
Cray User Group 2010 Proceedings 1 of 7

RAVEN: RAS data Analysis through Visually Enhanced

Navigation

Byung-Hoon Park, Guruprasad Kora, Al Geist, Oak Ridge National Laboratory

Junseong Heo, National Institute of Computational Science, UTK

ABSTRACT: Supercomputer RAS event data contain various signatures regarding system status, thus

are routinely examined to detect and diagnose faults. However, due to voluminous sizes of logs generated

during faulty situations, a comprehensive investigation that requires comparisons of different types of RAS

logs over both spatial and temporal dimensions is often beyond the capacity of human operators, which

leaves a cursory look to be the only feasible option. As an effort to better embrace informative but huge

supercomputer RAS data in a fault diagnosis/detection process, we present a GUI tool called RAVEN that

visually overlays various types of RAS logs on a physical system map where correlations between different

event types can be easily observed in terms of their quantities and locations at a given time. RAVEN also

provides an intuitive event navigation capability that helps examine logs by clustering them to their common

locations, types, or user applications. By tracing down notable event patterns reflected on the map and their

clustered logs, and superimposing user application data, RAVEN, which has been adopted at National

Institute of Computational Science (NICS) at the University of Tennessee, identified root causes of several

system failures logged in Kraken XT5.

KEYWORDS: Log Analysis, XT5, Root cause analysis.

1. Introduction

Detection and diagnosis of failures in a supercomputer

typically involve an analysis of reliability, availability,

and serviceability (RAS) event logs that contain text

descriptions about events of both hardware and software

components [7, 8]. However, fueled by the ever-growing

scale and complexity of computer systems, the volume

and complexity of RAS logs already reached the point

where the manual analysis by a human operator is no

longer feasible, and will continue to grow [6].

Events described in RAS logs are irregular in their

occurrences. Near the vicinity of the time of a failure,

either before or after, an avalanche of events is generated

portraying different views of the failure observed from

different components. Although embarrassingly large in

size, the entire logs generated during the span of this

period are mostly redundant leaving only a fraction of

data relevant for the analysis. However, sifting such

spurious events is by no means tractable without a proper

aid. In cases when not a single but multiple components

are the source of a failure, the root cause is best identified

by tracing a stream of highly correlated event types.

However such correlations are very hard to capture unless

temporal intervals when the correlations stand out are

carefully predetermined. Moreover many correlations are

implicit and spurious masking off real and important

event correlations.

A much clearer picture of the system status can be

obtained when contexts of logs are considered. First, in

many cases logs describe events that have pair wise

relations. For example, most Lustre messages report the

failed I/O attempts with the target destinations such as

between OSS and OSC. All Basic End to End Reliability

(BEER) messages include the failed communication

between two nodes. If most BEER messages generated at

a given time address problems with a single node, it is

most likely that the mentioned node is not in a normal

status. Second, events can be clustered based on the

context of a user application. User applications that are

not properly tuned for the intended scale tend to impose

unforeseen overheads to the system. This typically

involves excessive amounts of communications between

the nodes occupied by the application or ill coordinated

checkpoint attempts. In such a case, certain types of

events (e.g., Lustre, BEER, etc.) can be understood with

respect to applications.

A plethora of tools have been introduced to aid system

administrators with analysis of log files. Most of these

tools are valuable to detect mere occurrences of faults or

capture a temporal summary of event occurrences.

However, their usage of tracing event patterns that lead to

Cray User Group 2010 Proceedings 2 of 7

the root cause of some system failures is highly limited.

In this paper, we introduce RAS data Analysis through

Visually Enhanced Navigation (RAVEN) that assists

users with tracing event patterns through a context-driven

navigation of RAS logs. By displaying the amount of

occurrences of an event type observed during a selected

time interval on the system map (physical layout of the

system), RAVEN provides a compact and intuitive

representation of event snapshots. By displaying pair wise

contexts events or superimposing different event

snapshots, users can trace coherent event correlation

patterns. Also by superimposing the displacement of user

applications on top of event snapshots, events or event

patterns specific to a certain user application can be

captured.

