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ABSTRACT: We present the results of work to tune and optimize the performance of the
Weather Research and Forecast (WRF) Model on Cray XT-series machines. We pay particular
attention to compilation options (including mized-mode versus straight MPI), ways of tuning
cache usage at Tun time and optimum I/O strategies. Some of the implications of the trend
towards increasing numbers of cores per compute node are considered.
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1 Introduction

In this paper we present the results of a study into the per-
formance of the Weather Research and Forecasting (WRF)
model on Cray XT-series machines.

1.1 WRF

The WRF model was developed as a collaborative project
by the National Center for Atmospheric Research (NCAR),
the National Oceanic and Atmospheric Administration
(NOAA), the National Centers for Environmental Predic-
tion, the Air Force Weather Agency, the Naval Research
Laboratory, the University of Oklahoma and the Federal
Aviation Administration in the United States. It is a
regional- to global-scale model intended for both research
applications and operational weather-forecast systems.

WRF is now used as the NOAA’s primary forecast
model, for forecasts of 1-3 days ahead, and is used by
weather agencies all over the world (including weather
agencies in Indo-China and Asia). As of June 2008 there
were in excess of 6000 registered WRF' users.

The WRF system incorporates two different dynam-
ics solvers; the Advanced Research WRF (ARW) solver
(developed by the Mesoscale and Microscale Meteorology
Division of NCAR) and the Non-hydrostatic Mesoscale
Model solver (developed by the National Centers for Envi-
ronmental Prediction, US). In this document we will dis-
cuss only the ARW version of the WRF modeling system.

The ARW solves the fully-compressible, non-hydrostatic
Euler equations using a finite-difference scheme on an
Arakawa C-grid staggering in the horizontal plane and a
terrain-following, dry hydrostatic pressure vertical coordi-
nate. There are 2nd- to 6th-order advection options for

spatial discretization in both horizontal and vertical direc-
tions. Integration in time is performed using a time-split
method with a 2nd- or 3rd-order Runge-Kutta scheme with
a smaller time step for acoustic- and gravity-wave modes.
The model supports periodic, open, symmetric and spec-
ified lateral boundary conditions and is capable of whole-
globe simulations using polar Fourier filtering and periodic
east-west boundary conditions.

The WRF model has, from the outset, been designed and
written to perform well on massively-parallel computers. It
is written in Fortran90 and can be built in serial, parallel
(MPI) and mixed-mode (OpenMP and MPT) forms, simply
by choosing the appropriate option during the configure
process.

Unless stated otherwise, all results presented here were
obtained with version 3.1.1 of WRF using the ARW core.

1.2 Machines Used

The bulk of this work was performed on HECToR which is
the current incarnation of the UK’s national academic su-
percomputing service. When this project began, the scalar
component of HECToR was at Phase I with each ‘node’ of
the Cray XT4 comprising a single, dual-core AMD Opteron
2.8 GHz chip. However, HECToR was upgraded to Phase
ITa in 2009 and now each node comprises a single, quad-
core AMD Opteron 2.3GHz Barcelona chip. (The node
interconnect is unchanged from Phase I).

Unless stated otherwise, all results are from Phase Ila
of the HECToR Cray XT.

For the investigation of multi-core effects we have also
made use of Monte Rosa which is a Cray XT5 at the Swiss
National Supercomputing centre (CSCS). Rosa has com-

Cray User Group 2010 Proceedings 1 of 12



Figure 1: The three domains for the Great North Run
benchmarking configuration.

pute nodes built from two, six-core AMD Opteron 2.4 GHz
Istanbul chips giving 12 cores per node compared to HEC-
ToR’s four. The compute-node interconnect is the same as
that on HECToR. .

