

Cray User Group 2010 Proceedings Page 1

DMAPP - An API for One-sided Program Models on Baker

Systems

Monika ten Bruggencate, Ph.D., Cray Inc.

Duncan Roweth, Ph.D., Cray UK Ltd.

ABSTRACT: Cray Baker and follow-on systems will deliver a network with advanced

remote memory access capabilities. A new API (DMAPP) has been developed to expose

these capabilities to one-sided program models. This paper presents the DMAPP API as

well as preliminary performance data for DMAPP on Gemini.

KEYWORDS: Cray Baker system, one-sided program models

1. Introduction

Since the introduction of Cray T3D, Cray has

supported various forms of distributed global memory

(DM) program models. Distributed global memory is

memory which allows a process to access memory in a

remote process without involvement of the remote

processor on which the remote process is scheduled.

Support for one-sided program models such as Cray

SHMEM[1] and Partitioned Global Address Space

(PGAS) languages[2], e.g. Unified Parallel C (UPC) [3]

and Co-Array Fortran (CAF) [4], is critical for the future

of Cray systems, including Cray Baker and follow-on

systems. As a result, a new API, called the Distributed

Memory Application (DMAPP) API, was developed to

support such one-sided program models on Cray Baker

systems. The DMAPP API has two main purposes: to

allow higher-level software to realize the hardware

performance of the Baker network technology and to

allow higher-level software to be portable to future

instantiations of this network technology. As such the

DMAPP API is intended to be used for library and

compiler development rather than directly within end-user

application software.

The remainder of this document is organized as

follows. Section 2 introduces the DMAPP Program Model

and API. Section 3 gives a brief overview of the Cray

Baker hardware and software stack, from DMAPP's

perspective, and describes the DMAPP implementation.

Section 4 discusses preliminary performance data. Future

work is discussed in Section 5.

2. DMAPP Program Model and API

2.1 DMAPP Program Model

The DMAPP program model is designed to support

both compiler-based (e.g. UPC and CAF) and library

based (e.g. Cray SHMEM) one-sided program models in

which a distinction exists between local and remote

memory references at some level in the program model.

In the DMAPP program model a group of processes

execute the same executable in parallel. For the purpose

of this discussion, such a group of related processes are

called a job. Typically the number of processes executing

the application does not change over the course of a job.

The processes in a job are sometimes called processing

elements (PEs). Although each PE executes in its own

address space, it can access certain memory segments of

other PEs in a one-sided (PUT/GET) manner using PGAS

language constructs or by invoking function calls to

libraries which support one-sided program models, such

as Cray SHMEM. Such memory segments which can be

accessed by remote PEs are called remotely accessible.

Remotely accessible memory segments in a PE can be

classified as either symmetric or non-symmetric. The

address of an object within a symmetric memory segment

of a PE has a known relationship (known to some

component of the runtime, at least) to the address of this

same object in the address space of another PE in the job.

This distinction has important implications. Objects

within symmetric memory segments can be accessed in a

one-sided manner by other PEs in the job using locally

generated address information. Objects within non-

symmetric memory segments on PE A can only be

accessed in a one-sided manner by another PE B using

address information generated by PE A and

communicated to PE B. See Sections 2.2.2, 2.2.3 and

Cray User Group 2010 Proceedings Page 2

2.2.7 for more details. In the DMAPP program model,

symmetric memory segments are the statically linked data

segment and a symmetric heap segment.

For simplicity, for the remainder of this paper, one-

sided program models implemented on top of DMAPP

will be referred to as DMAPP applications.

