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Abstract

We present a case study of a popular ocean modelling code, NEMO, on the Cray XT4 HECToR
system. HECToR is the UK’s high-end computing resource for academic users. Two different versions
of NEMO have been investigated. The performance and scaling of the code has been evaluated and
optimised by investigating the choice of grid dimensions, by examining the use of land versus ocean
grid cells and also by checking for memory bandwidth problems. Profiling the code identified the time
spent carrying out file input/output to be a potential bottleneck. We present a solution to this problem
which gives a significant saving in terms of runtime and disk space usage. We also present the results
of investigations into the performance of nested models resulting in an optimal processor count being
obtained.

1 Introduction

HECToR is the UK’s new high-end computing re-
source available for research funded by the UK Re-
search Councils. This paper presents a case study
of the popular ocean modelling code, NEMO [1], on
the HECToR system. The main aims of the study
were to investigate and where possible to improve
the I/O performance and nested model performance
of NEMO.

The paper begins with an introduction to the
NEMO code along with some motivation for investi-
gating file I/O and nested model performance. Sec-
tion 3 describes the architecture of the HECToR sys-
tem. Section 4 presents the baseline performance of
the NEMO code and the results of a number of inves-
tigations which resulted in improved performance.
In section 4.7 the effects of I/O are investigated and
a method for improving the I/O performance is pre-
sented in section 5. Nested model performance is
described in section 6.

2 What is NEMO?

NEMO (Nucleus for European Modelling of the Ocean)
is a modelling framework for oceanographic research
and operational oceanography. The framework al-
lows several ocean related components e.g. sea-ice,
biochemistry, ocean dynamics, tracers etc to work

either together or separately. Further information
on NEMO and its varied capabilities can be found
at, [1].

The NEMO framework currently consists of three
components each of which (except for sea-ice) can be
run in stand-alone mode. The three components are:

• OPA9 - New version of the OPA ocean model,
written in Fortran 90

• LIM2 - Louvain-la-Neuve sea-ice model, also For-
tran 90

• TOP1 - Transport component based on the OPA9
advection-diffusion equation (TRP) and a biogeo-
chemistry model which includes the two compo-
nents LOBSTER and PISCES.

This paper focuses primarily on the OPA9 com-
ponent and uses a version of the NEMO code which
has been modified by the National Oceanography
Centre, Southampton (NOCS) researchers. The mod-
ified version is essentially the release version of the
code with some specific enhancements particular to
their science application. Two different versions of
NEMO are discussed in this paper, version 2.3 and
version 3.0. Our initial investigations were carried
out using version 2.3 with version 3.0 being used as
soon as it became available.

The code is written in predominantly in Fortran
90 (some Fortran 77 code remains) and has been par-
allelised using the Message Passing Interface, MPI.
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The OPA9 component of the code uses a domain
decomposition approach where each processor works
on a small part of the ocean grid.

2.1 Motivation for this study

Two main aspects of the code were identified by the
research group as potential performance bottlenecks,
these were, the I/O performance at larger processor
counts and the performance of nested models. The
motivation for investigating these two areas is dis-
cussed below.

2.1.1 I/O performance

The way in which data is currently input/output to
NEMO is not considered ideal for large numbers of
processors. Each processor inputs/outputs its own
section of the ocean grid to separate files. As re-
searchers move to use increasingly more complex
models at higher spatial resolutions larger numbers
of processors (and thus files) will be required and
this potential I/O bottleneck will therefore need to
be addressed. This paper investigates the current
scaling and I/O performance of NEMO and identi-
fies methods to improve this via the use of lossless
compression algorithms.

2.1.2 Nested model performance

The NEMO code allows nested models to be used
which enable different parts of the ocean to be mod-
elled with different resolution within the same global
model. E.g. an area of the Pacific Ocean could be
model at 1 degree resolution with the remainder of
the Earth’s Oceans being modelled at 2 degree reso-
lution. This type of modelling can help scientists to
gain a better insight into particular ocean features
whilst keeping the computational costs reasonable.
In the past, setting up such models has been very
time consuming and relatively few attempts have
been made to run such configuration on high perfor-
mance computing systems. As such this paper in-
vestigates the performance of nested models and at-
tempts to improve their performance, with the main
goal being to achieve a stable and optimised nested
model with known scalability.

