Both the frontend 

and the backend were designed for fast retrieval/display 

of event synopsis and contexts of RAS logs. 

 

The backend database server is a collection of MySQL 

tables that stores the records of  events such as location of 

occurrences, their pair wise context, user applications, 

original text messages, etc. Besides these dynamic data, 

static information like system meta data, machine layout, 

Figure 1. A screenshot of RAVEN Frontend User 
Interface displaying RAS logs of Kraken. The upper 
plane (System Layout Map) shows BEER messages 
between the nodes in two cabinets and Lustre OSSes. 
The bottom left shows the Control Panel where various 
event occurrence curves are displayed. The bottom 
right lists all the original log entries generated from a 
node in c13-2.  
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and identifiers for nodes and resources are created once 

during the initial installation.  

 
From a technical point of view, the RAVEN frontend is a 

tool with which a user composes a query and displays the 

result on the physical map. A query comprises of 1) a 

time stamp (or an interval), 2) particular node(s), 3) 

specific event type, and 4) user application. Users 

constructs a query simply by clicking regions in the 

physical map, time line of interest, or choosing a 

particular job shown as a block of colours on the physical 

map.  

 

The structure of the RAVEN frontend comprises of three 

parts. 

1. System Layout Map 

2. Control Panel 

3. Information Panel 

 

The system layout map shows the physical placement of 

cabinets with individual nodes depicted as squares 

therein. The system layout map is where events are 

displayed with colors representing their amounts of 

occurrences. The displacements of jobs are also shown in 

this layout map with the nodes allocated for the job 

having the same color. 

 

The control navigation panel allows users to select time 

stamps and events of interest. To aid users to select 

appropriate time intervals, the panel displays a synopsis 

curve for each event type. It also provides multi-

resolution views the curves so that users can navigate and 

select the most desired time stamp. When an event type 

and a time stamp is selected, the amounts of occurrences 

of the event type are shown in the system layout map.  

 

The information panel is where information about a job or 

an event are detailed. When a node in the system layout 

map is clicked, the original log entries generated from the 

node or information about a job running in the node are 

displayed depending on user’s intention.  

 

RAVEN on Cray XT5 

 
RAVEN runs on CRMS log files. More specifically the 

backend server is built on four log files: console, 

consumer, netwatch, and apsched. From the first three 

logs, RAVEN currently extracts the following events. 

• console: Lustre, Basic End to End Reliability 

(BEER), Segfault, Out of memory, Kernel panic, 

Machine Check Exception (MCE) 

• consumer: node heartbeat failure, node voltage 

fault 

• netwatch: Link Inactive, deadlock timeout  

 

In addition to these events, as with the Simple Event 

Correlator (SEC), users can define and add a new event 

simply by providing a regular expression that describes 

patterns of the event in logs.   Apsched logs are used to 

upload user application information such as duration of 

the run, application name, the list of nodes occupied, etc.  
 

3. Case Study with RAVEN 

 
In this section we introduce three cases when RAVEN 

was used to decipher the causes of abnormal behaviours 

of the system. In particular, we highlight how RAVEN 

can be used to keep track of and get an immediate view 

on system status. The first two cases are from logs of 

Kraken and the third is from that of Jaguar. 

 

 
Case I: A Flood of Basic End to End Reliability 

(BEER) Messages in Kraken 
Problem Description: The NICS system administrators 

detected a number of periods during which abnormally 

huge floods of BEER messages logged. Cray engineers 

spent days to identify the cause of these Portal errors, 

tracing hardware related causes. 

 

We examined one of the periods when such a flood of 

BEER messages was observed. We first displayed the 

distribution of BEER messages on the system layout map. 

Figure 2-(a) shows the nodes that are generating BEER 

messages, and Figure 3-(b) illustrates the nodes that are 

addressed to have problem with the reporting nodes. From 

this pair wise context (source and destination), it became 

clear that the problem is confined to a single application 

(both reporting and the reported nodes are the same). 

Then we checked the application displacement at the time 

as shown in Figure 2-(c). From this, we could identify the 

yellow coloured application corresponds to the nodes 

generating the BEER messages. We then checked Lustre 

messages generated during the same interval (Figure 2-

(d)), and found that they were all generated by the nodes 

allocated for the same application (yellow coloured). This 

confirms that the yellow coloured application was indeed 

the single source of the problem. 