2 Benchmark Configuration

The majority of the WRF runs done in this project used
the ‘Great North Run’ (GNR) configuration, chosen to be
representative of the WRF-related work done by the UK
community on HECToR . This configuration is shown in
figure 1 and consists of three, nested domains with two-
way feedback between them. It is designed to provide a
‘Weather Forecast’ for the north of England which is thus
covered by a small domain of high-resolution (1 Km). The
large but coarse outer region is designed to capture the
behaviour of the atmosphere over the north Atlantic. It
is rectangular rather than square since the regions to the
north and south of it will have limited effect on what hap-
pens in the inner-most domain. This configuration is used
by the National Centre for Atmospheric Science (NCAS),
UK, as both a teaching tool and for use with scientific field
campaigns being carried out in the UK.

The sizes of the three domains are given in table 1 in
terms of numbers of grid points. These extents have im-
plications for the scaling behaviour of WRF when running
this configuration. Unless stated otherwise, all of the re-
sults presented in this paper were obtained using the GNR
configuration.

When measuring the performance of WRF we have used
the mean time taken to integrate the whole model forwards

Number of grid points
Domain | East-West North-South | Total
1 356 196 69176
2 319 322 102718
3 391 328 127600

Table 1: Domain sizes for the Great North Run configura-
tion.

in time by one time step. Typically, the mean value was
calculated from three separate runs of 10 minutes of model
time. This quantity explicitly excludes any time spent do-
ing I/0.

3 Compute Performance

In this section we examine the compute performance of
WRF and look at strategies for improving it.

3.1 Compilers and Optimization

WREF is supplied with its own, interactive ‘configure’ script
which seeks to identify the platform and offer appropri-
ate options. On HECToR which has the Portland Group
(PGI), Pathscale (PS), Gnu and Cray compiler suites in-
stalled, this results in approximately 20 different ways of
building WRF. However, the relatively-young Cray com-
piler was unable to build WRF and therefore was not an
option for this project. At the time of writing, the default
compiler versions on HECToR are 3.2, 9.0.4 and 4.4.2 for
the PS, PGI and Gnu F90 compilers, respectively.

3.1.1 Distributed-memory Version

The performance of WRF when compiled in distributed-
memory (dm) mode (i.e. using the MPI library for par-
allelisation) with the three remaining options was com-
pared and the results are summarised in figure 2. It is
clear that the Gnu compiler is unable to match the per-
formance achieved by either of the commercial compil-
ers. Consequently, it was not used for the remainder of
the project. The PS-compiled binary failed with a seg-
mentation error during startup on all processing element
(PE) counts tried. The default flags provided by the con-
figure script (-O3 -OPT:Fast) were therefore edited un-
til a stable version was obtained. The final set of flags
was -O3 -OPT:ro=1:0limit=0:div_split=ON:alias=typed
where ro=1 reduces the level of optimizations that affect
round-off compared to ro=2. The default optimizing flags
used with PGI were -O3 -fast.

When using the default flags supplied by the WRF con-
figure script the performance achieved by the PS- and PGI-
compiled binaries is very similar (figure 2). We now ex-
periment to see what performance improvements may be
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Figure 2: The performance of WRF when built ‘out of
the box’ in distributed-memory mode with the Portland
Group (PGI), Pathscale (PS) and Gnu compilers. (Note
that the flags for the PS compiler had to be adjusted, as
described in the text.)

achieved by tuning these flags. The settings produced by
the configure script for the PGI compiler include a set of
commented-out flags that cause more extensive optimiza-
tion to be performed, at the risk of altering the results
produced by the code. These flags were used as the basis
for seeking to improve the performance of WRF.

For the PGI compiler, it was found hard to improve
upon the performance achieved by the optimizing flags sug-
gested by the configure script (but left commented-out by
default). These flags are: -O3 -fastsse -Mvect=noaltcode
-Msmartalloc -Mprefetch=distance:8 -Mfprel, where:

-Mvect=

noaltcode vectorized loops

-Msmartalloc Adds a call to mallopt in the main routine
-Mprefetch= Set fetch-ahead distance to eight cache
distance:8 lines

-Mfprel Use relaxed precision in calculation of

some intrinsic functions where a large

speed-up may be obtained

Experiments were performed with profile-guided op-
timization and inter-procedural optimization. The for-
mer did not significantly alter the performance of the bi-
nary but the latter (with -Mipa=fast) did improve things
slightly at the cost of increasing the compilation time to
two hours 20 minutes. With the upgrade of HECToR to
Phase Ila and the move from WRF 3.0.1.1 to 3.1.1 this
slight improvement with the use of IPA disappeared and
thus it is not included in the final set of flags.

