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Abstract

In large-scale computing systems, the sheer volume of log data generated presents daunting challenges for debugging
and monitoring of these systems. The Oak Ridge Leadership Computing Facility’s premier simulation platform, the
Cray XT5 known as Jaguar, can generate a few hundred thousand log entries in less than a minute for many system
level events. Determining the root cause of such system events requires analyzing and interpretation of a large number
of log messages. Most often, the log messages are best understood when they are interpreted collectively rather than
individually. In this paper, we present our approach to interpreting log messages by identifying their commonalities
and grouping them into clusters. Given a set of log messages within a time interval, we group the messages based on
source, target, and/or error type, and correlate the messages with hardware and application information. We monitor
the Lustre log messages in the XT5 console log and show that such grouping of log messages assists in detecting the
source of system events. By intelligent grouping and correlation of events in the log, we are able to provide system
administrators with meaningful information in a concise format for root cause analysis.

1 Introduction

Understanding system failures and isolating prob-
lems from log data in large-scale computing systems is a
complex and tedious task. System logs often have large
amounts of redundant information which inhibits inter-
pretation of these messages. Further complicating mat-
ters, these log messages are often highly unstructured.

Though the volume of log generated is large, the mes-
sages by themselves often do not provide sufficient in-
formation for identifying the root cause of a problem [7].
To gain a complete understanding of a specific event and
identify the root cause, the system administrator needs
an extensive knowledge of the system and its current
state. Making matters worse, the sheer volume of sys-
tem log data often necessitates reducing the fidelity of
system logging. At the current scales of operation for the
Oak Ridge Leadership Computing Facility (OLCF), it is

impractical to run many of our systems at normal log-
ging levels in order to collect salient details about system
events as the data volume is simply too great. To reduce
the monitoring load of our system data analytics plat-
form, we intially focus on the XT5 console log and the
Lustre file system [1] messages in particular. These con-
sole log messages are generated via printk statements
within the Linux kernel. These messages are unstruc-
tured and vary over time as the format of the message
may change for each kernel or system software release,
often becoming increasingly complex. Understanding
the structure of these error messages is essential to inter-
preting them, which requires extensive pre-procesing to
render the data into a form usable for clustering. While
our approach of clustering log messages is generic, in-
terpreting these log messages in context requires knowl-
edge of the OLCF infrastructure [4].

In this paper, we define a three step process of in-
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terpreting the Lustre file system error messages from
the console log. The objective is to present log infor-
mation in a concise format without loss of information,
enabling easy interpretation and isolation of problems.
First, we preprocess the log messages, parsing the Lus-
tre error messages using knowledge of the structure of
the error messages gained from the source code. Sec-
ond, we cluster the log messages within a time widow
identifying a common feature set. This provides us with
a precise summary of events in the log within a given
time window. Finally, these clustered log messages are
run through a time-series analysis to capture system-
wide event patterns during a period of system uptime,
as well as associated with job information to find trends
tied to individual applications. This paper details the
above methods and presents our analysis of the Jaguar
XT5 logs from the months of December 2009 to Febru-
ary 2010.

Related Work: Conventionally, log messages have
been associated with temporal data mining techniques.
These methods are best suited for transaction logs where
the frequency and sequence of events are of interest.
In HPC logs, a burst of log messages within a short
time period would define a failure and these sets of log
messages repeat at regular intervals until the problem is
fixed. The first burst of information is important for iso-
lating the problem, while the rest of the messages are
often redundant. To further analyze the problem, it is
important to understand the log messages preceeding the
reported event.

Recent studies have focused on machine learning and
statistical methods of analyzing and detecting system
failures. SLCT (Simple Logfile Clustering tool [8]) is
a data clustering paradigm for mining event patterns
in log data. An apriori algorithm, the first stage is to
generate a count of all unique words in the log, iden-
tify log messages containing words above a threshold
value, and then clustering those log lines. This method
is based on the assumption that events of interests oc-
cur in bursts and this method ignores errors with low
frequency. In the machine learning paradigm described
in [9], the log message structures are parsed from the
source code and a feature vector is constructed as a se-
quence of log messages. Using principal component
analysis techniques, deviations of the run-time log from
the predefined vectors are identified – any variance is de-
fined as an anomaly. This approach is based on the as-
sumption that the system supports logging of all events,
which may be impractical for large systems like Jaguar.