RAVEN has been employed at the National Institute of

Computational Science (NICS) of the University of

Tennessee for more than 6 months. During the period, it

identified root causes of several software driven failures

logged in Kraken XT5. RAVEN has also been adopted by

the National Center for Computational Science at Oak

Ridge National Laboratory, and used to monitor and

analyze RAS logs of Jaguar and Spider.

The rest of the paper is organized as follows. First we

gives background materials of RAVEN. Then the

architecture of RAVEN is introduced. A detailed

description of the event types used for Cray XT5 will

follow. Three cases we examined with RAVEN from the

Kraken and Jaguar logs will then be introduced. With

discussion about the future direction of RAVEN, we will

conclude the paper.

2. Background

RAS logs, especially those generated through printk() are

in free text forms. Many attempts have been made to

capture semantics from these logs by defining regular

expressions [2, 5, 9] for the desired events. Often these

regular expressions are the results of laborious efforts by

human experts, and thus most reliable to detect mere

occurrences of critical events. Systems such as Nagios [1]

are real-time monitoring of the system based on such hard

descriptions of faulty events. These tools are practically

useful for immediate discovery of faults. However, they

by no means be used to understand the system status or

the cause of the events in a broader sense.

To provide a wider view of the system status, a number of

visualization tools for monitoring log data have been

introduced. OVIS [3] gives 3D visual display about state

variables (temperature, fan speed, CPU utilization) and

their simple statistics. By providing a close-to-real

rendering of the system, it has been found to be a useful

tool not only for monitoring state variables, but also

tuning system set-up. Splunk aims to assist the

identification of event occurrence pattern. For this, it

parses logs, state variables, and other data and indexes

them for an efficient searching.

To extract informative clues for the cause of a system

failure, a tool that provides not only abstract views of the

system but also the detailed information is desired. Most

existing tools are practically useful in detecting faults,

capturing system snapshots, or retrieving logs that match

user defined regular expressions. However, their usages to

navigate logs by tracing both temporal and spatial event

patterns and retrieve detailed information of the system at

the chosen location and time is highly limited.

RAVEN Architecture

To provide a fast, intuitive, and context assisted

navigation capability is the main design goal of RAVEN.

RAVEN consists of two parts: the backend database

server and the frontend user interface. Both the frontend

and the backend were designed for fast retrieval/display

of event synopsis and contexts of RAS logs.

The backend database server is a collection of MySQL

tables that stores the records of events such as location of

occurrences, their pair wise context, user applications,

original text messages, etc. Besides these dynamic data,

static information like system meta data, machine layout,

Figure 1. A screenshot of RAVEN Frontend User
Interface displaying RAS logs of Kraken. The upper
plane (System Layout Map) shows BEER messages
between the nodes in two cabinets and Lustre OSSes.
The bottom left shows the Control Panel where various
event occurrence curves are displayed. The bottom
right lists all the original log entries generated from a
node in c13-2.

Cray User Group 2010 Proceedings 3 of 7

and identifiers for nodes and resources are created once

during the initial installation.

From a technical point of view, the RAVEN frontend is a

tool with which a user composes a query and displays the

result on the physical map. A query comprises of 1) a

time stamp (or an interval), 2) particular node(s), 3)

specific event type, and 4) user application. Users

constructs a query simply by clicking regions in the

physical map, time line of interest, or choosing a

particular job shown as a block of colours on the physical

map.

The structure of the RAVEN frontend comprises of three

parts.

1. System Layout Map

2. Control Panel

3. Information Panel

The system layout map shows the physical placement of

cabinets with individual nodes depicted as squares

therein. The system layout map is where events are

displayed with colors representing their amounts of

occurrences. The displacements of jobs are also shown in

this layout map with the nodes allocated for the job

having the same color.

The control navigation panel allows users to select time

stamps and events of interest. To aid users to select

appropriate time intervals, the panel displays a synopsis

curve for each event type. It also provides multi-

resolution views the curves so that users can navigate and

select the most desired time stamp. When an event type

and a time stamp is selected, the amounts of occurrences

of the event type are shown in the system layout map.

The information panel is where information about a job or

an event are detailed. When a node in the system layout

map is clicked, the original log entries generated from the

node or information about a job running in the node are

displayed depending on user’s intention.

RAVEN on Cray XT5

RAVEN runs on CRMS log files. More specifically the

backend server is built on four log files: console,

consumer, netwatch, and apsched. From the first three

logs, RAVEN currently extracts the following events.