3 Architecture

The HECToR Cray XT5h system began user service
in October 2007 and consists of a scalar (XT4) and

a vector (X2) component. All the results presented
in this paper were obtained on phase 1 of the scalar
component. The current configuration of HECToR
(phase 2a and phase 2b) is described in [2].

The (phase 1) system comprises of 5664 com-
pute nodes, each with one dual core AMD Opteron
2.8GHz chip, i.e. a total of 11,328 cores. Each core
has access to a private 64Kbyte L1 instruction cache,
64Kbyte L1 data cache and 1 Mbyte L2 cache. The
two cores within a chip (or node) share 6 Gbytes of
main memory. Each node controls a Cray Seastar2
network chip. Each Seastar2 has six links and the
network is configured in a 3D toroidal topology.

In addition to the compute nodes there are also
dedicated I/O nodes, login nodes and nodes set aside
for serial compute jobs. The login nodes can be used
for editing, compilation, profiling, de-bugging, job
submission etc. When a user connects to HECToR
via ssh the least loaded login node is selected to
ensure that users are evenly loaded across the sys-
tem and that no single login node ends up with an
excessive load.

HECToR (phase 1) has 12 I/O nodes which are
directly connected to the toroidal communications
network described above. These I/O nodes are also
connected to the data storage system (i.e. physical
disks). The data storage on HECToR consists of 576
TB of high performance RAID disks. The service
uses the Lustre distributed parallel file system to
access these disks.

4 NEMO baseline performance

This section presents the results of an investigation
into the performance of NEMO considering the com-
piler choice, optimisation flags and program param-
eters. To assess the performance a 0.25 degree ocean
model is used. This model is chosen to be the same
resolution that researchers require for their science
but is run over far fewer time steps.

When running the NEMO code it is necessary to
re-compile the code for different processor counts as
the number of processors and model grid dimensions
are set as parameters within the code. The variables
jpni, jpnj, and jpnij specify respectively the num-
ber of processors in the i direction, the number of
processors in the j direction and the total number
of processors. E.g. a 16 by 16 processor grid which
runs on 256 processors would have jpni = 16, jpnj
= 16 and jpnij = 256.
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4.1 Scaling for equal grid dimensions

We begin by investigating the scaling of the code
for grids of equal dimension, i.e where jpni = jpnj,
for the PGI and PathScale compilers. This restricts
us to a relatively small number of processor counts
ranging from 64 (8x8) to 1024 (32x32). The results
are shown in figure 1.
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Figure 1: Performance of NEMO when jpni = jpnj
for the PGI and PathScale compiler suites.

From figure 1 it is clear that the PGI compiler
performs slightly better (a few percent) than the
PathScale compiler and thus our remaining exper-
iments will be carried out using the PGI compiler.
NEMO scales to 1024 processors but the benefit in
using more processors is purely a reduction in run-
time and not efficient in terms of the allocation units
1 (AU’s) used. Using 128 or 256 processors seems to
give the best compromise between AU use and run-
time.

4.2 Compiler optimisations

In this section we investigate whether any compiler
optimisations can be used to improve the perfor-
mance of NEMO. Table 1 summarises the results
of running a 16 by 16 model grid on 221 processors
for a variety of different compiler optimisations.

1Calculations run on HECToR use a standard Allocation
Unit of CPU time. The AU can be thought of as a unit
of computational work, equivalent to a 1 Gflop/s processor
running for 1 hour, as assessed by the Linpack benchmark
(Rmax). Thus, a 60 Tflop/s computer provides 60,000 AUs
per hour.