Nodeinfo, an entropy based anomaly detection sys-
tem, was proposed in [5]. In Nodeinfo, the log messages

are classified as an alert or not, and are tagged to quan-
tify the importance. Then, the entropy of every node in
the system is quantified based on the number of occur-
rences of alerts within a given time period. It is pre-
sumed that all nodes operate similarly, and the entropy
of each node should be uniform. Any variance of en-
tropy would be categorized as an alert/anomaly. This
technique assists in identifying nodes causing an issue,
but does not achieve high efficiency in interpreting the
log messages. Similarly, the models proposed in [6] and
[2] group log messages and use predictive techniques
under the assumption that the logs carry all event infor-
mation and occur in bursts.

2 Log Pre-processing

In our initial work we focus on the Lustre file sys-
tem error messages in the console log. Figure 1 shows
the steps involved in extracting information from the log
for further analysis. We parse CDEBUG messages from
the Lustre 1.6 source code categorized as D EMERG
and D ERROR. We then define regular expressions for
each individual message of interest, identifying the var-
ious components of information. The log parser, written
in python, parses console log messages based on match-
ing regular expressions and also uses OLCF system spe-
cific information to derive more attributes for the data
parsed from the log. The site specific information in-
cludes mapping node ID to its NID, IP address and node
type, IP address of InfiniBand routers, and mapping file
system storage server IP to it’s type (oss,mds or mgs).
The parsed log is stored in a MySQL database for fur-
ther analysis.

We explain the process with the help of two exam-
ples as shown in Table 1. The first error message is a
node reporting that it is unable to establish communi-
cation with a specific router, and the second error mes-
sage is from a node that is unable to do a write opera-
tion on an OST. The attributes as shown in the table are
extracted with prior knowledge of the structure of the
message defined as a regular expression. Every log en-
try starts with a timestamp, time the log was generated,
and sourceID, the node that generated the message, fol-
lowed by the actual error message. From the sourceID,
we identify the NID number (sourceNID) and node type
(sourcetype) information. In general, the source node
can be a compute (cnode), lnet router (rtr), login, batch
or service (svc) node. The NID number, which is of in-
teger datatype, is useful while analyzing logs compared
to sourceID field which is of character datatype. Also,
most log messages carry process ID, and details of the
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Figure 1: Pre-processing Log Messages

Error Message [2010-01-13 07:22:05][c16-3c1s4n0]LustreError: 16149:0:(ptllnd peer.c:903:kptllnd peer check bucket())
Could not send to 12345-18235@ptl1 after 250s (sent 293s ago); check Portals for possible issues

Processed Error Message
timestamp 2011-01-13 07:22:05
sourceID c16-3c1s4n0 sourceNID 10832 sourcetype cnode
processID 16149 module lnet
modulefile ptllnd peer.c modulefunction kptllnd peer check bucket()
target1 18235 target1type rtr
errormsg check Portals for possible issues

Error Message [2010-01-24 12:04:02][c10-4c1s0n1]LustreError: 25704:0:(events.c:55:request out callback())
@@@ type 4, status -5 req@ffff8101f428b800 x1872401/t0 o4->widow1-OST0008 UUID@xx.xx.xx.105@o2ib:6/4
lens 386/480 e 0 to 1 dl 1264353000 ref 3 fl Rpc:/0/0 rc 0/0

Processed Error Message
timestamp 2010-01-24 12:04:02
sourceID c10-4c1s0n1 sourceNID 8609 sourcetype cnode
processID 25704 module ptl
modulefile events.c modulefunction request out callback()
target1 widow1-OST0008 target1type ost
target2 xx.xx.xx.105 target2type oss
errormsg 4 failed
errorcode 5

Table 1: Example Log messages and their parsed contents

3



source file and function that generated the error mes-
sage. In Table 1, the attributes processID, modulefile
and modulefunction identify the process, file and func-
tion in Lustre that generated this error message. From
the modulefile information we can identify which Lus-
tre module generated the error. In general, the module
can be Lustre networking (lnet), Lustre’s Portals driver
(ptl), object storage (obd), locking (ldlm), striping (lov)
or general client (llite).