 2.2 DMAPP API

Since the AMD64 processor cannot be efficiently

used to directly load from or store to remotely accessible

memory on Baker nodes, DMAPP provides an API for

interfacing with the remote memory access (RMA)

hardware mechanisms available in Baker systems. The

DMAPP RMA functions can be divided into

 one-sided RMA functions

 RMA synchronization functions

where one-sided RMA functions can be further

subdivided into three categories:

 blocking

 non-blocking explicit

 non-blocking implicit

A process returns from a blocking function call only

after the effects of the remote memory access are globally

visible in the system. Blocking functions do not allow

overlapping of communication and computation within a

single process, although one process’ communication may

overlap with another’s computation. In the case of a non-

blocking explicit function call, a synchronization

identifier (syncid) is returned to the process and the

effects of the remote memory access are only assured to

be globally visible in the system after the initiating

process has determined via an explicit synchronization

call that the syncid has been retired. In the case of a non-

blocking implicit function call, no explicit

synchronization identifier is returned to the process and

the effects of the remote memory access are only assured

to be globally visible in the system after a synchronization

call by the initiator of the non-blocking implicit function

call. See Section 2.2.5 for more details.

All DMAPP functions return a status value indicating

success or failure of the function. Note that for non-

blocking RMA functions, this status indicates whether the

transfer has been issued successfully, but does not

indicate whether or not the remote memory access request

completed successfully.

 2.2.1 Initialization, Termination and Query

Before calling any other DMAPP functions, a

DMAPP application must call the initialization function

dmapp_init. This function sets up NIC specific resources

and prepares symmetric memory segments of an DMAPP

application for remote memory access. Segments which

are exported to be remotely accessible are the static data

segment and the symmetric heap.

Similarly, the very last call to the DMAPP library

must be a call to dmapp_finalize which tears down

previously set up resources.

At runtime, DMAPP application software can

determine job and RMA attribute specific information via

calls to dmapp_get_jobinfo and dmapp_get_rma_attrs,

respectively. Job specific information includes details on

the segments of the address space which are exported.

RMA specific information includes details on the routing

mode used, maximum number of outstanding non-

blocking operations supported and the offload threshold

(see Sections 3.1 and 3.2).

2.2.2 Point-to-point one-sided RMA functions

Point-to-point one-sided RMA functions allow a PE

to access memory on one remote PE at a time. This group

of functions share the following characteristics. The

remote address is specified by a triplet of virtual remote

address, remote segment descriptor and the remote PE.

For functions with PUT semantics, the remote address is

the target address of the transfer, for functions with GET

semantics, it is the source address of the transfer. The

number and type of elements to be transferred are

specified. The remote memory region defined by the

remote address and the amount of data to be accessed

must reside within an exported memory segment of the

remote PE. These characteristics also apply to all other

RMA functions (see Section 2.2.3). Strides and indices

are in units of type of the elements. Point-to-point RMA

functions allow one-sided access to both types of

remotely accessible memory, symmetric as well as non-

symmetric.

The PUT functions are dmapp_put, dmapp_put_nb

and dmapp_put_nbi. They store a contiguous block of

data starting at a source address in local memory into a

contiguous block at a remote address.

The GET functions are dmapp_get, dmapp_get_nb,

and dmapp_get_nbi. They load from a contiguous block

of data starting from a remote address and returning the

data into a contiguous block starting at a target address in

local memory.

The strided PUT functions are dmapp_iput,

dmapp_iput_nb and dmapp_iput_nbi. They deliver data

starting at a source address in local memory to a remote

address using separate source side and target side strides.

Cray User Group 2010 Proceedings Page 3

The strided GET functions are dmapp_iget,

dmapp_iget_nb and dmapp_iget_nbi. They load data

starting from a remote source address using a source side

stride sst and returning the data to a target address in local

memory using a separate target stride tst.

The indexed PUT functions are dmapp_ixput_nb,

dmapp_ixput_nbi, and dmapp_ixput. They scatter a

contiguous block of data starting at a source address in

local memory to a remote address using offsets specified

by the tidx array.

The indexed GET functions are dmapp_ixget_nb,

dmapp_ixget_nbi, and dmapp_ixget. These functions

gather data starting from a remote source address using

offsets specified by the sidx array and returning the data

into a contiguous block starting at a target address in local

memory.

