

 DMAPP in context

 Basic features of the API

 Memory allocation and sample API calls

 Preliminary Gemini performance measurements

2

The Distributed Memory Application (DMAPP) API

 Supports features of the Gemini Network Interface

 Used by higher levels of the software stack:
 PGAS compiler runtime

 SHMEM library

 Balance between portability and hardware intimacy

 Intended to be used by system software developers

 Application developers should use SHMEM

3

4

MPICH2 Cray SHMEM PGAS compilers

user-level GNI

Linux Core

Gemini HW Abstraction Layer

Gemini network processor

MPICH2 Cray SHMEM PGAS compilers

DMAPP

kernel-level GNI

Gemini HW Abstraction Layer

Gemini network processor

PE

kernel

HW

Apps

 Distributed memory model

 One-sided model for participating (SPMD) processes
launched by Alps aprun command

 Each PE has local memory but has one-sided access
(PUT/GET) to remote memory

 Remote memory has to be in an accessible memory
segment

5

put

 Network supports direct remote get/put from user
process to user process.

 Mechanisms:
 Block Transfer (BTE)

 Fast Memory Access (FMA)
including Atomic Memory Operations (AMOs)

6

source destination

PE PE

 Remote source or destination in either data or
symmetric-heap segments

 Symmetry means we can use local address
information in remote context

7

process

segments

Remote op

 dmapp_init

 Sets up access to data and symmetric heap
(exports memory)

 barrier

 you can set or read available resource limits

 dmapp_get_jobinfo

 Returns a structure with useful information:
 Number of PEs

 Index of this PE

 Pointers to data and symmetric heap segments
required in other calls

8

dmapp_put(*target_addr, *target_seg, target_pe,

source_addr, nelems, type)

 Remote locations defined by:
address, segment, pe

 This is a blocking operation

 type can be DMAPP_{BYTE,DW,QW,DQW) for
1, 4, 8 and 16 bytes.

 Analogous get call

9

 Blocking (no suffix)
dmapp_put, dmapp_get

 Non-blocking explicit (_nb suffix)
dmapp_put_nb(…, syncid)

 Non-blocking implicit (_nbi suffix)

 No handle to test for completion

 Synchronization (memory completion/visibility)

 Can wait on specific syncid

 Can wait for all implicit operations to complete

10

put

 Strided calls
dmapp_iput…, dmapp_iget…

 Additional arguments define source and destination
stride in terms of elements

11

iput

Remote data

 Scatter/Gather calls
dmapp_ixput…, dmapp_ixget…

 Local data is contiguous

 Remote data is distributed as defined by an array of
offsets

12

put

ixput

Remote data

 Put with indexed PE-stride calls
dmapp_put_ixpe…, dmapp_get_ixpe…

 Local data is contiguous

 Remote data is distributed (as defined by an array of
PE-offsets) to the same address on each PE

 Use for small amounts of data

 These are not collective operations

13

put

put_ixpe

PE 2

PE 1

PE 0

nelems=3

 Scatter/Gather with indexed PE-stride calls
dmapp_scatter_ixpe,
dmapp_gather_ixpe

 Local data is contiguous

 Source is scattered to (or gathered from)
PEs nelems elements at a time.

14

put

scatter_ixpe PE 2

PE 4

PE 6nelems=1

Atomic operations to 8-byte (QW) remote data

Command Operation

AADD Atomic ADD

AAND Atomic AND

AOR Atomic OR

AXOR Atomic EXCLUSIVE OR

AFADD Atomic fetch and ADD

AFAND Atomic fetch and AND

AFOR Atomic fetch and OR

AFXOR Atomic fetch and XOR

AFAX Atomic fetch AND-EXCLUSIVE OR

ACSWAP Compare and SWAP

15

 Direct support in NIC

 Be careful to only read values via DMAPP API

16

t

AADD

AFADD

 Some calls return syncid (_nb)

 Can test or wait on completion
 dmapp_syncid_wait(*syncid)

 dmapp_syncid_test(*syncid,*flag)

 For implicit non-blocking (_nbi)
 dmapp_gsync_wait()

 Dmapp_gsync_test(*flag)

 Use for many small messages

17

 DMAPP applications can allocate memory in
symmetric heap

double *a;

a=(double*)

dmapp_sheap_malloc(N*sizeof(double));

 Associated realloc and free calls.

 Application is responsible for maintaining symmetry
of allocations

18

DMAPP exports data and symmetric heap for you

This means:

 For C
 File scope and static inside function

 Allocated in symmetric Heap

 For Fortran (no API but if there was)
 SAVEd data

 Data in COMMON

19

 Atomic add for master counter (FADD for testing)

 Master compares (with n-1) and swaps with 0

 … master releases other PEs

20

AA

Barrier counter

PE PE PE PE PE

+1+1
+1

+1

+1

PE

static uint64_t barrier_counter, bc;

if (mype==master){

do{

// wait until counter is npes-1, swap with 0

dmapp_acswap_qw(&bc,(void *)&barrier_counter,

seg_data,mype,npes-1,0);

} while (bc!=(npes-1));

} else {

dmapp_aadd_qw((void*)&barrier_counter,seg_data,

master,1);

}

// now release barrier…

21

 SHMEM
 Has same SPMD model

 Requires use of symmetric memory

 Original interface is blocking

 Non-standard extensions for non-blocking put/get

 Varying-sized data items with typed API

 Get/put with strided and gather/scatter variants

 Barrier and collective operations on sets of PEs

 Has the same atomic memory operations

 SHMEM is implemented using DMAPP for Gemini
systems

22

 Data measured on prototype system during Q1 2010

 2100MHz Opteron processors

 2400MHz HyperTransport interface

 Dual node tests run between PEs on neighbouring
Gemini routers

23

24

0.0

0.5

1.0

1.5

2.0

2.5

8 16 32 64 128 256 512 1024

Ti
m

e
 (m

ic
ro

se
cs

)

Size (bytes)

PUT, ping-pong

PUT, at source

GET

25

0

1000

2000

3000

4000

5000

6000

7000

8 16 32 64 128 256 512 1024 2K 4K 8K 16K 32K 64K

B
an

d
w

id
th

 (m
b

yt
e

s/
se

c)

Element size (bytes)

PPN=1

PPN=2

PPN=4

26

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64

B
an

d
w

id
th

 (m
b

yt
e

s/
se

c)

Non-blocking puts

8 bytes

64 bytes

256 bytes

27

0

20

40

60

80

100

120

140

160

2 4 8 16 32 64 128 256 512 1024 2048 4096

R
at

e
 (m

il
li

o
n

s/
se

c)

Stride (64-bit words)

Vector length = 16

Vector Length = 64

Vector length = 4096

28

0

20

40

60

80

100

120

0 256 512 768 1024

A
M

O
 r

at
e

 (m
il

li
o

n
s)

Number of processes

1 AMO

8192 AMOs

 Latency (~1 s) far better than SeaStar

 Good aggregate bandwidths on small transfers

 High AMO rates, especially when multiple processes
target the same variables

 Strided puts are an important case for CAF

 Ongoing optimization effort (for example reduce
number of FMA descriptor updates)

29

 What is DMAPP and where does it fit?

 Basic features of the API

 Memory allocation and sample API calls

 Preliminary Gemini performance data

30