• console: Lustre, Basic End to End Reliability

(BEER), Segfault, Out of memory, Kernel panic,

Machine Check Exception (MCE)

• consumer: node heartbeat failure, node voltage

fault

• netwatch: Link Inactive, deadlock timeout

In addition to these events, as with the Simple Event

Correlator (SEC), users can define and add a new event

simply by providing a regular expression that describes

patterns of the event in logs. Apsched logs are used to

upload user application information such as duration of

the run, application name, the list of nodes occupied, etc.

3. Case Study with RAVEN

In this section we introduce three cases when RAVEN

was used to decipher the causes of abnormal behaviours

of the system. In particular, we highlight how RAVEN

can be used to keep track of and get an immediate view

on system status. The first two cases are from logs of

Kraken and the third is from that of Jaguar.

Case I: A Flood of Basic End to End Reliability

(BEER) Messages in Kraken
Problem Description: The NICS system administrators

detected a number of periods during which abnormally

huge floods of BEER messages logged. Cray engineers

spent days to identify the cause of these Portal errors,

tracing hardware related causes.

We examined one of the periods when such a flood of

BEER messages was observed. We first displayed the

distribution of BEER messages on the system layout map.

Figure 2-(a) shows the nodes that are generating BEER

messages, and Figure 3-(b) illustrates the nodes that are

addressed to have problem with the reporting nodes. From

this pair wise context (source and destination), it became

clear that the problem is confined to a single application

(both reporting and the reported nodes are the same).

Then we checked the application displacement at the time

as shown in Figure 2-(c). From this, we could identify the

yellow coloured application corresponds to the nodes

generating the BEER messages. We then checked Lustre

messages generated during the same interval (Figure 2-

(d)), and found that they were all generated by the nodes

allocated for the same application (yellow coloured). This

confirms that the yellow coloured application was indeed

the single source of the problem.

The identified application ran for only about two minutes,

and Lustre and BEER messages quieted down thereafter.

However, after examining all the periods during which

the same application was running by the same user, we

identified that it triggered the burst of Lustre and BEER

log messages during the previous week. In summary, we

can identify the strange new pattern of error messages

using RAVEN and guide ourselves to the cause of it. The

massive errors on BEER were caused by a single job that

ran in short intervals and we can trace them for every

incident.

Cray User Group 2010 Proceedings 4 of 7

Case II: HSN Blackout and Recovery in Kraken

Problem Description: Lustre error codes -107

(ENOTCONN) and -110 (ETIMEOUT), which suggest

High Speed Network (HSN) issues, were observed. We

confirmed that the HSN was not responding. A huge

surge of Lustre messages followed and quieted down. The

blackout was lifted in about 15 minitues.

By setting the clock of RAVEN to three minutes earlier

than the time of the surge of Lustre messages, we found a

heavy congestion on HSN by mapping “Deadlock timeout

errors” on the system layout map as depicted by Figure 3-

(a). On the map we found C17 column drew our attention.

The congestion was more denser in the column. We then

map the application displacement at the time (Figure 3-

(b)). RAVEN suggested four applications for further

investigation.

aprunID 1345188 yellow in upper-left corner of c17-0

aprunID 1356576 dark pink in c17-0,1,2

aprunID 1356566 grey in lower c17-3

aprunID 1350563 orange in upper c17-3

We then examined “Deadlock timeout” patterns observed

when each of these application was run during the past

several days, and identified that the same Deadlock

timeout pattern occurred in the previous day when the

same application for aprunID 1345188 was run. More

specifically, during the IO cycles of the AprunID

1345188, the HSN encountered Deadlock timeouts and it

quickly propagated to the column of four cabinets and

over the entire system. This suggested that this particular

application might have caused the blackout of the HSN.

Case III: A Router Node Panic in Jaguar

Problem Description: An avalanche of Lustre and BEER

message was logged from most nodes in Jaguar for more

than 30 minutes. No HSN congestion was observed

during the period.