2.2.3 PE-strided One-sided RMA Functions

The DMAPP API provides functions that gather data

from and scatter data to remotely accessible addresses

across a set of PEs in a DMAPP job. The characteristics

discussed in Section 2.2.2 for point-to-point RMA

functions also apply to this group of functions. In

addition, the remote address must be a symmetric address.

Note also that none of these functions are collective

operations. They are best used when a small amount of

data needs to be scattered to or collected from a set of

PEs.

The PUT with indexed PE stride functions are

dmapp_put_ixpe_nb, dmapp_put_ixpe_nbi, and

dmapp_put_ixpe. These functions deliver data starting at a

source address in local memory to a list of target PEs

starting at a remote address in their memories. When the

transfer is complete, each target PE has a copy of the

contents of the original source buffer.

The scatter with indexed PE stride function are

dmapp_scatter_ixpe_nb, dmapp_scatter_ixpe_nbi, and

dmapp_scatter_ixpe. They deliver data starting at a source

address in local memory to a list of target PEs

target_pe_list starting at a remote address in their

memories. Unlike the dmapp_put_ixpe function, the

source array specifies an array of size

num_target_pes*nelems*sizeof(type). A target PE at

index i into the target_pe_list will receive elements

i*nelems to (i+1)*nelems-1.

The gather with indexed PE stride functions are

dmapp_gather_ixpe_nb, dmapp_gather_ixpe_nbi, and

dmapp_gather_ixpe. They gather data starting at a remote

source address from a list of PEs and concatenate the data

in a buffer specified by the target address in local

memory.

2.2.4 AMOs

A set of scalar-type Atomic Memory Operation

(AMO) functions are provided: dmapp_<op>_qw_nb,

dmapp_<op>_qw_nbi and dmapp_qw_<op>, where op is

either AADD, AAND, AOR, or AXOR or AFADD,

AFAND, AFOR, or AFXOR. AMOs only operate on 64-

bit (quad-word) entities. For atomic functions with PUT

semantics (AADD, AAND, AOR, AXOR) as well as for

those with GET semantics (AFADD, AFAND, AFOR,

AFXOR) the remote memory location must reside in

exported memory of the remote PE.

Additionally, a set of two-operand AMO functions is

provided: dmapp_<op>_qw, dmapp_<op>_qw_nb, and

dmapp_<op>_qw_nbi, where op is AFAX (atomic fetch

and exclusive or) or ACSWAP (atomic compare and

swap). The source memory location must reside in

exported memory of the remote PE.

2.2.5 Synchronization

DMAPP applications use synchronization functions

to determine when locally initiated, non-blocking RMA

requests have completed, i.e. the data transferred has

arrived in the target memory location.

A process initiating an explicit non-blocking RMA

request can determine when the transfer is complete by

calling the syncid specific synchronization functions

dmapp_syncid_test or dmapp_syncid_wait. The latter is

a blocking version of the former and returns only when all

remote memory accesses associated with the specified

syncid are globally visible in the system.

A process can determine when one or more non-

blocking implicit RMA requests are globally visible in the

system by calling the

dmapp_gsync_test or dmapp_gsync_wait functions. The

latter is a blocking version of the former and returns only

when all remote memory accesses associated with non-

blocking implicit requests previously initiated by the

caller are globally visible in the system. Note that

invoking the gsync style functions does not free resources

associated with non-blocking explicit RMA requests.

dmapp_syncid_test or dmapp_syncid_wait calls must be

made for each previously issued non-blocking explicit

RMA request in order to free up DMAPP internal

resources. Further, note that only the initiating process has

visibility of completion of a previously issued request.

2.2.6 Symmetric Heap Management

DMAPP provides routines for allocating and

releasing symmetric heap memory. DMAPP applications

are responsible for preserving the symmetry of this

memory. This is achieved by ensuring that all PEs in a job

make the same calls to the symmetric heap management

Cray User Group 2010 Proceedings Page 4

functions (including involving the same amount of

memory) in the same sequence. The function

dmapp_sheap_malloc allocates the specified number of

bytes of memory from the symmetric heap. The function

dmapp_sheap_realloc changes the size of a block of

memory which was previously allocated by

dmapp_sheap_malloc. The function dmapp_sheap_free

frees a block of memory previously allocated by

dmapp_sheap_malloc or dmapp_sheap_realloc. The

DMAPP application controls the size of the symmetric

heap.