The starting point for improving the set of opti-
mizing flags for the PS compiler was the set specified
for PGI, converted to the PS equivalents. Again,
varying extents of inter-procedural optimization were

Do not generate alternative versions of
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Figure 3: The performance of WRF when built in
distributed-memory mode with the Portland Group and
Pathscale compilers. Results for each compiler with the de-
fault set of flags (circles) are compared with the optimum
sets of flags found in this work (triangles). Each symbol
represents the mean result from three separate runs. Lines
are guides to the eye.

tried but these all caused the compiler to crash
with an ‘internal compiler error.” The best set of
flags for the PS compiler was found to be: -0O3 -
OPT:Ofast:ro=1:malloc_algorithm=1:early_intrinsics=ON
-LNO:prefetch_ahead=8:full_unroll=10.

A comparison of the performance of WRF when com-
piled with the default and optimized sets of compiler flags
is shown in figure 3. This shows that the new set of flags for
the PGI compiler has improved the performance of WRF
by approximately 10% compared to that obtained with the
default PGI flags. This is slightly greater than the equiva-
lent improvement obtained with the PS compiler and con-
sequently, the PGI-compiled binary performs best for all
core counts although the differences at low and high core
counts are small.

3.1.2 Verification of Results

Since a compiler’s optimization of a code can alter the re-
sults it produces, it is essential to check that the optimized
build of WRF gives results consistent with those compiled
with lower optimization levels and/or with different com-
pilers. These checks were performed by comparing the
surface-pressure and surface-temperature fields produced
by binaries compiled with different compilers and differing
degrees of optimization. In particular, checks were per-
formed between results from the most optimized binaries
and those compiled with flags that force the compiler to
only use math operations that are IEEE compliant.
Results were compared using the Integrated Data Viewer
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Figure 4: Differences between the ‘Temperature at 2m’
fields for the inner GNR domain produced by two different
builds of WRF doing a six-hour simulation.

(IDV) [5] with its ability to display the difference between
two fields. An example of the small differences typically
found is shown in figure 4 which displays the temperature
at an elevation of two metres across the inner-most do-
main (number three) of the GNR configuration. Note the
scale at the top-right of the image which shows that all
differences are of the order of 0.1 Kelvin.

3.1.3 Mixed-mode Version

WRF was built in mixed-mode (MPI and OpenMP) with
both the PGI and PS compilers. For version 3.0.1.1 of
WREF it was found that the resulting PGI-compiled binary
was some 10% slower than that produced by the PS com-
piler. On moving to version 3.1.1 of WRF, we were unable
to get a working mixed-mode binary from the PGI com-
piler. However, given the performance difference for the
previous version of WRF we considered it reasonable to
consider just the PS results.

Figure 5 compares the performance of the PGI, dm-
mode and PS, mixed-mode builds of WRF. The mixed-
mode version was run with a single MPI process and four
OpenMP threads per compute node. Below 512 cores, the
mixed-mode binary is slightly slower than the pure MPI
version. However, on larger core counts where communi-
cation overheads increase, the mixed-mode binary is signif-
icantly faster, presumably due to its reduction of the MPI
communication between cores.

Note also that while attempting to run the GNR con-
figuration on 2048 MPI PEs causes failure due to over-
decomposition of the model domain, it is possible to run
the mixed-mode binary on up to 4096 cores since we have
four OpenMP threads per MPI process. (The 4096-core
result of 2198 steps/hour is not plotted in figure 5 to allow
better comparison with the dm-mode curve.)

