ing
A Case Study

IEMO Ocean Modell

- Code

Dr Fiona J. L. Reid

Applications Consultant, EPCC

f.reid@epcc.ed.ac.uk

£ CUG 24ih= 2711 May 2010
— o,

+44 (0)131 651 3394

e S/

AR LS T a st
niBlG
Acknowledgements B m

* Cray Centre of Excellence team for their help

throughout the project
* Chris Armstrong, NAG for help with netCDF on the X2

CUG 24th - 27th May 2010

Talk outline

* QOverview of the NEMO dCSE Project
What is NEMO?

* System introductions

* XT results

— Baseline performance and optimisations
— netCDF 4.0 performance
— Optimising NEMO /O

— Nested model performance and troubleshooting

* Achievements

“ CUG 24th - 27th May 2010

Overview of NEMO dCSE project. I\ S o/o 0}

* The NEMO Distributed Computational Science and Engineering
(dCSE) Project was a collaboration between EPCC and the

Ocean Modelling and Forecasting (OMF) group based at the
National Oceanography Centre, Southampton (NOCS).

* The project was funded by a HECToR dCSE grant administered
by NAG Ltd on behalf EPSRC

* The NEMO dCSE Project concentrated on the following areas:-

— 1/O performance on intermediate and large numbers of processors
— Nested model performance
* In addition, a separate project investigated porting NEMO to the
HECToR vector system, the X2

m CUG 24th - 27th May 2010 ‘

1 Y. \ Vﬁ‘
What is NEMO? i lepect

* NEMO (Nucleus for European Modelling of the Ocean) is a
modelling framework for oceanographic research

* Allows ocean related components, e.g. sea-ice, biochemistry,
ocean dynamics, tracers, etc to work either together or
separately

* European code with the main developers based in France

* Major partners include: CNRS, Mercator-Ocean, UKMO and
NERC

* Fortran 90, parallelised using MPI — versions 2.3 and 3.0

* Code has previously run on both scalar and vector machines

* This project uses the official releases (OPA9) with some NOCS

specific enhancements N E M 4

System introductions

* HECToR (Phase 1): Cray XT4

— MPP, 5664 nodes, 2 AMD Opteron 2.8 GHz cores per node il
— 6 GB of RAM per node (3 GB per core) 3
— Cray Seastar2 torus network

* HECToR (Vector): Cray X2

— Vector machine, 28 nodes, with 4 Cray X2 processors per
node

— 32 GB of RAM per node (8 GB per Cray X2 processor)
— Cray YARC network

m CUG 24th - 27th May 2010

)
s
2
N
QO
-
T
X

NEMO 3.0 performance — compifm

* Various compiler flags were tested for PGl version 7.1.4 (7.2.3 also tested)

Compiler flags Time for 60 time steps (seconds)

-00 -r8 163.520

-01 -r8 157.123

-02 -r8 138.382

-03 -r8 139.466

-04 -r8 137.642

-fast -r8| Fails with segmentation violation

-02 -Munroll=c:1 -Mnoframe -Mautoinline 133.761 with 138.965 for —-04

—Mscalarsse —Mcache=align -Mflushz

e -04 best, but minimal difference from -02 to -04

e -fast invokes a number of options; independent testing of each flag shows the

problem flags to be:
-Mlre Loop redundancy elimination — this shouldn’t cause a crash!
-Mvect=sse Allows vector pipelining to be used with SSE instructions

* PathScale compiler was also tested, v3.1 gave similar performance with =03

NEMO performance — SN véréusm

* HECTOR can be run in single core (SN) or virtual node (VN) mode

* SN mode uses one core per node, VN mode uses both cores

* If your application suffers from memory bandwidth problems SN mode

may help
Number of | Time for 60 steps (seconds)
Processors | SN mode VN mode
256 119.353 146.607
221 112.542 136.180

* Runtime reduces when running NEMO in SN mode

NEMO doesn’t benefit sufficiently to justify the increased AU usage

TRk LAy Lot
NEMO gric B L\ lepecL

| Grid used for ORCA025 model

X ' ~ jpni = number of cells in the

T N horizontal direction

[(P S, o 225 o a0 . .

c AR | | 4| jpnj =number of cells in the

2 HBNRES bR | DS ('K, | vertical direction

=l WAL | |] AT Tt Here, jpni= 18, jpnj = 12

e e O . il R ™, g e ™

i direction ——»

Image provided courtesy of Dr Andrew Coward, NOCS

“ CUG 24th - 27th May 2010

NEMO performance — equalq Id dims®*" 5" .

Performance of NEMO for equal grid dimensions

800

77é | I I I I | I | I | | I | I | I I
- B Results from PathScale compiler -
(53—€) Results from PGI compiler
3 600 —
C
o
(&)
[
@
” n
(e
L
(1)
£
£ 400
o
O
o
S
o L
©
8
£
F 200 —
0 |

6 8 10 12 14 16 18 20 22 24 26 28 30 32
Grid dimension (jpni = jpnj)

CUG 24th - 27th May 2010

DAY T v

NEMO performance — dlffergn'\

Performance of NEMO plotted against jpni for 128, 256 and 512 processors

jpnj plotted adjacent to each point
400 I | I | T

- « Equal grid dims best .