Compiler flags Time for 60
steps (s)

-O0 163.520
-O1 157.123
-O2 138.382
-O3 139.466
-O4 137.642

-fast seg fault
-O2 -Munroll=c:1 -Mnoframe seg fault
-Mautoinline -Mscalarsse

-Mcache align -Mflushz -Mlre

-O2 -Munroll=c:1 -Mnoframe seg fault
-Mautoinline -Mscalarsse

-Mcache align -Mflushz -Mlre

-Mvect=sse

-O2 -Munroll=c:1 -Mnoframe 133.761
-Mautoinline -Mscalarsse

-Mcache align -Mflushz

-O4 -Munroll=c:1 -Mnoframe 138.965
-Mautoinline -Mscalarsse

-Mcache align -Mflushz

Table 1: Runtime for 60 time steps for different com-
piler flags for the PGI compiler suite. Version 7.1.4
of the PGI compiler is used throughout. All tests
were run with jpni=16, jpnj=16 and jpnij=221.

Increasing the level of optimisation from -O0 to
-O2 gives an increase in performance. Optimisation
levels from -O2 up to -O4 gives minimal improve-
ment. The -fast flag results in the code failing
with a segmentation violation. As this flag invokes
a number of different optimisations 2 we tested each
of these in turn to ascertain which particular flag(s)
cause the problem.

From Table 1 we see that the addition of the
flags -Mlre or -Mvect=sse cause the code to crash
at runtime. All other flags invoked by -fast do
appear to not cause significant issues. The -Mlre

causes the zonal velocity to become very large sug-
gesting that the loop redundancy elimination may
have removed a loop temporary variable that was
actually required. The reason for the failure when
-Mvect=sse is added is unknown. Ultimately, the

2 The command pgf90 -help -fast lists the optimisa-
tions invoked by -fast, e.g.
fionanem@nid15879: > pgf90 -help -fast Reading rcfile

/opt/pgi/7.1.4/linux86-64/7.1-4/bin/.pgf90rc

-fast Common optimizations; includes -O2 -Munroll=c:1

-Mnoframe -Mlre -Mautoinline == -Mvect=sse

-Mscalarsse -Mcache align -Mflushz
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inclusion of these extra flags which -fast uses does
not give significant performance improvements and
thus -O3 will be used in future.

4.3 Single core versus dual core per-
formance

To investigate whether NEMO suffers from memory
bandwidth problems on HECToR we compare run-
ning the code in single node (one core per node used)
versus running in virtual node mode (both cores per
node used). Table 2 shows the runtimes for 256 and
221 processors using a 16 by 16 grid for both modes.

jpnij jpni jpnj Time for 60 steps (seconds)
mppnppn=1 mppnppn=2

256 16 16 119.353 146.607
221 16 16 112.542 136.180

Table 2: Runtime comparison for 60 time steps for
single node (mppnppn=1) and virtual node (mpp-
nppn=2). Runs were performed using the PGI com-
piler

Examining table 2 we can see that single node
mode is up to 18.59% faster than virtual node mode
suggesting that NEMO suffers from relatively mild
memory bandwidth problems. As the charging struc-
ture on HECToR is per core, single node mode will
cost significantly more (almost double) AU’s than
virtual node mode. Thus, running NEMO in single
node mode should only be considered if it’s critical
to obtain a timely solution.

4.4 Performance for different grid di-
mensions

Using a fixed number of processors we investigate
how the shape of the grid affects the performance.
We concentrate on 128 and 256 processors with two
results from a 512 processor run. All runs are carried
out using the PGI compiler suite. The results of this
experiment are shown in figure 2.

Figure 2 suggests that for a fixed number of pro-
cessors the ideal grid dimensions are square i.e. where
jpni=jpnj. If the number of processors is such that
it is not possible to have jpni=jpnj (i.e. the num-
ber of processors is not a square of an integer) then
the results suggest that the values of jpni and jpnj

should be as close to each other as possible with the
value of jpni chosen such that jpni < jpnj.
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Figure 2: Performance of NEMO on 128, 256 and
512 processors plotted against the number of grid
cells in the i direction, jpni

4.5 Removing the land only grid cells

So far we have considered decompositions in which
all the grid cells are used, i.e. those where the code
has jpnij = jpni x jpnj. However, many decom-
positions give rise to grid cells which contain only
land. These land only cells are essentially redun-
dant in an ocean model and can be removed. In
the code this means that the value of jpnij can be
reduced such that jpnij ≤ jpni x jpnj. It is an-
ticipated that removing land only cells may improve
the performance of the code as branches into land
only regions will no longer take place and any I/O
associated with the land cells will also be removed.
Furthermore, the number of AU’s required will be
reduced as fewer processors will be required if the
land cells are removed.