These results indicate that the mixed-mode version of
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Figure 5: Comparison of the performance of the PGI-
compiled, dm-mode WRF with that of the PS-compiled
dm-+sm-mode WRF.
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Figure 6: The performance of WRF running the GNR
configuration on the HECToR and Rosa machines. The
dm-mode binary was built with the PGI compiler and
the dm+sm-mode binary with the PS compiler. Compute
nodes were fully occupied for these jobs.
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WRF is very well suited to the increasingly fat nodes of
current MPP machines. This is borne out by its perfor-
mance on Monte Rosa which has 12 cores per node com-
pared to HECToR’s four. The performance obtained from
WRF running the GNR configuration on Rosa is shown in
figure 6. Comparing the blue and green curves, we see that,
as on HECToR | the performance of the dm+sm-mode bi-
nary does not exceed that of the dm-mode binary until the
number of cores exceeds 1024. At this point the dm-mode
binary ceases to give any useful performance improvement
as the number of cores is increased.

Figure 6 also contains the equivalent results obtained on
HECToR . These show that both the dm- and dm-+sm-
mode WRF binaries perform considerably better on HEC-
ToR than do their counterparts on Rosa. The only ex-
ception to this is the dm+sm-mode binary when run with
two MPI processes per compute node (i.e. one per socket)
on Rosa. This gives the best scaling performance of any
option on either machine and does eventually exceed the
performance of the dm+sm-mode binary on HECToR .
What is clear from figure 6 is that the dm+sm-mode bi-
nary scales very much better than the dm-mode version on
this architecture.

That WRF performs better on HECToR than it does
on Rosa is due to the high demand it places on memory
bandwidth. This is demonstrated by the results in figure 7
which compares the performance of WRF running in dm-
mode with 480 PEs on fully occupied nodes (i.e. with
12 cores per node [cpn]) to that obtained when the nodes
are de-populated. The lower plot in figure 7 shows that
the time spent by WREF in user and MPI code decreases
by approximately equal amounts as the number of cpn is
reduced from 12 to four. The time spent waiting at a
barrier before any global MPI operation (largely due to
load imbalance) is labelled as MPI SYNC and can be seen
to remain roughly unchanged as the node population is
varied. The reduction in the time spent in MPI is to be
expected since reducing the number of processes running
on a node will reduce the amount of data that must be
sent and received over the interconnect, alleviating network
contention.

The upper plot in figure 7 shows some hardware
performance-counter results for cache usage which shed
some light on the reduction in the time spent in user code
as nodes are under-populated. Of particular importance is
the increase in the rate of the fills of the level-1 data cache
(D1) while the actual number of fills remains unchanged
as the cpn is reduced. The fact that D1 is receiving data
more quickly means that the compute cores will spend less
time waiting for data from main memory. Note that nei-
ther the D1 nor D2 refill rates in figure 7 show any sign
of levelling-off as the number of cpn is decreased, indicat-
ing that retrieving data from main memory remains the
bottleneck.
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Figure 7: Break-down of the performance of dm-mode
WRF on Rosa when the compute nodes are systematically
under-populated. The upper plot shows cache-related per-
formance for the level-1 and level-2 data caches (D1 and
D2, respectively) for the user part of the code. The bot-
tom plot shows how the time spent in the user and MPI
parts of the WRF code varies with node population. All
runs were on 480 PEs on Rosa.
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Figure 8: Illustration of a domain decomposition within
WRF suitable for a mixed-mode job with six MPI pro-
cesses, each with eight OpenMP threads. Patches are
drawn with bold, solid lines and tiles with dashed lines.

3.2 Optimization of Cache Usage

WRF was written with OpenMP and OpenMP-MPI com-
pilation in mind which has implications for the way in
which it decomposes the model domain. When running
in distributed-memory (‘dm’) mode, the model domain is
decomposed into as many rectangular ‘patches’ as there are
PEs (i.e. MPI processes) and each patch assigned to a PE.
When running in mixed-mode (‘sm+dm’) those patches
are further decomposed into ‘tiles’ which are then shared
amongst the available OpenMP threads, see figure 8 for an
illustration.