Then we identify the entity the source is complaining
on, which is the target, and the part of the log that best
describes the error. For some error messages there can
be more than one target, captured as target1 and target2.
The first error message points to only one target, target1
is identified by NID 15235, and its type information is
captured as target1type. In the second error message
there are two targets, target1 is an OST and target2 is
an OSS. This parsing helps analysis, as we can isolate if
the OSTs mentioned in a log cluster belong to a single
OSS 1. The specific error is recorded as errormsg, for
the first error message it is ‘Check Portals for possible
issues’, and for the second error message we parse for
the number suffixed to ‘o’, which translates to operation
4 – OST WRITE, an object write operation. A few log
messages specify the exit status or return code, usually
followed by keyword ‘status’ or ‘rc’ as in the second
example. The exit status is stored as errorcode attribute.
The remaining parts of the log message are stored in the
field errordesc, for ”error descriptions”. Thereby, the
complete log message can be restitched from a row in
the database.

3 Clustering Event Logs

The goal of clustering the system log data is to extract
actionable information from the synthesis of the parsed
log messages and knowledge of the system’s state and
environment. The system state includes details of the
applications running on the system and the sets of nodes
allocated to these applications. The system environ-
ment includes the condition of system components (ac-
tive/failed) and hardware dependencies such as the map-
ping between OST, OSS, and RAID controllers. Our
clustering approach is performed in two steps; first, mes-
sages are grouped within a window of time, and then
those groups are combined across time windows.

1With additional information about the system configuration, we
can correlate errors on multiple OSSes with a common RAID con-
troller to find issues with the back-end storage.

3.1 Clustering within a time window

1. A set of one-to-one mappings based on source and
target (target1) types is generated for a given time
window. This results is a general overview of
which categories of nodes are reporting errors, and
the corresponding node types. This process is it-
erated from a time window of one minute, and
is repeated with increasing windows of time (one
minute) until the log messages are reduced to one-
third of the original number of records. This is
based on the observation that each event is most of-
ten represented by three consecutive log messages.
The time window is limited to the major Lustre
timeout setting 2 to help identify periodic messages
resulting from lost RPCs.

2. For the time window identified, a summary of the
log messages is generated in terms of source type,
target1 type, module and errormsg. This provides a
general overview of the log within the time frame.

3. For each source type seen in the window, we then
generate a list of distinct source NIDs and error
message pairings. We generate a second list for
each type of the first target. These lists allow iden-
tification of commonalities and aid isolation of the
failure point.

4. We then generate a one-to-one mapping between
target1 and target2 for the window as well as a list
of nodes mentioned as target2. This provides a list
of nodes (usually OSSes) providing the service de-
scribed in target1 (usually OSTs). These lists allow
a grouping of errors on OSTs sharing a common
OSS to be attributed to the OSS itself. This can
be extended using knowledge of the mapping from
OSS to RAID controllers to identify the probability
that the RAID controller is the root cause of failure.

5. Finally, for each compute node that is the source or
target of a message, the node is mapped to the ap-
plication that is executing on it. This allows corre-
lation of events to application runs and an analysis
of errors associated with each distinct application.

3.2 Clustering across time windows

The above process generates clusters of log mes-
sages identifying commonalities within discrete time

2Currently 600 seconds for OLCF systems.
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sourcetype target1type module errormsg
cnode ost ptl Connection lost
cnode mdt ptl Connection lost
cnode ost ptl Connection restored to service
cnode oss ptl Request Timed Out
cnode mdt ptl Connection restored to service
cnode MGS ptl Connection restored to service
cnode MGS ptl Connection lost

Table 2: A clustered view of log messages

sourcenid sourcetype target1type module errormsg
1947 rtr oss ptl Conn race

Table 3: A single entry representing 19 log messages

sourcenid sourcetype target1 target1type module errormsg
1947 rtr xx.xx.xx.184 oss ptl Conn race
1947 rtr xx.xx.xx.121 oss ptl Conn race
1947 rtr xx.xx.xx.17 oss ptl Conn race
1947 rtr xx.xx.xx.116 oss ptl Conn race
1947 rtr xx.xx.xx.188 oss ptl Conn race
1947 rtr xx.xx.xx.191 oss ptl Conn race
1947 rtr xx.xx.xx.162 oss ptl Conn race
1947 rtr xx.xx.xx.18 oss ptl Conn race
1947 rtr xx.xx.xx.128 oss ptl Conn race

Table 4: A drill down of the single entry from the above table

frames.We then colapse those clusters into larger win-
dows subject to two restrictions: the segments of time
must be contiguous, and error content must be the same.

