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ABSTRACT: Cray Baker and follow-on systems will deliver a network with advanced 

remote memory access capabilities. A new API (DMAPP) has been developed to expose 

these capabilities to one-sided program models. This paper presents the DMAPP API as 

well as preliminary performance data for DMAPP on Gemini.  
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1. Introduction 

Since the introduction of Cray T3D, Cray has 

supported various forms of distributed global memory 

(DM) program models. Distributed global memory is 

memory which allows a process to access memory in a 

remote process without involvement of the remote 

processor on which the remote process is scheduled.  

 

Support for one-sided program models such as Cray 

SHMEM[1] and Partitioned Global Address Space 

(PGAS) languages[2], e.g. Unified Parallel C (UPC) [3] 

and Co-Array Fortran (CAF) [4], is critical for the future 

of Cray systems, including Cray Baker and follow-on 

systems. As a result, a new API, called the Distributed 

Memory Application (DMAPP) API, was developed to 

support such one-sided program models on Cray Baker 

systems. The DMAPP API has two main purposes: to 

allow higher-level software to realize the hardware 

performance of the Baker network technology and to 

allow higher-level software to be portable to future 

instantiations of this network technology. As such the 

DMAPP API is intended to be used for library and 

compiler development rather than directly within end-user 

application software. 

The remainder of this document is organized as 

follows. Section 2 introduces the DMAPP Program Model 

and API. Section 3 gives a brief overview of the Cray 

Baker hardware and software stack, from DMAPP's 

perspective, and describes the DMAPP implementation. 

Section 4 discusses preliminary performance data. Future 

work is discussed in Section 5. 

2. DMAPP Program Model and API 

2.1 DMAPP Program Model 

 

The DMAPP program model is designed to support 

both compiler-based (e.g. UPC and CAF) and library 

based (e.g. Cray SHMEM) one-sided program models in 

which a distinction exists between local and remote 

memory references at some level in the program model. 

 

In the DMAPP program model a group of processes 

execute the same executable in parallel. For the purpose 

of this discussion, such a group of related processes are 

called a job. Typically the number of processes executing 

the application does not change over the course of a job. 

The processes in a job are sometimes called processing 

elements (PEs). Although each PE executes in its own 

address space, it can access certain memory segments of 

other PEs in a one-sided (PUT/GET) manner using PGAS 

language constructs or by invoking function calls to 

libraries which support one-sided program models, such 

as Cray SHMEM. Such memory segments which can be 

accessed by remote PEs are called remotely accessible. 

Remotely accessible memory segments in a PE can be 

classified as either symmetric or non-symmetric. The 

address of an object within a symmetric memory segment 

of a PE has a known relationship (known to some 

component of the runtime, at least) to the address of this 

same object in the address space of another PE in the job. 

This distinction has important implications.  Objects 

within symmetric memory segments can be accessed in a 

one-sided manner by other PEs in the job using locally 

generated address information. Objects within non-

symmetric memory segments on PE A can only be 

accessed in a one-sided manner by another PE B using 

address information generated by PE A and 

communicated to PE B. See Sections 2.2.2, 2.2.3 and 
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2.2.7 for more details. In the DMAPP program model, 

symmetric memory segments are the statically linked data 

segment and a symmetric heap segment. 

 

For simplicity, for the remainder of this paper, one-

sided program models implemented on top of DMAPP 

will be referred to as DMAPP applications. 

 

 2.2 DMAPP API 

Since the AMD64 processor cannot be efficiently 

used to directly load from or store to remotely accessible 

memory on Baker nodes, DMAPP provides an API for 

interfacing with the remote memory access (RMA) 

hardware mechanisms available in Baker systems. The 

DMAPP RMA functions can be divided into 

 one-sided RMA functions 

 RMA synchronization functions 

where one-sided RMA functions can be further 

subdivided into three categories: 

 blocking  

 non-blocking explicit 

 non-blocking implicit 

A process returns from a blocking function call only 

after the effects of the remote memory access are globally 

visible in the system. Blocking functions do not allow 

overlapping of communication and computation within a 

single process, although one process’ communication may 

overlap with another’s computation. In the case of a non-

blocking explicit function call, a synchronization 

identifier (syncid) is returned to the process and the 

effects of the remote memory access are only assured to 

be globally visible in the system after the initiating 

process has determined via an explicit synchronization 

call that the syncid has been retired. In the case of a non-

blocking implicit function call, no explicit 

synchronization identifier is returned to the process and 

the effects of the remote memory access are only assured 

to be globally visible in the system after a synchronization 

call by the initiator of the non-blocking implicit function 

call. See Section 2.2.5 for more details. 