Although this decomposition is generated automati-
cally by WRF, the user can manually specify both the
height/width of the grid of patches as well as the number
of tiles per patch, even when no OpenMP is being used.
(In this case, the single MPI process loops over the tiles
at a high level within the code structure.) The effect of
the choice of domain decomposition is investigated in sec-
tion 4.2. Here we look at using the number of tiles/patch
to tune the size of the arrays within the computation in
order to make more efficient use of the cache architecture
of the AMD processor.

Figure 9 shows the effect on the performance of WRF
built in dm mode when the number of tiles per patch is
increased. As one would expect, the use of tiling has the
greatest effect on the lower PE counts when the patches
and thus array extents are at their largest and therefore
do not fit into cache. So we see that using 16 tiles/patch
on a 64-PE job achieves a speed-up of almost 20% whilst
the best achieved for the 1024-PE job is approximately 5%
with just four tiles/patch.

Since the number of tiles per patch provides a straight-
forward way of varying array dimensions, it is interesting to
see whether the resulting performance variation can be cor-
related with data from the hardware performance counters
(HWPCs). We chose to study the performance of a single
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Figure 9: The percentage reduction in the mean wall-clock
time taken to step the model as a function of the number
of tiles used per patch. Results are shown for a variety of
PE counts for the GNR configuration. Lines are guides to
the eye.
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Figure 10: Performance data for the level-1 and -2 data
caches for the horizontal_diffusion_s routine as the number
of tiles per patch is increased. The bottom plot shows the
total exclusive time spent in horizontal_diffusion_s during
a run. Lines are guides to the eye.
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routine, horizontal_diffusion_s, since profiling showed that
this is the most significant of the non-initialisation rou-
tines and that its performance is sensitive to the number
of tiles/patch. WRF was run on 128 MPI PEs with Cray-
Pat used to collect HWPCs related to cache accesses. The
results relating to the level-1 and level-2 data caches (D1
and D2 for short) are shown in figure 10.

Plot (a) in figure 10 shows that the time spent in
horizontal_diffusion_s reduces most significantly when the
number of tiles/patch is increased from one to four. Look-
ing at plots (e) and (f) it is clear that the number of cache
fills from main memory drops as they are replaced by loads
from D2. This reduces contention (since all four cores must
access main memory over the same bus) and thus improves
the rate at which such fills occur.

The AMD Barcelona chip has three levels of on-chip
cache. The first two levels are private to each of the four
cores while the third is shared between them. The level-
1 (L1) cache has the lowest latency and is 64KB in size,
level-2 (L2) is 512KB and the shared, level-3 (L3) cache is
2MB. L2 acts as a ‘victim cache’ for L1; when data must
be evicted from L1 to make room for new data fetched
from main memory, it is moved to L2. Similarly, L3 acts
as a victim cache for L2.

It seems therefore that as the tile size is reduced, data
that has previously been loaded from main memory to L1 is
increasingly found to be still in L2 when it is next needed.
This can be seen in plot (b) of figure 10 where the hit
ratio (the % of requests for data that can be satisfied) for
D2 increases from just 20% when a single tile is used up to
70+% when nine tiles are used. This is reflected in plot (e)
where we see that the amount of data loaded into D1 from
D2 (as opposed to from system memory) steadily increases
as the number of tiles/patch is increased. Note that the
hit ratio for D1 remains virtually unchanged throughout.

4 Parallel Performance and Scal-
ing
4.1 Scaling of Subroutines

WRF was profiled extensively during this work using the
Cray Performance Analysis Toolkit (CrayPat). An initial
profile of a short WRF simulation (15 minutes) revealed
that routine MODULE_MP_-THOMPSON::QR_ACR_QS
was accounting for approximately 40% of the wallclock
time. However, examining the call tree using the Appren-
tice2 tool revealed that this routine is only involved in ini-
tialisation. It was therefore excluded from further profiles
by removing it from the *.apa file produced when using
CrayPat’s Automatic Profile Analysis (APA) functional-
ity.