2.2.7 Dynamic Memory Registration and Deregistration

The dynamic memory management functions

dmapp_mem_register and dmapp_mem_unregister allow

a DMAPP application to dynamically register or

deregister memory which for instance was allocated from

the private heap or using mmap. Memory registered by a

call to dmapp_mem_register becomes remotely accessible

and is assumed non-symmetric. It cannot be remotely

accessed using a locally created address and segment

descriptor. Instead, it can only be accessed using a

remotely generated address and segment descriptor that

have been communicated to the initiating process. In

general, the DMAPP application must perform an out-of-

bounds exchange of remote address and segment

descriptor information between communicating PEs for

dynamically registered memory regions.

3. DMAPP Implementation

3.1 Gemini Hardware Overview

A Cray Baker systems consists of AMD Opteron

multi-core processors connected via a Cray proprietary

interconnection network. The network interface chip

(NIC) which provides an interface between the Opteron

processors and the Baker interconnection network is

called Gemini. Gemini delivers advanced remote memory

access features and provides the communication modes

and programming model that create the abstraction of a

global, shared address space across the entire machine.

Additional information on Gemini can be found in [5].

 Gemini provides completion queues (CQs) for

asynchronous, light-weight event notification. They allow

local tracking of progress of FMA and BTE requests. A

CQ typically resides in host memory.

Gemini implements two modes for accessing remote

memory on another node of a Baker system:

• Fast Memory Access (FMA). This mode provides low

overhead, user-level, direct load and store access to

remote memory. FMA provides the ability to run short

transfers across the network at low latency. FMA

translates stores by the AMD64 processor on the local

node into fully qualified network requests. Processors that

use the FMA mechanism do not directly load and store

into memory on other nodes. Instead, stores into an FMA

window are used to generate remote memory reference

requests and stores to an associated FMA descriptor

control how the FMA window is mapped to the job’s

memory segments.

• Block Transfer Engine (BTE). This mode provides

memory-to-memory copies using the block transfer

engine. Data is moved asynchronously between local and

remote memory, a completion event is generated when the

transfer has completed. BTE is primarily intended for

large, asynchronous data transfers between nodes.

In addition to the two communication modes, Gemini

supports low-latency synchronization using a set of

atomic memory operations (AMOs). This set has been

modelled on the set of AMOs provided on Cray X2

systems. The AMOs are restricted to 64-bit quantities.

Memory regions must be registered with the local

Gemini before they can be accessed from other nodes

using FMA or BTE.

3.2 DMAPP Implementation on Gemini

Figure 1 depicts a DMAPP-centric view of the

Gemini software stack. A complete discussion of the

software stack is beyond the scope of this paper. The

Gemini Hardware Abstraction Layer (GHAL) is a set of

macros which allows software such as DMAPP to

efficiently access the Gemini hardware. The kernel-level

component of the Gemini driver is named kGNI, whereas

the user-level component is named uGNI (see [6] for

details).

DMAPP is used to implement higher-level, more

portable APIs such as Cray SHMEM, PGAS compilers

and Chapel. This hierarchical design allows such higher-

level software to be portable to future instantiations of

Gemini while network specific code is hidden within the

DMAPP, uGNI, kGNI and GHAL software components.

There are a few phases during the execution of an

application when DMAPP interfaces with Gemini through

uGNI, and in turn the Linux kernel and kGNI. These

phases include initialization and termination. During

initialization, the Gemini driver is invoked to prepare

Gemini resources such as to create a Communication

Domain
1
 (CDM) and attach it to the NIC, create a

Completion Queue (CQ) and to pre-register symmetric

memory regions, i.e. the statically linked data segment

and the symmetric heap, with the NIC. Pre-registration of

the data segment and the symmetric heap eliminate the

need for expensive memory registration of these segments

during end-user application execution. During

termination, the Gemini driver is invoked to properly

1
 A Communication domain is the set of PEs and

associated memory segments that make up a job see [1]

for details.