All DMAPP functions return a status value indicating 

success or failure of the function. Note that for non-

blocking RMA functions, this status indicates whether the 

transfer has been issued successfully, but does not 

indicate whether or not the remote memory access request 

completed successfully. 

 2.2.1 Initialization, Termination and Query 

Before calling any other DMAPP functions, a 

DMAPP application must call the initialization function 

dmapp_init. This function sets up NIC specific resources 

and prepares symmetric memory segments of an DMAPP 

application for remote memory access. Segments which 

are exported to be remotely accessible are the static data 

segment and the symmetric heap.  

 

Similarly, the very last call to the DMAPP library 

must be a call to dmapp_finalize which tears down 

previously set up resources.  

 

At runtime, DMAPP application software can 

determine job and RMA attribute specific information via 

calls to dmapp_get_jobinfo and dmapp_get_rma_attrs, 

respectively. Job specific information includes details on 

the segments of the address space which are exported. 

RMA specific information includes details on the routing 

mode used, maximum number of outstanding non-

blocking operations supported and the offload threshold 

(see Sections 3.1 and 3.2). 

2.2.2  Point-to-point one-sided RMA functions 

Point-to-point one-sided RMA functions allow a PE 

to access memory on one remote PE at a time. This group 

of functions share the following characteristics. The 

remote address is specified by a triplet of virtual remote 

address, remote segment descriptor and the remote PE. 

For functions with PUT semantics, the remote address is 

the target address of the transfer, for functions with GET 

semantics, it is the source address of the transfer. The 

number and type of elements to be transferred are 

specified. The remote memory region defined by the 

remote address and the amount of data to be accessed 

must reside within an exported memory segment of the 

remote PE. These characteristics also apply to all other 

RMA functions (see Section 2.2.3). Strides and indices 

are in units of type of the elements. Point-to-point RMA 

functions allow one-sided access to both types of 

remotely accessible memory, symmetric as well as non-

symmetric. 

 

The PUT functions are dmapp_put, dmapp_put_nb 

and dmapp_put_nbi. They store a contiguous block of 

data starting at a source address in local memory into a 

contiguous block at a remote address.   

 

The GET functions are dmapp_get, dmapp_get_nb, 

and dmapp_get_nbi. They load from a contiguous block 

of data starting from a remote address and returning the 

data into a contiguous block starting at a target address in 

local memory.  

 

The strided PUT functions are dmapp_iput, 

dmapp_iput_nb and dmapp_iput_nbi. They deliver data 

starting at a source address in local memory to a remote 

address using separate source side and target side strides. 
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The strided GET functions are dmapp_iget, 

dmapp_iget_nb and dmapp_iget_nbi. They load data 

starting from a remote source address using a source side 

stride sst and returning the data to a target address in local 

memory using a separate target stride tst.  

 

The indexed PUT functions are dmapp_ixput_nb, 

dmapp_ixput_nbi, and dmapp_ixput. They scatter a 

contiguous block of data starting at a source address in 

local memory to a remote address using offsets specified 

by the tidx array.  

 

The indexed GET functions are dmapp_ixget_nb, 

dmapp_ixget_nbi, and dmapp_ixget. These functions 

gather data starting from a remote source address using 

offsets specified by the sidx array and returning the data 

into a contiguous block starting at a target address in local 

memory.  

 

2.2.3 PE-strided One-sided RMA Functions 

The DMAPP API provides functions that gather data 

from and scatter data to remotely accessible addresses 

across a set of PEs in a DMAPP job. The characteristics 

discussed in Section 2.2.2 for point-to-point RMA 

functions also apply to this group of functions. In 

addition, the remote address must be a symmetric address. 

Note also that none of these functions are collective 

operations. They are best used when a small amount of 

data needs to be scattered to or collected from a set of 

PEs. 

 

The PUT with indexed PE stride functions are 

dmapp_put_ixpe_nb, dmapp_put_ixpe_nbi, and 

dmapp_put_ixpe. These functions deliver data starting at a 

source address in local memory to a list of target PEs 

starting at a remote address in their memories. When the 

transfer is complete, each target PE has a copy of the 

contents of the original source buffer. 

 

The scatter with indexed PE stride function are 

dmapp_scatter_ixpe_nb, dmapp_scatter_ixpe_nbi, and 

dmapp_scatter_ixpe. They deliver data starting at a source   

address in local memory to a list of target PEs 

target_pe_list starting at a remote address in their 

memories. Unlike the dmapp_put_ixpe function, the 

source array specifies an array of size 

num_target_pes*nelems*sizeof(type). A target PE at 

index i into the target_pe_list will receive elements 

i*nelems to (i+1)*nelems-1. 