The NEMO code does not automatically remove
the land cells which means the user needs to select
their decomposition and then independently deter-
mine how many cells contain only land. A tool writ-
ten by Dr Andrew Coward at the NOCS can be used
to determine the number of active (ocean contain-
ing) and dead (land only) cells. For example when
using a 16 by 16 grid, there are 35 land only cells
and thus jpnij can be set to 221 instead of 256.

Table 3 gives the number of land only cells for a
variety of grid configurations. The reduction in the
number of processors required is generally around
10%. For large (>256) processor counts the reduc-
tion can be considerably larger and as much as 25%.
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Total Land only Percentage
jpni jpnj cells cells saved

9 9 81 6 7.41%

10 10 100 10 10.00%

11 11 121 13 10.74%

12 12 144 14 9.72%

13 13 169 21 12.43%

14 14 196 22 11.22%

15 15 225 29 12.89%

16 16 256 35 13.67%

20 20 400 65 16.25%

30 30 900 193 21.44%

32 32 1024 230 22.46%

40 40 1600 398 24.88%

16 8 128 117 8.59%

32 16 512 92 17.97%

Table 3: Number of land only squares for a vari-
ety of processor grids. The percentage saved gives
the percentage of cells saved by removing the land
only cells and will correspond to the reduction in the
number of AU’s required for the computation.

We now investigate whether removing the land
only cells has any impact on the runtime of the
NEMO code. We hope that by avoiding branches
into land only regions and the associated I/O in-
volved with the land cells that the runtime should
reduce. For this test we have considered only 128,
256, 512 and 1024 processor grids. The results are
given by table 4.

Time for 60
jpni jpnj jpnij steps (seconds)

32 32 1024 110.795
32 32 794 100.011
16 32 512 117.642
16 32 420 111.282
16 16 256 146.607
16 16 221 136.180
8 16 128 236.182
8 16 117 240.951

Table 4: Runtime comparison for 60 time steps for
models with/without land squares included on 128,
256, 512 and 1024 processor grids.

From table 4 we can see that for 256 processors
and above removing the number of land squares re-
duces the total runtime by up to 10 seconds which

corresponds to a reduction of around 7-10%. For
the 128 processor run, removal of the land-only cells
actually gives a small increase in the total runtime.
This difference is within normal repeatability errors
and could be a result of heavy load on the system
when the test was run. As the runtime does not seem
to improve greatly with the removal of the land only
cells the main motivation for removing these cells is
to reduce the number of AU’s used for each calcu-
lation. Assuming the runtime is not affected detri-
mentally then the reduction in AU usage will be as
given by table 3.

4.6 Optimal processor count

Ideally, the NOCS researchers aim to obtain an en-
tire model year of simulation data from a 12 hour run
on HECToR. This enables them to make optimal use
of the machine/queues and also allows them to keep
up with the post-processing and data transfer of the
results as the run progresses. Initial tests showed
the they could only achieve around 300 model days
in a 12 hour run using 221 processors.

In this section we investigate whether an optimal
processor count which satisfies the desire to complete
a model year in a 12 hour time slot can be found.
To do this NEMO is executed over a range of pro-
cessors and the number of model days which can be
computed in 12 hours, ndays, is obtained from:-

ndays = 43200/t60 (1)

where 43200 is the number of seconds in 12 hours
and t60 is the time taken to complete a 60 step (i.e.
1 day) run of NEMO. This means we ideally need
t60 ≤

43200

365
= 118.36 seconds. The processor counts

investigated varies from 159 to 430. In all tests, runs
have been performed with the land cells removed.
Figure 3 shows the results in graphical form with
the 365 day threshold marked by the dashed line.
All processor counts which plot below the dashed
line satisfy the 12 hour requirement. From figure 3
we can see that at least 320 processors are required in
order to complete a model year of simulation during
a 12 hour job run.