Cray User Group 2010 Proceedings Page 5

release all Gemini resources which were previously held

by the job.

To eliminate waste and maximize reuse of memory

registration related Gemini resources, DMAPP

implements a memory registration cache, which tracks

and, if possible, reuses previously registered memory

regions. When a memory region to be registered

dynamically is found in the registration cache, DMAPP

software overhead is minimal. When it is not found in the

cache, DMAPP interfaces with the Gemini driver to

register the region.

The BTE mechanism is intended to be used for large,

contiguous transfers, when the data transfer is best

offloaded from the processor. DMAPP takes advantage of

this mechanism for large PUTs or GETs, e.g. calls to

dmapp_put_nb and dmapp_get, where the amount of data

to be transferred exceeds a user-tuneable threshold.

Above this threshold DMAPP executes a call to the BTE

to asynchronously move the data. The default threshold

value is 4k bytes. The higher level program model calling

DMAPP is free to alter this threshold at any point in time,

for example setting a high value in a call that is known to

be blocking.

The FMA mechanism is intended to be used for small

transfers. DMAPP takes advantage of it for all other data

transfer functions, such as PUTs and GETs where the

amount of data to be transferred is less than the offload

threshold, strided and indexed functions, all PE-strided

functions and AMOs. DMAPP bypasses the kernel and

directly interacts with the FMA hardware on the Gemini

NIC via a thin set of GHAL macros. The GHAL macros

allow DMAPP to directly store to the Gemini.

Information stored to the NIC includes information

specifying the remote memory location, details relating to

performance, the data to be transferred (for operations

with PUT semantics) or details about the amount of data

to be gotten (for operations with GET semantics), and

more. The stores in turn are translated by the Gemini into

fully qualified network requests.

To implement the synchronization functions,

DMAPP takes advantage of the light-weight CQ

mechanism. DMAPP invokes GHAL to determine if a

completion event has arrived locally and then simply

analyzes the state of the event to determine success or

failure of the transfer associated with the completion

event.

Lastly, the symmetric heap management functions

are implemented by means of a region allocator within the

DMAPP library. The symmetric heap uses large pages,

2Mbytes by default.

The discussion in this section illustrates how DMAPP

has been designed and implemented to allow higher-level

software such as PGAS compilers and Cray SHMEM to

realize much of the performance of the Gemini hardware

by keeping the software overhead for operations on the

critical path of an end-user application low.

4. Preliminary Performance Measurements

DMAPP performance measurements were made

using prototype Gemini hardware and software. We used

2100MHz Opteron CPUs connected to Gemini via a

2400MHz HyperTransport interface. Measurements were

taken between processes on nodes connected to

neighbouring Gemini routers.

DMAPP provides a low overhead API to the Gemini

hardware. In Figure 2 we show PUT and GET latencies as

a function of transfer size. We measure the time taken to

perform blocking PUTs as seen by the source process as

well as the half round trip ping-pong time. The latency as

measured at the source includes that for a response to be

returned.

Figure 2: Gemini DMAPP PUT and GET latencies

0.0

0.5

1.0

1.5

2.0

2.5

8 16 32 64 128 256 512 1024

Ti
m

e
 (m

ic
ro

se
cs

)

Size (bytes)

PUT, ping-pong

PUT, at source

GET

Figure 1: Gemini software stack

Cray User Group 2010 Proceedings Page 6

In Figure 3 we show the PUT bandwidth as a function of

increasing element size. Results are shown for one, two

and four processes per node. The impact of the switch

from FMA to BTE transfer at 4K bytes is clear. DMAPP

application writers need to consider how best to set this

threshold, trading the increased latency of BTE transfers

with the increased CPU availability.