 

The gather with indexed PE stride functions are 

dmapp_gather_ixpe_nb, dmapp_gather_ixpe_nbi, and 

dmapp_gather_ixpe. They gather data starting at a remote 

source address from a list of PEs and concatenate the data 

in a buffer specified by the target address in local 

memory. 

 

2.2.4 AMOs 

A set of scalar-type Atomic Memory Operation 

(AMO) functions are provided: dmapp_<op>_qw_nb, 

dmapp_<op>_qw_nbi and dmapp_qw_<op>, where op is 

either AADD, AAND, AOR, or AXOR or AFADD, 

AFAND, AFOR, or AFXOR. AMOs only operate on 64-

bit (quad-word) entities. For atomic functions with PUT 

semantics (AADD, AAND, AOR, AXOR) as well as for 

those with GET semantics (AFADD, AFAND, AFOR, 

AFXOR) the remote memory location must reside in 

exported memory of the remote PE. 

Additionally, a set of two-operand AMO functions  is 

provided: dmapp_<op>_qw, dmapp_<op>_qw_nb, and 

dmapp_<op>_qw_nbi, where op is AFAX (atomic fetch 

and exclusive or) or ACSWAP (atomic compare and 

swap). The source memory location must reside in 

exported memory of the remote PE. 

 

2.2.5 Synchronization 

DMAPP applications use synchronization functions 

to determine when locally initiated, non-blocking RMA 

requests have completed,  i.e. the data transferred has 

arrived in the target memory location. 

A process initiating an explicit non-blocking RMA 

request can determine when the transfer is complete by 

calling the syncid specific synchronization functions 

dmapp_syncid_test  or  dmapp_syncid_wait. The latter is 

a blocking version of the former and returns only when all 

remote memory accesses associated with the specified 

syncid are globally visible in the system. 

A process can determine when one or more non-

blocking implicit RMA requests are globally visible in the 

system by calling the  

dmapp_gsync_test or dmapp_gsync_wait functions. The 

latter is a blocking version of the former and returns only 

when all remote memory accesses associated with non-

blocking implicit requests previously initiated by the 

caller are globally visible in the system. Note that 

invoking the gsync style functions does not free resources 

associated with non-blocking explicit RMA requests. 

dmapp_syncid_test or dmapp_syncid_wait calls must be 

made for each previously issued non-blocking explicit 

RMA request in order to free up DMAPP internal 

resources. Further, note that only the initiating process has 

visibility of completion of a previously issued request. 

 

2.2.6 Symmetric Heap Management 

DMAPP provides routines for allocating and 

releasing symmetric heap memory. DMAPP applications 

are responsible for preserving the symmetry of this 

memory. This is achieved by ensuring that all PEs in a job 

make the same calls to the symmetric heap management 
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functions (including involving the same amount of 

memory) in the same sequence. The function 

dmapp_sheap_malloc allocates the specified number of 

bytes of memory from the symmetric heap. The function 

dmapp_sheap_realloc changes the size of a block of 

memory which was previously allocated by  

dmapp_sheap_malloc. The function dmapp_sheap_free 

frees a block of memory previously allocated by 

dmapp_sheap_malloc or dmapp_sheap_realloc. The 

DMAPP application controls the size of the symmetric 

heap. 

 

2.2.7 Dynamic Memory Registration and Deregistration 

The dynamic memory management functions 

dmapp_mem_register and dmapp_mem_unregister allow 

a DMAPP application to dynamically register or 

deregister memory which for instance was allocated from 

the private heap or using mmap. Memory registered by a 

call to dmapp_mem_register becomes remotely accessible 

and is assumed non-symmetric. It cannot be remotely 

accessed using a locally created address and segment 

descriptor. Instead, it can only be accessed using a 

remotely generated address and segment descriptor that 

have been communicated to the initiating process. In 

general, the DMAPP application must perform an out-of-

bounds exchange of remote address and segment 

descriptor information between communicating PEs  for 

dynamically registered memory regions. 

3. DMAPP Implementation 

3.1 Gemini Hardware Overview 

A Cray Baker systems consists of AMD Opteron  

multi-core processors connected via a Cray proprietary 

interconnection network. The network interface chip 

(NIC) which provides an interface  between the Opteron 

processors and the Baker interconnection network is 

called Gemini. Gemini delivers advanced remote memory 

access features and provides the communication modes 

and programming model that create the abstraction of a 

global, shared address space across the entire machine. 