For example, given a burst of identical log messages
representing a single event with 5000 messages over five
minutes, our method generates five clusters of messages
that occur sequentially in continuous time. These clus-
ters are then colapsed into a single window of five min-
utes duration. This is similar to analysis using a sliding
time window, and retains information about the period-
icity of the messages.

Given this sequence of temporally discontiguous
clusters of messages, we can then check for periodic ap-
plication or hardware errors. Hardware errors are de-
tected by looking for similar errors within the period of
system uptime containing the cluster under examination.
Behaviour analysis is performed against the last ten ex-
ecutions of the application associated with the current
messages, searching for similar patterns of error mes-
sages.

4 Results

The following section details the various inferences
we draw from log messages by pre-processing and clus-
tering log messages.

4.1 Correlating logs

Even though we support a small subset of debug mes-
sages in our prototype system, the volume of log mes-
sages generated is overwhelming. This deluge of data
is mitigated by the observation that the bulk of the mes-
sages reduces down to a few lines of useful information.
In our experience with Lustre, a burst of messages gener-
ally is a consequence of an event that occurred in the rel-
atively distant past – a time scale of a few minutes. For
example, Table 2 shows a summary of error messages
occurring approximately 30 minutes after system boot.
The 7 clusters depicted were reduced from over 3000
raw log messages. A set of compute nodes lost their
connection to the file system servers and re-established
their connections. At this point in time, no application
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sourcetype target1type errormsg
cnode oss Request Timed Out
cnode ost 400 failed
cnode ost Connection lost
cnode ost Connection restored to service

Table 5: Log entries when compute nodes choose a faulty path

sourcetype target1 target1type errormsg
batch c14-0c0s6n0 rtr PTL NAL FAILED(4)
svc c14-0c0s6n0 rtr PTL NAL FAILED(4)
login c14-0c0s6n0 rtr PTL NAL FAILED(4)
cnode c14-0c0s6n0 rtr PTL NAL FAILED(4)

Table 6: The inital burst of messages identifying a common target

sourcetype target1 target1type errormsg
cnode c14-0c0s6n0 rtr check portals
login c14-0c0s6n0 rtr Timing out
batch c14-0c0s6n0 rtr Could not get credits for

Table 7: The periodic messages (every 250 seconds) untill the problem is fixed

was running on the machine. To determine the cause for
these messages, we look at the prior messages. Ten min-
utes before these messages, there were 19 Lustre infor-
mation messages informing us that a specific router had
a connection race with a number of storage servers. Our
clustering approach captured it as a single entry, Table 3,
representing a more detailed view shown in Table 4 in-
dicating transient errors from the Lustre Portals driver
between a particular router and a few OSSs. Our time
series analysis – using domain knowledge – was able to
associate the earlier transient errors with the more recent
connection loss messages. In this example, we did not
see any further error messages for that particular router
during the normal system run. This identification of a
transient fault is most useful when multiple fault events
are occuring simultaneously and can help the system ad-
ministrator to separate the important from the unimpor-
tant. Future work includes determining the value of in-
formation gained from this type of correlation and using
that to decide if an alert should be delivered to a system
administrator in real-time.

4.2 Hardware Anomalies

Analysis of the Lustre log messages can also help
isolate hardware anomalies and identify the location of
the fault. During one system run, approximately twenty
three thousand log messages occured in the span of three

minutes. The messages, summarized in Table 5 and Ta-
ble 6, indicate that compute nodes lost connection with
the object storage servers, and was noticed due to pe-
riodic heartbeat messages rather than user traffic – 400
failed indicates OBD PING failed. The service (svc),
compute, batch and login nodes all complained about a
specific router node, with error PTL NAL FAILED(4).
These were followed by over two million log messages
in a three hour period, summarized in Table 7. The first
set of log messages indicates that a single router is at
fault. The long trail of messages following the initial
set is due to the clients trying to reestablish communi-
cation with the router every 250 seconds. That specific
router experienced a kernel panic approximately 4 min-
utes after the first set of error messages and needed to be
rebooted.

