
Correlating Log Messages for

System Diagnostics

Presented by
David Dillow

Raghul Gunasekaran, David Dillow, Galen Shipman, Don Maxwell, Jason Hill
Oak Ridge Leadership Computing Facility

Byung H.Park, Al Geist
Computer Science Research Group

Introduction

• Challenges analyzing large-scale system logs

– Large volume of data (occur in bursts)

– Quickly overwhelmed with data

– More of a failure log than an event log

– Logging systems can drop messages under load

– Redundant information

2

– Redundant information

– Need a comprehensive understanding of the compute
infrastructure

– Knowledge of the current system state

Introduction

Console Log Messages

• Highly unstructured log messages

– printk statements within the kernel

• Message structure changes for new releases

Our Approach

• Pre-process Log Messages

3

• Pre-process Log Messages

– Parsed in a machine-readable format

– Add attributes that simplify interpretation

• Cluster Log Messages

– Reduce redundant information

• Time-series analysis of clustered log messages

– Failure trends for application and hardware

Log Pre-processing

Node NID IP Address Type

C1-7c2s7n1 4861 xx.xx.xx.33 cnode

C4-7c0s1n3 2215 xx.xx.xx.106 rtr

C24-0c0s4n0 17939 xx.xx.xx.157 login

C24-0c0s4n3 17936 xx.xx.xx.160 batch

Lustre Source Code

Extract CDEBUG Messages

(D_EMERG, D_ERROR)

Create Regular Expressions*

XT5 Node Info

4

Log Message Parser

(Python Script)

Console

Log

MySQL

OLCF

System

Information

IB Router Info

IP Address List

File System Server info

IP Address Type

xx.xx.xx.100 oss

xx.xx.xx.200 mgs

xx.xx.xx.211 mds

* Done manually for individual messages

Log Pre-processing
[2010-01-13 07:22:05][c16-3c1s4n0]LustreError:

16149:0:(ptllnd_peer.c:903:kptllnd_peer check_bucket()) Could not send to 12345-

15235@ptl1 after 250s (sent 293s ago); check Portals for possible issues

Timestamp 2011-01-13 07:22:05

sourceID c16-3c1s4n0 sourceNID 1948 sourcetype cnode

processID 16149 module lnet

modulefile ptllnd_peer.c modulefunction kptllnd_peer_check_bucket()

target1 18235 target1type rtr

errormsg check Portals for possible issues

5

Timestamp 2010-01-24 12:04:02

sourceID c10-4c1s0n1 sourceNID 8609 sourcetype cnode

processID 25704 module ptl

modulefile events.c modulefunction request_out_callback()

target1 widow1-OST0008 target1type ost

target2 xx.xx.xx.105 target2type oss

errormsg operation 4 failed errorcode 5

[2010-01-24 12:04:02][c10-4c1s0n1]LustreError: 25704:0:(events.c:55:request_out_callback())

@@@ type 4, status -5 req@ffff8101f428b800 x1872401/t0 o4->widow1-OST0008

UUID@xx.xx.xx.105@o2ib: 6/4 lens 384/480 e 0 to 1 dl 1264353000 ref 3 fl Rpc:/0/0 rc 0/0

Clustering Event Logs

Time Series View of Console Log Messages

Time

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

s

t minutes

6

t minutes

Outline of our clustering approach

• Analyze log messages within a time window

• Group contiguous windows representing identical errors

• Check for patterns across the time windows

Contiguous window’s representing identical errors

grouped into a single time frame

Clustering Event Logs

Identifying a Time window

• For a set time frame, initially one minute

• A set of one-to-one mapping between sourceType and target1Type

• Should be one-third of the original log messages

• If not, increase time window by one minute, max 10 minutes

• Regenerate mapping and check for one-third criteria

• The one-third requirement is based on our observation that

7

• The one-third requirement is based on our observation that
most often events in the log are represented by three
consecutive log messages

• The ten minute limit, is based on a Lustre timeout setting which
is currently 600 seconds for OLCF systems.

• The ten minute window also helps identify periodic messages
from lost RPCs

Clustering Event Logs

Clustering within a time frame

• Summary of the log

o Clustered as sourceType, target1Type, module and errormsg

• Isolating single points of failure

• For a specific sourceType – list of distinct source NID’s and error messages

• Similarly for target1Type.