 

The identified application ran for only about two minutes, 

and Lustre and BEER messages quieted down thereafter. 

However, after examining all the periods during which 

the same application was running by the same user, we 

identified that it triggered the burst of Lustre and BEER 

log messages during the previous week. In summary, we 

can identify the strange new pattern of error messages 

using RAVEN and guide ourselves to the cause of it.  The 

massive errors on BEER were caused by a single job that 

ran in short intervals and we can trace them for every 

incident. 
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Case II: HSN Blackout and Recovery in Kraken 
 

Problem Description: Lustre error codes -107 

(ENOTCONN) and -110 (ETIMEOUT), which suggest 

High Speed Network (HSN) issues, were observed. We 

confirmed that the HSN was not responding. A huge 

surge of Lustre messages followed and quieted down. The 

blackout was lifted in about 15 minitues. 

 

By setting the clock of RAVEN to three minutes earlier 

than the time of the surge of Lustre messages, we found a 

heavy congestion on HSN by mapping “Deadlock timeout 

errors” on the system layout map as depicted by Figure 3-

(a). On the map we found C17 column drew our attention. 

The congestion was more denser in the column. We then 

map the application displacement at the time (Figure 3-

(b)). RAVEN suggested four applications for further 

investigation.  

 

aprunID 1345188 yellow in upper-left corner of c17-0 

aprunID 1356576 dark pink in c17-0,1,2 

aprunID 1356566 grey in lower c17-3 

aprunID 1350563 orange in upper c17-3 

 

We then examined “Deadlock timeout” patterns observed 

when each of these application was run during the past 

several days, and identified that the same Deadlock 

timeout pattern occurred in the previous day when the 

same application for aprunID 1345188 was run. More 

specifically, during the IO cycles of the AprunID 

1345188, the HSN encountered Deadlock timeouts and it 

quickly propagated to the column of four cabinets and 

over the entire system. This suggested that this particular 

application might have caused the blackout of the HSN. 

 

Case III: A Router Node Panic in Jaguar 

Problem Description: An avalanche of Lustre and BEER 

message was logged from most nodes in Jaguar for more 

than 30 minutes. No HSN congestion was observed 

during the period. 

 

By setting the time of RAVEN 6 minutes prior to the 

avalanche of the logs, we noticed that several OSSes of 

the ORNL Lustre Spider System started reporting 

communication problems with one particular router in 

Jaguar. After examining the pair wise context of all 

subsequent Lustre and BEER messages, we confirmed 

that the communication problem with the same router was 

reported in most of the messages; all the compute nodes 

are pointing to the same router. Six minutes after the 

OSSes reported the communication problem first, a 

“kernel panic” was generated at the router node. RAVEN 

could identify the cause of the avalanche of messages 6 

minute earlier using message contexts. 

 

4. Conclusion 
 
RAS logs are often only the existing resource from which 

clues for a system failure or abnormal behaviours can be 

deduced. Due to the ever increasing scale and the 

complexity of supercomputers, and redundant and 

implicit properties of logs, analyzing RAS logs requires 

special attentions. This paper introduced RAVEN that 

aims to assist the system administrators with tracing 

spatial and temporal patterns. We particularly 

demonstrated how RAVEN can be used to identify the 

root cause of system problems through context-driven 

navigation of logs. 

 

RAVEN has to be refined in several directions. First, 

currently it does not serve as a real-time 

monitoring/analysis tool. More specifically, the backend 

database server is manually updated. The real-time update 

of database is under development. Second, for a better 

portability, we are also trying to remove the backend 

database by connecting the RAVEN frontend directly to 

CMS.  
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Figure 2. BEER and Lustre snapshots, and application displacement when Kraken is 

flooded with BEER messages. From top to bottom, (a) Nodes generating BEER 

messages (source nodes), (b) Node the BEER messages are reporting (destination 
nodes), (c) Nodes generating Lustre messages, (d) application displacement. From 

the figures, it is clear that both BEER and Lustre messages are generated from the 

same application (colored yellow)  

!
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Figure 3. (a) Deadlock Timeout snapshot when HSN of Kraken is not responding 

(Top). (b) Application displacement (Bottom). Congestion is most severe at the 

column of C17. 

!