350~ « Otherwise use i <]j

300

250

200

Time for 60 model time steps (seconds)

150 @ @ 128 processors
B 256 processors
L 32 16 A A 512 processors i
Af’;—‘
100 | | | |
0 50 100

Grid dimension, jpni

CUG 24th - 27th May 2010 ‘ '

-

NEMO performance — removal ’6M

* Ocean models only model the ocean

* Depending on the grid, some cells may contain just land
— Land only cells do not have any computation associated with them
— However, they do have I/O

— A zero filled netCDF file is output for each land cell

* The land only cells can be removed prior to running NEMO
— Work out how many land only cells there are via the bathymetry file
— Set the value of jpnij equal to the number of cells containing ocean
— E.g. for a 16 x 16 grid there are 35 pure land cells so jpnij = 221

CUG 24th - 27th May 2010

NEMO performance — removal 6fm

jpni | jpnj | jpnij | Reduction in | Time for 60

AU’s used steps (seconds)

8 16 128 236.182

8 16 117 8.59% 240.951

16 16 256 146.607

16 16 221 13.67% 136.180

16 32 512 117.642

16 32 420 17.97% 111.282

32 32 1024 110.795

32 32 794 22.46% 100.011

* Removal of land cells reduces the runtime and the amount of file I1/0O

—No unnecessary output for land regions

* |n addition the number of AU’s required is greatly reduced

—Up to 25% reduction for a 1600 processor run

m CUG 24th - 27th May 2010 ‘ '

- _ N

NEMO performance — optirﬁérpfm

* NOCS researchers want to be able to run a single model
year (i.e. 365 days) during a 12 hour run

— Aids the collation and post-processing of results

— Current runs on 221 processors provide around 300 model days

* Investigated the “optimal” processor count as follows
— Remove land cells
— Keep grid dimensions as close to square as possible
— Compute the number of model days computed in 12 hours from:
ndays = 43000/,
— Ideally want t;, to be < 118 seconds

— Investigated processor counts from 159 - 430

m CUG 24th - 27th May 2010

—
NEMO performance — optlmafprmm

Optimal processor count for NEMO

200 I | |
1 o Need to use ~320
80 — (1%) |
processors to achieve the
g ¢ performance targets .
o 160 — _
Q
3
E T .
3
S 140 — —
E - -
|_
120 = _
cessssserpyges :
(23x23)
100 | | | | | I

200 300 400
Number of processors

CUG 24th - 27th May 2010

NEMO 1/O 0L\ LN

* NEMO input & output files are a mixture of binary and ASCII data

e All binary data files are in netCDF format

— netCDF = network Common Data Format
— Portable data format for storing/sharing scientific data
* NEMO uses parallel I/O

— each processor writes out its own data files depending on which part
of the model grid it holds

— Should be efficient but may suffer at larger processor counts...

“ CUG 24th - 27th May 2010 ‘ '

NEMO 3.0 performance — I/ém‘

300

250

200

150

Time (seconds)

100

50

NEMO V3.0 peformance

For 398 & 794 processors the results are from a best of 5 as these were highly unstable

l

I | I | I
Computation times stable 7

Initialisation & 1/O time
highly variable particularly A
for large proc counts

Up 400% variation!

@ —® Time for 60 time steps

B—M Total runtime
A—A |nitialisation and 1/O time

400
Number of processors

800

CUG 24th - 27th May 2010

S
netCDF 4.0 B m

* netCDF 4.0 was used to improve |/O performance of NEMO

* Key features
— Lossless data compression and chunking
— areas with the same numeric value require far less storage space
— Backward compatibility with earlier versions
* Requires:-
— HDF 5.0 1.8.1 or later
— Zlib 1.2.3
— Szip (optional)
* All codes tested with supplied test suites — all tests pass
— Cross compiling caused a few hiccups

— Now available centrally as Cray supported modules on HECToR

CUG 24th - 27th May 2010 ‘ '

netCDF 4.0 performance

* Performance evaluated using the NOCSCOMBINE tool

* NOCSCOMBINE is a serial tool written by the NOCS
researchers which reads in multiple NEMO output files and
combines them into a single file

— The entire file can be combined or

— Single components e.g. temperature can be extracted

[~ OCCAM - M5PLOT version 1.2

o, I _N
0,00 4,00 8.00 12,00 16,00 20,00 24,00 28,00

7025-TST_CU30_19580101_19580101_grid_T_0001.nc Slab: 1

m‘\ CUG 24th - 27th May 2010

20

AT am v

.