4.7 Impact of file I/O

The previous sections have reported the performance
of NEMO based on the time taken to complete 60
time steps of the ocean modelling computation. This
does not include initialisation time or file I/O time
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Figure 3: Investigation of optimal processor count
for NEMO subject to completing a model year
within a 12 hour compute run. The dashed line
shows the cut-off point.

which can be a significant fraction of the total run-
time. Figure 4 shows the breakdown of the total
runtime, for various processor counts.
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Figure 4: Performance of NEMO V3.0 showing the
breakdown of the total runtime for various processor
counts. All tests carried out using PGI compiler.

The results displayed in figure 4 were taken from
the best of 5 runs and show that as the number
of processors increases the relative amount of time
spent in initialisation and I/O increases. It should be
noted that for 398 and 794 processor runs, the total
runtime was found to be highly unstable, varying as
much as 400%. The variations in runtime at larger

processor counts can be attributed to the variation
in the time spent in initialisation (which involves I/O
to read in the atmospheric datasets) and writing out
the restart file at the end of the run.

The large variation in the initialisation and I/O
time occurs because the I/O subsystem on HECToR
is a resource shared between other users. Thus, the
speed of I/O is governed by the load the system is
under at the time when the job runs. If the I/O
system is heavily loaded when NEMO attempts to
read/write from/to file then the time spent in I/O
operations will be increased. As such, any reduc-
tion in the amount of time NEMO spends carrying
out I/O operations is likely to be highly beneficial
to the performance of the code. The approach for
improving file I/O in NEMO is described in the next
section.

5 Optimising NEMO file I/O

The NEMO input and output files are a mixture
of binary and ASCII data. The ASCII input files
are typically small and used to define the model pa-
rameters or record basic information regarding the
status of the run. The binary datafiles are typically
much larger (many Mbytes or even Gbytes) and are
written in netCDF (network Common Data Form)
format (see [3, 4] for details).

NEMO uses a parallel I/O approach for these
large binary files where each processor writes out its
own data files depending on the part of the model
grid that it holds. The current version of the code
uses netCDF version 3.6.2. It is expected that sig-
nificant performance gains may be obtained by con-
verting the code to use netCDF 4.0 which includes
lossless data compression and chunking.

As changing NEMO to use netCDF 4.0 is non
trivial, the performance of different versions of net-
CDF was first investigated in order to gain an un-
derstanding of the potential performance improve-
ments. Section 5.1 investigates performance of var-
ious versions of netCDF on HECToR. Section 5.2
discusses how NEMO was converted to use netCDF
4.0 and the resulting performance gains.

5.1 netCDF performance on HECToR

We investigate the performance of different versions
of netCDF on HECToR using the nocscombine tool.
This is a serial tool which reads in multiple NEMO
output files and combines them into a single large
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file. The tool carries out minimal computation and
thus gives a good measure of netCDF and I/O per-
formance.

The results for a number of different versions of
netCDF are summarised in table 5.

NetCDF nocscombine File size
version time (secs) (Mbytes)
3.6.2 classic 343.563 731
4.0 snap unopt 86.078 221
4.0 snap opt 85.188 221
4.0 release 85.188 221
4.0 release* 78.188 221
4.0 Cray 92.203 221
4.0 release classic 323.539 731

Table 5: Comparison of nocscombine runtime for
various versions of netCDF on HECToR. The * in-
dicates that the system version of zlib was used.

Each run was carried out in batch with the tim-
ings reported in table 5 being the best of three runs.
The runs were performed consecutively ensuring that
the same processing core was used for each. De-
spite this, considerable variation in runtimes was ob-
served, as much as 100% in some cases. As I/O is
a shared resource on the system we have no con-
trol over other user activities so these variations are
perhaps not surprising.

In table 5 the different versions are defined as
follows; 3.6.2 classic denotes the release version of
netCDF 3.6.2, 4.0 snap unopt denotes the snapshot
release dated 29th April 2008 compiled with default
optimisation (i.e. -O1), 4.0-opt is the same snap-
shot release compiled with optimisation set to -O2,
4.0 release denotes the final release version compiled
with -O2, 4.0 Cray denotes the version supplied by
Cray and 4.0 release classic is the release version of
netCDF 4.0 run in classic (i.e. netCDF 3.6.2 style)
mode. The * denotes that the code was compiled us-
ing the system version of zlib (version 1.2.1) rather
than version 1.2.3.