By setting the time of RAVEN 6 minutes prior to the

avalanche of the logs, we noticed that several OSSes of

the ORNL Lustre Spider System started reporting

communication problems with one particular router in

Jaguar. After examining the pair wise context of all

subsequent Lustre and BEER messages, we confirmed

that the communication problem with the same router was

reported in most of the messages; all the compute nodes

are pointing to the same router. Six minutes after the

OSSes reported the communication problem first, a

“kernel panic” was generated at the router node. RAVEN

could identify the cause of the avalanche of messages 6

minute earlier using message contexts.

4. Conclusion

RAS logs are often only the existing resource from which

clues for a system failure or abnormal behaviours can be

deduced. Due to the ever increasing scale and the

complexity of supercomputers, and redundant and

implicit properties of logs, analyzing RAS logs requires

special attentions. This paper introduced RAVEN that

aims to assist the system administrators with tracing

spatial and temporal patterns. We particularly

demonstrated how RAVEN can be used to identify the

root cause of system problems through context-driven

navigation of logs.

RAVEN has to be refined in several directions. First,

currently it does not serve as a real-time

monitoring/analysis tool. More specifically, the backend

database server is manually updated. The real-time update

of database is under development. Second, for a better

portability, we are also trying to remove the backend

database by connecting the RAVEN frontend directly to

CMS.

Acknowledgement

This work is supported by US DOE, Office of

Science, Advanced Computing Science Research

Division.

References

[1] Wolfgang Barth, “Nagios: System And Network

Monitoring”, No Starch Press, 2006.

[2] Jeffrey Becklehimer, Cathy Willis, Josh Lothian, Don

Maxwell, and David Vasil, “Real Time Health

Monitoring of the Cray XT3/XT4 Using the Simple

Event Correlator (SEC)”, Cray Users Group Meeting

(CUG), 2007.

[3] J. Brandt, A. Gentile, J. Mayo, P. Pébay, D. Roe, D.

Thompson, and M. Wong, “Resource Monitoring and

Management with OVIS to Enable HPC in Cloud

Computing”, 5th Workshop on System Management

Techniques, Processes, and Services (SMTPS) -

Special Focus on Cloud Computing, 2009.

[4] Bryan Burns, Dave Killion, Nicolas Beauchesne, Eric

Moret, Julien Sobrier, Michael Lynn, Eric Markham,

Chris Iezzoni, Philippe Biondi, Jennifer Granick,

Steve W. Manzuik, and Paul Guersch. Security

Power Tools. O'Reilly Media, Inc..

[5] Logsurfer - a tool for real-time monitoring of text-

based logfiles, http://www.cert.dfn.de/eng/logsurf

[6] Celso L. Mendes, Daniel A. Reed, “Monitoring Large

Systems Via Statistical Sampling”, International

Cray User Group 2010 Proceedings 5 of 7

Journal of High Performance Computing

Applications, 18(2), 2004.

[7] A. Oliner, A. Aiken, and J. Stearley, “Alert Detection

in System Logs”, In Proceedings of the International

Conference on Data Mining (ICDM), 2008.

[8] A. Oliner and J. Stearley, “What supercomputers say:

A Study of five sysem logs”, In Proceedings of the

37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, 2007.

[9] R. Vaarandi, “SEC-a lightweight event correlation

tool”, In Proceedings of IEEE IPOM’03, 2003.

About the Authors

Byung-Hoon Park and Guruprasad Kora are staff

research scientists at Computer Science Research Group.

They can be reached at parkbh@ornl.gov and

koragh@ornl.gov. Al Gesit is the group leader of

Computer Science Research Group. He can be reached at

gst@ornl.gov. Junseong Heo is a system administrator at

National Institute of Computational Science (NICS),

UTK. He can be reached at jheo6@utk.edu.

Cray User Group 2010 Proceedings 6 of 7

!

Figure 2. BEER and Lustre snapshots, and application displacement when Kraken is

flooded with BEER messages. From top to bottom, (a) Nodes generating BEER

messages (source nodes), (b) Node the BEER messages are reporting (destination
nodes), (c) Nodes generating Lustre messages, (d) application displacement. From

the figures, it is clear that both BEER and Lustre messages are generated from the

same application (colored yellow)

!

Cray User Group 2010 Proceedings 7 of 7

!

Figure 3. (a) Deadlock Timeout snapshot when HSN of Kraken is not responding

(Top). (b) Application displacement (Bottom). Congestion is most severe at the

column of C17.

!

