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The Distributed Memory Application (DMAPP) API

 Supports features of the Gemini Network Interface

 Used by higher levels of the software stack:
 PGAS compiler runtime

 SHMEM library

 Balance between portability and hardware intimacy

 Intended to be used by system software developers

 Application developers should use SHMEM
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 Distributed memory model

 One-sided model for participating (SPMD) processes 
launched by Alps aprun command

 Each PE has local memory but has one-sided access 
(PUT/GET) to remote memory

 Remote memory has to be in an accessible memory 
segment
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put

 Network supports direct remote get/put from user 
process to user process.

 Mechanisms:
 Block Transfer (BTE)

 Fast Memory Access (FMA)
including Atomic Memory Operations (AMOs)
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 Remote source or destination in either data or 
symmetric-heap segments

 Symmetry means we can use local address 
information in remote context
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 dmapp_init

 Sets up access to data and symmetric heap 
(exports memory)

 barrier

 you can set or read available resource limits

 dmapp_get_jobinfo

 Returns a structure with useful information:
 Number of PEs

 Index of this PE

 Pointers to data and symmetric heap segments 
required in other calls
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dmapp_put(*target_addr, *target_seg, target_pe,

source_addr, nelems, type)

 Remote locations defined by:
address, segment, pe

 This is a blocking operation

 type can be DMAPP_{BYTE,DW,QW,DQW) for 
1, 4, 8 and 16 bytes.

 Analogous get call
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 Blocking (no suffix)
dmapp_put, dmapp_get

 Non-blocking explicit (_nb suffix)
dmapp_put_nb(…, syncid)

 Non-blocking implicit (_nbi suffix)

 No handle to test for completion

 Synchronization (memory completion/visibility)

 Can wait on specific syncid

 Can wait for all implicit operations to complete
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put

 Strided calls
dmapp_iput…, dmapp_iget…

 Additional arguments define source and destination 
stride in terms of elements
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 Scatter/Gather calls
dmapp_ixput…, dmapp_ixget…

 Local data is contiguous

 Remote data is distributed as defined by an array of 
offsets
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 Put with indexed PE-stride calls
dmapp_put_ixpe…, dmapp_get_ixpe…

 Local data is contiguous

 Remote data is distributed (as defined by an array of  
PE-offsets) to the same address on each PE

 Use for small amounts of data

 These are not collective operations
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 Scatter/Gather with indexed PE-stride calls
dmapp_scatter_ixpe, 
dmapp_gather_ixpe

 Local data is contiguous

 Source is scattered to (or gathered from)
PEs nelems elements at a time.
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Atomic operations to 8-byte (QW) remote data

Command Operation

AADD Atomic ADD

AAND Atomic AND

AOR Atomic OR

AXOR Atomic EXCLUSIVE OR

AFADD Atomic fetch and ADD

AFAND Atomic fetch and AND

AFOR Atomic fetch and OR

AFXOR Atomic fetch and XOR

AFAX Atomic fetch AND-EXCLUSIVE OR

ACSWAP Compare and SWAP
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 Direct support in NIC

 Be careful to only read values via DMAPP API
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 Some calls return syncid (_nb)

 Can test or wait on completion
 dmapp_syncid_wait(*syncid)

 dmapp_syncid_test(*syncid,*flag)

 For implicit non-blocking (_nbi)
 dmapp_gsync_wait()

 Dmapp_gsync_test(*flag)

 Use for many small messages
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 DMAPP applications can allocate memory in 
symmetric heap

double *a;

a=(double*)

dmapp_sheap_malloc(N*sizeof(double));

 Associated realloc and free calls.

 Application is responsible for maintaining symmetry 
of allocations
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DMAPP exports data and symmetric heap for you

This means:

 For C
 File scope and static inside function

 Allocated in symmetric Heap

 For Fortran (no API but if there was)
 SAVEd data

 Data in COMMON
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 Atomic add for master counter (FADD for testing)

 Master compares (with n-1) and swaps with 0

 … master releases other PEs
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static uint64_t barrier_counter, bc;

if (mype==master){

do{

// wait until counter is npes-1, swap with 0

dmapp_acswap_qw(&bc,(void *)&barrier_counter,

seg_data,mype,npes-1,0);

} while ( bc!=(npes-1));

} else {

dmapp_aadd_qw((void*)&barrier_counter,seg_data,

master,1);

}

// now release barrier…
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 SHMEM
 Has same SPMD model 

 Requires use of symmetric memory

 Original interface is blocking 

 Non-standard extensions for non-blocking put/get

 Varying-sized data items with typed API

 Get/put with strided and gather/scatter variants

 Barrier and collective operations on sets of PEs

 Has the same atomic memory operations

 SHMEM is implemented using DMAPP for Gemini 
systems
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 Data measured on prototype system during Q1 2010

 2100MHz Opteron processors

 2400MHz HyperTransport interface

 Dual node tests run between PEs on neighbouring
Gemini routers
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 Latency (~1 s) far better than SeaStar

 Good aggregate bandwidths on small transfers

 High AMO rates, especially when multiple processes 
target the same variables

 Strided puts are an important case for CAF

 Ongoing optimization effort (for example reduce 
number of FMA descriptor updates)
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 What is DMAPP and where does it fit?

 Basic features of the API

 Memory allocation and sample API calls

 Preliminary Gemini performance data
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