Examining the results in table 5 we see that net-
CDF 4.0 clearly outperforms netCDF 3.6.2, both, in
terms of runtime performance and in terms of the
amount of disk space required. The size of the file
output by netCDF 4.0 is 3.31 times smaller than
that output by netCDF 3.6.2 and the runtime is
roughly 4 times faster. Comparing the results from
version 3.6.2 and 4.0 run in classic mode (c.f. 3.6.2
classic with 4.0 release classic) they suggest that

the runtime savings do not just result from the re-
duced file size. It’s possible that there are some algo-
rithmic differences between the versions or perhaps
the dataset now fits into cache better thus reducing
memory latency.

The level of optimisation used to compile the
netCDF library appears to have minimal effect on
the performance. The system version of zlib (ver-
sion 1.2.1), outperforms version 1.2.3. However, as
netCDF 4.0 clearly states that version 1.2.3 or later
is required it is potentially risky to use the older ver-
sion as functionality required by netCDF 4.0 maybe
missing.

In summary, based on the results obtained from
the nocscombine code, using netCDF 4.0 instead of
netCDF 3.6.2 will likely give significant performance
improvements for NEMO. The amount of disk space
used could be reduced by a factor of 3 and the time
taken to write this information to disk could be re-
duced by a factor of 4. The time taken to compress
and uncompress the data at the post-processing stage
still needs to be quantified but the early results are
promising.

5.2 Converting NEMO to netCDF 4.0

In this section we describe the procedure for adapt-
ing NEMO V3.0 to use netCDF 4.0. To compile
NEMO with netCDF 4.0 some changes are made
to the main Makefiles to ensure that they link to
netCDF 4.0, HDF5 zlib and szip. To utilise the
chunking and compression features of netCDF 4.0
changes to the NEMO source code are required.

Converting NEMO to use netCDF 4.0 with chunk-
ing and compression is best tackled as a two stage
process. The first step is to generate netCDF 4.0 for-
mat output files without any compression/chunking.
The second step is to add chunking and/or compres-
sion and thus take advantage of the full functionality
of netCDF 4.0.

For step one we need to tell netCDF library that
we want to take advantage of the new features. This
can be achieved by making some minor modifica-
tions to the NEMO code. In particular, all subrou-
tine calls to NF90 CREATE need to be modified such
that each instance of NF90 NOCLOBBER is replaced
with NF90 HDF5. The two source files which require
alteration are:- histcom.f90 and restcom.f90. In
addition, the file fliocom.f90 also requires the vari-
able m c to be set to NF90 HDF5.

With these modifications made, the code is then
recompiled and tested. The main output files should
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now be in netCDF 4.0 format which can be verified
by attempting to read one of the output files with
different versions of ncdump 3.

The modifications described above allow netCDF
4.0 format files to be output from NEMO. How-
ever, as yet no compression or chunking has been in-
cluded. To use the chunking/compression features of
netCDF 4.0 additional modifications must be made
to the code. These modifications are summarised
below:-

1. Declare new variables relating to the chunking
and compression e.g.

integer, dimension(4):: chunksizes

integer:: chunkalg,shuffle,deflate,deflate_level

chunksizes is an array containing the chunk-
size to be used for each dimension of the dataset.

2. Initialise the chunking and compression related
variables, e.g.

chunksizes(1) = 10

chunksizes(2) = 10

chunksizes(3) = 10

chunksizes(4) = 1

deflate_level = 1 ! Turn compression on

deflate = 1 ! Level of compression

shuffle = 1 ! Allow shuffling

chunkalg = 0 ! Turn chunking on

Here chunksize is chosen such that it is less
than the number of data points within that
dimension.

3. Following each call to nf90 def var, add new
calls to nf90 def var chunking and
nf90 def var deflate to ensure that chunk-
ing and compression is applied to each output
variable.