netCDF 4.0 performance Aiem o

* NOCSCOMBINE compiled with various versions of netCDF

* A single parameter (temperature) is extracted across 221
input files
— Minimal computation, gives a measure of netCDF & I/O performance
— Time measured and the best (fastest) of 3 runs reported

— netCDF 3.6.2 and 4.0 output compared using CDFTOOLS* to ensure
results are correct

*CDFTOOLS - set of tools for extracting information from NEMO netCDF files

“ CUG 24th - 27th May 2010 ‘ '

netCDF performance

netCDF version NOCSCOMBINE File size
time (seconds) (Mb)
3.6.2 classic 344.563 731
4.0 snapshot un-optimised 86.078 221
4.0 snapshot optimised 85.188 221
4.0 release 85.188 221
4.0 release” 78.188 221
4.0 Cray version 92.203 221
4.0 release classic 323.539 731

* Compiler optimisation doesn’t help

e System zlib 1.2.1 faster than version 1.2.3

—Use with care, netCDF 4.0 specifies zlib 1.2.3 or later

* File size is 3.31 times smaller

* Performance of netCDF 4.0 is 4.05 times faster

*system Zlib 1.2.1 used

—Not just the reduced file size, may be algorithmic changes, c.f. classic

* Cray version ~ 18% slower than dCSE install (for this example)

- i
. . -
- 1
- '

CUG 24th - 27th May 2010

®

A \aw
Converting NEMO to use ne:c\CDlm

* NEMO should benefit from netCDF 4.0

— The amount of I/O and thus time spent in /O should be significantly
reduced by using netCDF 4.0

* NEMO was converted to use netCDF 4.0 as follows:-
— Convert code to use netCDF 4.0 in Classic Mode
— Convert to full netCDF 4.0 without chunking/compression
— Implement chunking and compression
— Test for correctness at each stage

— Full details in the final project report

CUG 24th - 27th May 2010

NEMO performance with netCDFm

Filename File size netCDF | File size netCDF Reduction factor
3.X (MB) 4.0 (MB)
grid T.nc 1500 586 2.56
grid U.nc 677 335 2.02
grid V.nc 677 338 2.00
grid W.nc 3300 929 3.55
jicemod .nc 208 145 1.43
restart O0.nc 9984 9984 1.00
restart ice.nc 483 483 1.00

* Up to 3.55 times reduction in file size

* Actual performance gains will depend on output required by
science

CUG 24th - 27th May 2010 "

NEMO — nested models BAG . o

* Nested models — enable complex parts of the ocean to be
studied at a higher resolution, e.g.

2° outer model A

Two models: BASIC, MERGED

/ BASIC: 2° model with a 1° nested

model, no NOCS features

Two, 1° degree
inner models g c MERGED: 1° model with two
0.25° nested regions, NOCS code

Crashes with the velocity becoming
unrealistically large

0.25° degree D
innermost model

“ CUG 24th - 27th May 2010

NEMO — nested models ‘

* BASIC model

— Error occurs in outermost (i.e. un-nested) model
— Plot of velocity against time step highlights the problem

Zonal velocity (m/s)

Zonal velocity versus elapsed time for the namelist data

Normal time step, rdt = 5760 seconds
Reduced time step, rdt = 1440 seconds

Blue/green lines coincident

I

OO0 normal time step
OO0 reduced time step
02 normal time step
O2 reduced time step

| | |

le+07

) 2e+07
Elapsed time (seconds)

CUG 24th - 27th May 2010

3e+07

NEMO - nested models

Zonal velocity versus elapsed time for the namelist data

25
- Normal time step, rdt = 5760 seconds 00 normal time step -
B Reduced time step, rdt = 1440 seconds — OO0 reduced time step _
20 — —— 02 normal time step]
L —— O2reduced time step _
- Computation becomes stable with either -
- - reduced time step or —O0 7
E 15
>
O
o
[}
>
T 10
o
N
5
0

Elapsed time (seconds)

CUG 24th - 27th May 2010

NEMO — nested models |

* BASIC model

— Reducing level of optimisation or reducing the time step resolves the
problem for the BASIC model

* MERGED model still an issue
— Velocity explodes for all levels of nesting
— Compiler flags and reduction of timestep do not help
— Thought to be an uninitialised value or memory problem
— Compiler & debugger bugs discovered limited further investigations

CUG 24th - 27th May 2010

NEMO - achievements

* 25% reduction in AU usage by removing land-only cells
* Obtained optimal processor count for a 12 hour run on HECToR
* Compiled netCDF 4.0, HDF5 1.8.1, zlib 1.2.3 and szip on HECToR

e 3 fold reduction in disk usage and 4 fold reduction in runtime with
NOCSCOMBINE tool and netCDF4.0

* Adapted NEMO to use netCDF 4.0 resulting in reduction in disk
usage of up to 3.55 times

* Resolved several issues with nested models crashing on HECToR

* Found optimal processor count for BASIC nested model

NEM

CUG 24th - 27th May 2010