Additional information on Gemini can be found in [5]. 

 Gemini provides completion queues (CQs) for 

asynchronous, light-weight event notification. They allow 

local tracking of progress of  FMA and BTE requests. A 

CQ typically resides in host memory. 

Gemini implements two modes for accessing remote 

memory on another node of a Baker system: 

•   Fast Memory Access (FMA). This mode provides low 

overhead, user-level, direct load and store access to 

remote memory. FMA provides the ability to run short 

transfers across the network at low latency. FMA 

translates stores by the AMD64 processor on the local 

node into fully qualified network requests. Processors that 

use the FMA mechanism do not directly load and store 

into memory on other nodes. Instead, stores into an FMA 

window are used to generate remote memory reference 

requests and stores to an associated FMA descriptor 

control how the FMA window is mapped to the job’s 

memory segments. 

•   Block Transfer Engine (BTE). This mode provides 

memory-to-memory copies using the block transfer 

engine. Data is moved asynchronously between local and 

remote memory, a completion event is generated when the 

transfer has completed. BTE is primarily intended for 

large, asynchronous data transfers between nodes. 

In addition to the two communication modes, Gemini 

supports low-latency synchronization using a set of 

atomic memory operations (AMOs). This set has been 

modelled on the set of AMOs provided on Cray X2 

systems. The AMOs are restricted to 64-bit quantities. 

Memory regions must be registered with the local 

Gemini before they can be accessed from other nodes 

using FMA or BTE. 

 

3.2 DMAPP Implementation on Gemini 

 

Figure 1 depicts a DMAPP-centric view of the 

Gemini software stack. A complete discussion of the 

software stack is beyond the scope of this paper. The 

Gemini Hardware Abstraction Layer (GHAL) is a set of 

macros which allows software such as DMAPP to 

efficiently access the Gemini hardware. The kernel-level 

component of the Gemini driver is named kGNI, whereas 

the user-level component is named uGNI (see [6] for 

details).  

DMAPP is used to implement higher-level, more 

portable APIs such as Cray SHMEM, PGAS compilers 

and Chapel. This hierarchical design allows such higher-

level software to be portable to future instantiations of 

Gemini while network specific code is hidden within the 

DMAPP, uGNI, kGNI and GHAL software components. 

There are a few phases during the execution of an 

application when DMAPP interfaces with Gemini through  

uGNI, and in turn the Linux kernel and kGNI. These 

phases include initialization and termination. During 

initialization, the Gemini driver is invoked to prepare  

Gemini resources such as to create a Communication 

Domain
1
 (CDM) and attach it to the NIC, create a  

Completion Queue (CQ) and to pre-register  symmetric 

memory regions, i.e. the statically linked data segment 

and the symmetric heap, with the NIC. Pre-registration of 

the data segment and the symmetric heap eliminate the 

need for expensive memory registration of these segments 

during end-user application execution. During 

termination, the Gemini driver is invoked to properly 

                                                 
1
 A Communication domain is the set of PEs and 

associated memory segments that make up a job see [1] 

for details.  
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release all Gemini resources which were previously held 

by the job. 

To eliminate waste and maximize reuse of memory 

registration related Gemini resources, DMAPP 

implements a memory registration cache, which tracks 

and, if possible, reuses previously registered memory 

regions. When a memory region to be registered 

dynamically is found in the registration cache, DMAPP 

software overhead is minimal. When it is not found in the 

cache, DMAPP interfaces with the Gemini driver to 

register the region.  

The BTE mechanism is intended to be used for large, 

contiguous transfers, when the data transfer is best 

offloaded from the processor. DMAPP takes advantage of 

this mechanism for large PUTs or GETs, e.g. calls to 

dmapp_put_nb and dmapp_get, where the amount of data 

to be transferred exceeds a user-tuneable threshold. 

Above this threshold DMAPP executes a call to the BTE 

to asynchronously move the data. The default threshold 

value is 4k bytes. The higher level program model calling 

DMAPP is free to alter this threshold at any point in time, 

for example setting a high value in a call that is known to 

be blocking. 

The FMA mechanism is intended to be used for small 

transfers. DMAPP takes advantage of it for all other data 

transfer functions, such as PUTs and GETs where the 

amount of data to be transferred is less than the offload 

threshold, strided and indexed functions, all PE-strided 

functions and AMOs. DMAPP bypasses the kernel and 

directly interacts with the FMA hardware on the Gemini 

NIC via a thin set of GHAL macros. The GHAL macros 

allow DMAPP to directly store to the Gemini. 