• The NID list helps identify problem

8

• The NID list helps identify problem

• If a single NID entry – single point of failure (Hardware anomalies)

• List of NID’s – identify the commonalities in the next stage

• Target Mapping

• Clustering target1 to target2 (helps identify OSS/RAID controller failures)

• Associate NID list to Application information

• Identify what App’s were running on the nodes.

Example: In most observed cases, nodes complaining run the same application.

Clustering across time frame

• Grouping Time windows

• Time windows should be contiguous

• Identical Error Messages

• Correlating Messages across time windows

• Check for identical error messages across time widows

Clustering Event Logs

9

• Check for identical error messages across time widows

• Then, compare NID list across time windows - look for any
common NIDs

• w.r.t. Application

• Identify Application running on the list of NIDs

• Compare with past 10 runs of the application

Results

Correlating logs

• 30 minutes from system boot a burst of over 3000 messages

clustered as 7 messages

SourceType Target1type Module ErrorMsg

cnode ost ptl Connection lost

cnode mdt ptl Connection lost

cnode ost ptl Connection restored

10

cnode ost ptl Connection restored

cnode oss ptl Request Timed Out

cnode mdt ptl Connection restored

cnode mgs ptl Connection restored

cnode mgs ptl Connection lost

A set of Compute nodes lost connection with OSS, MDS and MGS, and re-established

connections. No commonalities across the compute nodes and no application was running.

Results

Correlating logs

• 10 Minutes prior to the burst of messages, we observed this
Lustre Info message in the log.

• A particular router had a connection race problem with OSS

SourceNID SourceType Target1type Module Errormsg

1947 rtr oss ptl Conn race

11

• We saw a total of 19 messages in the log.

• Through our clustering approach we were able to present
information in a condensed format.

• Time Series Analysis & Domain Knowledge helped attribute
transient errors to recent connection loss messages.

Results

Hardware Anomalies

• During one of the system event 23,000 log messages were
generated within three minutes. These clustered into two
groups.

SourceType Target1Type ErrorMsg

cnode oss Request Timed Out

cnode ost 400 failed

12

cnode ost 400 failed

cnode ost Connection lost

cnode ost Connection restored to service

SourceType Target1 Target1Type ErrorMsg

batch c14-0c0s6n0 rtr PTL_NAL_FAILED(4)

svc c14-0c0s6n0 rtr PTL_NAL_FAILED(4)

login c14-0c0s6n0 rtr PTL_NAL_FAILED(4)

cnode c14-0c0s6n0 rtr PTL_NAL_FAILED(4)

Results

Hardware Anomalies

• This was followed by 2 million log messages over the next 3 hours

SourceType Target1 Target1Type ErrorMsg

cnode c14-0c0s6n0 rtr check portals

batch c14-0c0s6n0 rtr Timing out

login c14-0c0s6n0 rtr Could not get credits for

13

• The first set of log messages identify a specific router was at fault.

• ~4 min from the first set of messages the router had a kernel panic

• Isolated a this failure from a deluge of log messages

• Can similarly isolate OSS or RAID controller failures, where the log
would complain on the OSTs

• Could be used to identify new failures where the actual event may
not be currently monitored.

Results

Application Patterns

• Correlate error messages to application runs

• To identify potential anomalous application behavior

• Remove messages which are caused by well-known
problems

– HW failures

14

– HW failures

– Out of Memory errors

– Segmentation faults

– Wall time exhaustion

Results

Application Patterns - Example 1

• User reserves large number of compute nodes

• Multiple aprun’s in parallel on a smaller set of compute
nodes – time limit of 1800 seconds.

• More than 50% of jobs terminated within a few seconds.

• Observed for more than 2 months, user did not complain

15

• Observed for more than 2 months, user did not complain

• Lustre error messages: PTL_NAL_FAILED(4) followed by
MDS_CLOSE failed.

• Followed by a SIGKILL

• Appears to be caused by the application

Results

Application Patterns – Example 2

• In a three month observation period for only three weeks
an application caused File System errors.

• Lustre error message: OST_STATFS failure

• Application did not quit, but caused the same file system
error.

16

error.

• User acknowledged they were trying new libraries during
that time period.

• Appears to be related to this application’s activity.

Results

• A limitation is that we were analyzing a few months of
old data

• Changing system software complicates root cause
analysis

• However, we show that correlation exists between
Application behavior and Lustre error messages

17

Application behavior and Lustre error messages

• Analyzing in near real-time would increase our works
impact

– Determine source of faults and address them quickly

– Identify application usage patterns that expose faults

– Improved feedback to the user community

Questions ?

18

Questions ?