The code was then re-tested and the size of the out-
put files compared with those created without and
chunking and compression. The results are sum-
marised in table 6.

The results demonstrate that a significant reduc-
tion in disk usage (∼4 Gbytes for this example) can
be achieved by using the chunking and or compres-
sion features of netCDF 4.0 within NEMO. For the
test model, no significant improvement in the run-
time is observed however this is to be expected as
the restart files (not converted to netCDF 4.0) dom-
inate in terms of their size. In our test model we

3ncdump is part of the netCDF library and is an executable
which can be used to convert a netCDF file into a user read-
able text file.

netCDF netCDF
3.X 4.0

File disk use disk use Reduction
name (MB) (MB) factor

*grid T*.nc 1500 586 2.56
*grid U*.nc 677 335 2.02
*grid V*.nc 677 338 2.00
*grid W*.nc 3300 929 3.55
*icemod*.nc 208 145 1.43

*restart 0*.nc 9984 9984 1.00
*restart ice*.nc 483 483 1.00

Table 6: Effect of chunking and compression on the
size of the NEMO 3.0 output files. For each file name
the usage is the sum of all 221 individual processor
output files.

run for 60 time steps, outputting data every 30 time
steps with a restart model written output after 60
time steps. However, for a production run of NEMO
the model would typically run for in excess of 10,000
time steps with output every 300 steps and a restart
file written every 1800 time steps. Therefore an im-
provement in runtime would be expected due to the
reduction in output file size. The actual size of any
improvement will depend on the output frequency
chosen, which in turn depends on the parameters
being modelled and the particular science studied.

6 Nested model performance

In this section we describe how to use nested mod-
els within NEMO, investigate their performance and
discuss some of the issues associated with getting
them to run successfully on HECToR.

In NEMO any number of nested regions can be
used and within each model and multiple levels of
nesting are also possible. Figure 5 illustrates this
with an example showing the main model, A, con-
taining two nested regions B, and C with region C
having one level of nesting and region B having two
levels of nesting.

Nested models in NEMO use the Adaptive Grid
Refinement in Fortran (AGRIF) pre-processor code
called, conv, to generate the code for the nested re-
gions. By default, the NEMO code uses arrays of
dimension (jpi, jpj) where jpi and jpj are set
as parameters within the code. The pre-processor
completely re-structures the code by inserting inter-
face routines which pass array information from a
special dynamically allocated AGRIF data type the
size of which is determined based on the desired size
of the nested region. Essentially the AGRIF pre-
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A

CB

D

Figure 5: Schematic showing a possible NEMO grid,
A, containing two nested regions B and C. Nested
region B contains a second level of nesting. Note
that the schematic is not drawn to scale, in practice
the B, C and D regions would be smaller in physical
size and grid spacing than region A. However, their
increased resolution may mean they actually contain
similar numbers of actual grid points.

processor allows the same ocean model to be run on
grids with different resolutions in space and/or time.
Further details on running and setting up nested
models within NEMO can be found at [5].

Two test models are supplied by the NOCS re-
searchers, BASIC and MERGED. BASIC is a largely
unmodified version of the NEMO source code which
attempts to use the AGRIF pre-processor to set up
a nested model. The BASIC model is a 2 degree
model inside which a 1 degree model is run. Only
1 nested region is used in the BASIC model. The
MERGED model is an extension of BASIC model
including the NOCS specific code changes. Unlike
the BASIC model it has two nested regions. It also
runs at a higher resolution with the outer model res-
olution being 1 degree and the nested regions being
1

4
of a degree. In this paper we will only consider

the results obtained from the BASIC model.
The BASIC nested model is compiled and run on

HECToR using the same optimisation flags (-O3) as
for the un-nested version of the code. On running
the code an error is reported on time steps 27 and
54 for un-nested and nested parts of the model re-
spectively. By examining the codes output files the
error can be attributed to the un-nested part of the
model and is found to be due to the zonal veloc-
ities increasing too rapidly suggesting a numerical
instability in the problem.