Information stored to the NIC includes information 

specifying the remote memory location, details relating to 

performance, the data to be transferred (for operations 

with PUT semantics) or details about the amount of data 

to be gotten (for operations with GET semantics), and 

more. The stores in turn are translated by the Gemini into 

fully qualified network requests. 

To implement the synchronization functions, 

DMAPP takes advantage of the light-weight CQ 

mechanism. DMAPP invokes GHAL to determine if a 

completion event has arrived locally and then simply 

analyzes the state of the event to determine success or 

failure of the transfer associated with the completion 

event. 

Lastly, the symmetric heap management functions 

are implemented by means of a region allocator within the 

DMAPP library. The symmetric heap uses large pages, 

2Mbytes by default. 

The discussion in this section illustrates how DMAPP 

has been designed and implemented to allow higher-level 

software such as PGAS compilers and Cray SHMEM to 

realize much of the performance of the Gemini hardware 

by keeping the software overhead for operations on the 

critical path of an end-user application low.   

 

4. Preliminary Performance Measurements 

DMAPP performance measurements were made 

using prototype Gemini hardware and software. We used 

2100MHz Opteron CPUs connected to Gemini via a 

2400MHz HyperTransport interface. Measurements were 

taken between processes on nodes connected to 

neighbouring Gemini routers. 

 

DMAPP provides a low overhead API to the Gemini 

hardware. In Figure 2 we show PUT and GET latencies as 

a function of transfer size. We measure the time taken to 

perform blocking PUTs as seen by the source process as 

well as the half round trip ping-pong time. The latency as 

measured at the source includes that for a response to be 

returned. 

 

 

Figure 2: Gemini DMAPP PUT and GET latencies 
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Figure 1: Gemini software stack 
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In Figure 3 we show the PUT bandwidth as a function of 

increasing element size. Results are shown for one, two 

and four processes per node. The impact of the switch 

from FMA to BTE transfer at 4K bytes is clear. DMAPP 

application writers need to consider how best to set this 

threshold, trading the increased latency of BTE transfers 

with the increased CPU availability.  

 

 

Figure 3: Gemini DMAPP bandwidths for 1, 2 and 4 

processes per node 

In Figure 4 we show the bandwidth as a function of the 

number of non-blocking PUTs issued for a range of small 

transfer sizes. Only small numbers of transfers need be 

issued to get a marked increase in bandwidth.  

 

 

Figure 4: Gemini DMAPP bandwidths for increasing 

numbers of non-blocking PUTs 

In Figure 5 we show the rate at which Gemini can 

perform 64-bit DMAPP strided PUTs as a function of the 

target stride for a range of vector lengths. The 

performance of strided PUTs and GETs is of particular 

importance to the Co-Array Fortran compiler.  

 

Figure 5: Gemini DMAPP 64-bit strided PUT rate as a 

function of target stride 

In Figure 6 we show the rate of AMOs as a function of 

job size. In this test all DMAPP AMO calls target atomic 

variables owned by process 0. We show the aggregate rate 

for the job when all process target a single AMO and for 

an AMO chosen at random from a set of 8K, all in process 

0. The Gemini NIC caches up to 64 AMOs, the 8K case 

shows the additional cost of HyperTransport operations to 

fetch/store the variable. 

 

Figure 6: Gemini DMAPP rate of atomic memory 

operations targeting process 0 as a function of job size.  

 

5. Status and Future Work  

DMAPP will be released in July 2010 together with 

the first Baker systems and the Cray SHMEM, UPC and 

CAF products that use it. As time and resources permit, 

optimizations will be implemented. Two areas of 

particular interest are message rates for small transfers 

and concurrency. 

Initial performance analysis has revealed that FMA 

descriptor updates (see Section 3.2) are relatively 

expensive and should be minimized as much as possible. 

Opportunities to reduce the number of descriptor updates 
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have been identified for non-blocking implicit operations 

as well as strided and indexed operations. Additional 

opportunities may be discovered upon further inspection 

and experimentation. Reducing the number of FMA 

descriptor updates will increase the small message rate of 

affected operations in many, but not necessarily all, use 

cases.  

The Gemini NIC provides each process with its own 

FMA hardware, enabling it to issue RMA operations 

without synchronizing with other processes. Use of shared 

memory multi-threaded programming within the node is 

of increasing interest. Extending DMAPP support to 

provide multiple FMA descriptors per process would 

enable threads to issue RMA operations independently.  
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