While this particular example may not be especially
helpful to an experienced system administrator – the
logs would show the kernel panic of the router – it
demonstrates the ability of the method to pinpoint the
source of the fault quickly in an avalanche of data. This
capability is of tremendous value particulary when the
root cause of failure has not previously been categorized
and actively monitored for. For example, we are able
to isolate failures/errors occurring on specific OSS or
RAID controllers, in which case the log messages com-
plain about each OST(s) attached to the server(s). While
this analysis is currently reactive and does not provide
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predictive results, future work integrating historical data
to predict failures holds promise.

4.3 Application Patterns

We correlate error messages to applications running
on those nodes to identify application behaviors which
affect its normal run. Jobs are terminated for a num-
ber of reasons: application defects, walltime exhaustion,
hardware failure, and system software errors are among
the most common. Failures due to application defects
such an out of memory errors may produce spurious
Lustre messages which complicate analysis and are of-
ten best removed from the log clustering. However, fail-
ures due to system software errors and hardware faults
generally result in entries in the console log that are key
to analyzing the root cause. In most of these cases, they
user would see some indication of the failure in the con-
sole output of their job.

In one observed case, a user reserved a large number
of compute nodes and launched multiple apruns in par-
allel on a small subset of the compute nodes. The aprun
command defined a wall-time limit of 1800 seconds.
Despite the expected running time, more than half of the
jobs were terminated within a few seconds by a fatal,
uncatchable signal (SIGKILL). The killed were associ-
ated with the Portals error PTL NAL FAILED and Lus-
tre operation 35 failure, MDS CLOSE. This occurred
for more than two months, with no known system is-
sues that could explain the failure. It appeared that the
application had a role in causing or otherwise exposing
a fault.

In a second case, we found a specific application had
similar Lustre errors for three consecutive weeks, but the
errors did not terminate the application run. The appli-
cation had successful runs prior to this period, and such
patterns where observed only within the three weeks.
The nodes on which the application was running period-
ically reported OST STATFS failures, which are likely a
result of the statfs system call. The user acknowledged
that they were trying new libraries during that time pe-
riod, which may have caused or otherwise exposed a
fault witin the system.

In both cases the user had made no reports of system
errors or otherwise indicated that problems during run-
time existed. A full root-cause analysis was not possible
in either of these cases as both issues appear to have been
transient (although over a large duration) and system
software upgrades and application library changes have
appeared to either correct or mask these erors. Though
raising more questions than answers due to the limita-
tions imposed by using months old data, our methods

highlighted specific correlations between application be-
havior and Lustre errors. While contacting users about
such old activities often leads to puzzlement due the dif-
ficulty recollecting specific changes, moving the analy-
sis close to real-time will permit more immediate inves-
tigation of the root causes of the Lustre errors. This will
lead to higher quality bug reports to the vendor or im-
proved application code, depending on the actual source
of the fault. As our techniques are further refined based
on historical datasets we will deploy near real-time anal-
ysis methods within our infrastructure enabling timely
reporting of issues that may otherwise go unnoticed or
otherwise unreported.

5 Conclusion

Deriving meaningful, actionable information from
the deluge of log data generated by modern leadership
class computing platforms is essential to providing reli-
able world-class computing to a growing scientific com-
munity. Unfortunately, the sheer volume and complexity
of system log data inhibit the use of the wealth of data
contained in these logs for root cause analysis and re-
sponse. To this end we have described techniques for
system log transformation to structured data and clus-
tering techniques for data analysis. These techniques
reduce total system log volume while preserving and
enhancing the diagnostic value of this data. While the
techniques described in this paper have only been pro-
totyped, our intent is to continue to develop these tech-
niques as the amount of log data to be analyzed will only
grow over time. This work provides insight into faults
on existing systems, and its effectiveness will increase
as we work to process log streams in real-time to enable
near real-time response to system failures.
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