Figure 6 shows the zonal velocity plotted against
model time for the non-nested model for 2 different
model time steps and optimisation levels.
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Figure 6: Zonal velocity against model time for the
non-nested model. The top figure shows the full plot
with the bottom figure zoomed in on the first few
time steps.

From figure 6 it is obvious that the problem with
the velocity occurs for the non-nested model (see red
line on figure 6). The original time steps of 5760.0
and 2880.0 seconds for the non-nested and nested
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models are simply too large. Reducing the time
steps by a factor of 4, to 1440.0 and 720.0 seconds
prevents the zonal velocity from blowing up. With
the reduced time step the -O0 and -O2 versions of
the code behave very similarly. The zonal velocities
are almost identical (the blue and green lines overlap
on figure 6.

It seems there are two choices for running the
AGRIF models; run with a code compiled with -O1

to avoid the numerical instabilities or reduce the
time step. The second solution is safer as the model
could become unstable even with -O1 or less. The
researchers have reduced the time step as suggested
and confirmed that the results appear sensible when
compared with those obtained on their SGI cluster.

Using the reduced time step the code was tested
from 16 up to 128 processors to examine the scal-
ability of the nested model. The scaling results for
the BASIC model are given in table 7. From table

No. of Time for 5475 Cost per time
processors steps (seconds) step (AU’s)

16 4397 0.0172

32 2164 0.0169

64 1366 0.0208

128 1636 0.0510

Table 7: Total runtime of the BASIC nested
model over 5475 time steps for different processor
counts. Optimisation levels of -O3, -O2 and -O2

were applied to the Makefile, AGRIF/Makefile and
IOIPSL/src/Makefile respectively.

7 we see that the 64 processor run gives the fastest
runtime for this particular model. However, the 32
processor run is actually more efficient in terms of
the AU usage per model time step. Providing this
longer runtime is acceptable, researchers may wish
to run this model on 32 processors in order to min-
imise the cost (in AU’s) per model time step.

7 Conclusions

Two different versions of NEMO (2.3 and 3.0) have
been compiled and tested on the HECToR system.
The performance of these versions has been inves-
tigated and an optimum processor count suggested
based on the researchers’ requirements for job turn-
around. The performance of both the PathScale
and PGI compilers has been investigated along with
an investigation of how the performance varies with

the choice of compiler flags. The NEMO code has
been found to scale up to 1024 processors with the
best performance in terms of runtime versus AU us-
age being obtained between 128 and 256 processors.
Running NEMO in single core mode is found to be
up to 18.59% faster than dual core mode, however,
the reduction is not sufficient to warrant the in-
creased AU usage. The choice of grid dimensions
has been investigated and is found to be optimal
for square grids. Where square grids are not possi-
ble choosing the dimensions such that the number
of cells in the horizontal direction is less than the
number in the vertical direction (i.e. choosing jpni

< jpnj within the code) gave the best performance.
Removal of the land only squares from the compu-
tations gave significant reductions to the AU usage,
by as much as 25% at larger processor counts. The
runtime was also found to decrease, albeit by a lesser
extent. Profiling of the code suggests that NEMO
spends a considerable amount of time in file I/O and
thus any reduction that can be made in this area will
be beneficial.

As a means of improving the I/O performance
of NEMO the performance of various versions of
netCDF was investigated. NetCDF 4.0 is found to
give a considerable reduction to both the amount of
I/O produced and the time taken in I/O when using
the nocscombine tool. In addition, the version of
netCDF 4.0 installed as part of this work is found to
be between 8-20% faster than that installed centrally
(via the modules environment) on the system.

The NEMO code has been converted to use net-
CDF 4.0 for its main output files resulting in a re-
duction in output file size of up to 3.55 times relative
to the original netCDF 3.X code. For the test model
no significant runtime improvement is observed. It is
expected that a real research type run should ben-
efit more due to the different frequency of output
involved.

The BASIC nested model has been compiled and
tested and problems with the time step interval iden-
tified and rectified. The performance of the BASIC
nested model has been investigated with the optimal
processor count (in terms of AU usage per time step)
found to be 32. The more complex MERGED nested
model has not yet run successfully on HECToR.
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