Figure 3: Gemini DMAPP bandwidths for 1, 2 and 4

processes per node

In Figure 4 we show the bandwidth as a function of the

number of non-blocking PUTs issued for a range of small

transfer sizes. Only small numbers of transfers need be

issued to get a marked increase in bandwidth.

Figure 4: Gemini DMAPP bandwidths for increasing

numbers of non-blocking PUTs

In Figure 5 we show the rate at which Gemini can

perform 64-bit DMAPP strided PUTs as a function of the

target stride for a range of vector lengths. The

performance of strided PUTs and GETs is of particular

importance to the Co-Array Fortran compiler.

Figure 5: Gemini DMAPP 64-bit strided PUT rate as a

function of target stride

In Figure 6 we show the rate of AMOs as a function of

job size. In this test all DMAPP AMO calls target atomic

variables owned by process 0. We show the aggregate rate

for the job when all process target a single AMO and for

an AMO chosen at random from a set of 8K, all in process

0. The Gemini NIC caches up to 64 AMOs, the 8K case

shows the additional cost of HyperTransport operations to

fetch/store the variable.

Figure 6: Gemini DMAPP rate of atomic memory

operations targeting process 0 as a function of job size.

5. Status and Future Work

DMAPP will be released in July 2010 together with

the first Baker systems and the Cray SHMEM, UPC and

CAF products that use it. As time and resources permit,

optimizations will be implemented. Two areas of

particular interest are message rates for small transfers

and concurrency.

Initial performance analysis has revealed that FMA

descriptor updates (see Section 3.2) are relatively

expensive and should be minimized as much as possible.

Opportunities to reduce the number of descriptor updates

0

1000

2000

3000

4000

5000

6000

7000

8 16 32 64 128 256 512 1024 2K 4K 8K 16K 32K 64K

B
an

d
w

id
th

 (m
b

yt
e

s/
se

c)

Element size (bytes)

PPN=1

PPN=2

PPN=4

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64

B
an

d
w

id
th

 (m
b

yt
e

s/
se

c)

Non-blocking puts

8 bytes

64 bytes

256 bytes

0

20

40

60

80

100

120

140

160

2 4 8 16 32 64 128 256 512 1024 2048 4096

R
at

e
 (m

il
li

o
n

s/
se

c)

Stride (64-bit words)

Vector length = 16

Vector Length = 64

Vector length = 4096

0

20

40

60

80

100

120

0 256 512 768 1024

A
M

O
 r

at
e

 (m
il

li
o

n
s)

Number of processes

1 AMO

8192 AMOs

Cray User Group 2010 Proceedings Page 7

have been identified for non-blocking implicit operations

as well as strided and indexed operations. Additional

opportunities may be discovered upon further inspection

and experimentation. Reducing the number of FMA

descriptor updates will increase the small message rate of

affected operations in many, but not necessarily all, use

cases.

The Gemini NIC provides each process with its own

FMA hardware, enabling it to issue RMA operations

without synchronizing with other processes. Use of shared

memory multi-threaded programming within the node is

of increasing interest. Extending DMAPP support to

provide multiple FMA descriptors per process would

enable threads to issue RMA operations independently.

Acknowledgments

This material is based upon work supported by the

Defense Advanced Research Projects Agency under its

Agreement No. HR0011-07-9-0001. Any opinions,

findings and conclusions or recommendations expressed

in this material are those of the author(s) and do not

necessarily reflect the views of the Defense Advanced

Research Projects Agency.

References

[1] Cray XT Programming Environment Users Guide

(S-2396) and Cray SHMEM manual pages

[2] Productivity and performance using partitioned global

address space languages, K. Yelick et al. Proceedings of

the 2007 International Workshop on Parallel Symbolic

Computation

[3]UPC Language Specification V1.2, for details see

www.guu.edu/upc

[4] Co-array Fortran Language Definition, for details see

www.co-array.org

[5] Cray Gemini Whitepaper, see www.cray.com

[6] Cray Gemini Network API Specification (S-2446)

http://www.guu.edu/upc
http://www.co-array.org/
http://www.cray.com/