Once initialisation is accounted for, WRF’s profile is

G—© ADVECT_SCALAR
G—© MP_THOMPSON

40 ALLOC_SPACE_FIELD_CORE |
G—6 HORIZONTAL_DIFFUSION_S
ADVANCE_UV 1
ADVANCE_W

w
(=1

553
[=}

Time in routine (s)

856 512 768 1024
Number of PEs

Figure 11: The time spent in the six most significant sub-
routines as the number of PEs is increased for WRF run-
ning a 40-minute simulation in dm-mode.

rather ‘flat’ with no one routine accounting for more than
4% of the total run time (for the GNR configuration on
256 PEs). This means there are no obvious candidates for
actual code optimization.

Figure 11 shows the scaling of the most significant rou-
tines as the number of PEs is increased from 256 to 1024.
From this we see that all of the physics-based routines
are scaling well but that ALLOC_.SPACE_FIELD_CORE
is not. This is surprising given that all this routine does is
allocate and then zero the memory required for interpolat-
ing data from one domain onto another. Closer examina-
tion of the profiling data showed that it was the memory
initialisation that was not scaling, despite the fact that the
amount of memory that each PE has to deal with should
decrease as the number of PEs increases. The code au-
thors suggested that the memory initialisation might not
actually be required and supplied a compile-time option for
turning it off. Tests proved that the same answers were ob-
tained when no memory initialisation was performed and
that signifcant performance gains were achieved on higher
core counts — see figure 12.

4.2 Choice of Domain Decomposition

Given a number of PEs, n, on which to execute in dm mode
WRF will, by default, select a factorisation ny.n, = n
where n, and n, are as close as possible to \/n. Here, n,
and n, are the horizontal and vertical dimensions of the
processor grid on which the domain is decomposed. The
choice of this decomposition can affect the performance
of the simulation since it changes the dimensions of the
rectangular patches (and hence of the arrays) that each
PE works on and also changes the length of the boundaries
across which PEs must exchange halo data. Users may
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Figure 12: The effect on the performance of the mixed-
mode binary when memory initialisation is removed from
the ALLOC_SPACE_FIELD_CORE routine. Lines are
guides to the eye.

explicitly select a decomposition by setting the nproc_z and
nproc_y fields in the input namelist file.

Predicting the effect on performance is complex but it
is straightforward to run a few experiments and select the
best domain decomposition for the model to be run. Fig-
ure 13 shows the results of doing this for the GNR config-
uration on 256 and 504 PEs on HECToR, . Although the
number of factorisations of 256 is limited, we can still find
a case (8 x 32) that improves on the performance of the
default decomposition by approximately 10%. On 504 PEs
where the patches are much smaller, the effects are much
less dramatic. This suggests that changing the shape of
the patches affects compute speed more than it does the
rate of halo exchanges.

5 Input/Output Performance

In all that we have discussed so far, the benchmarking runs
have been configured such that history data is not written
out to file. However, this is unrealistic since the history
data is actually the primary product of any scientifically-
meaningful job. In this section we look at ways of mitigat-
ing the effect of outputting this data on the performance
of WRF.

5.1 Effect on Performance of Writing His-
tory Data

Thanks to its well-defined I/O API, WRF has several dif-
ferent implementations of its ‘I/O layer.” In this work
we have used two, netCDF-based implementations due to
the popularity of that format in the environmental-science

G—O 256 cores
504 cores b

Default decomposition

Wall-clock seconds per time-step
o

nproc_y

Figure 13: The variation in performance of WRF running
the GNR configuration on 256 and 504 PEs as the x-y
decomposition of the PE grid is varied. Lines are guides
to the eye.

community: the default, serial netCDF layer and the layer
built upon the pNetCDF library; a version that supports
parallel I/O [4].

On HECToR , the netCDF library is available as a mod-
ule while the pNetCDF library used in some of the tests
was built as part of this work. A netCDF file is created by
WREF to contain the history for each domain in the model.
Therefore, the GNR configuration produces three netCDF
history files with the largest being that for domain 3 since
that contains the most grid points (table 1). A single frame
of history data is 1.63 GB for the GNR configuration.

The default approach to outputting a distributed array
in WRF is to gather all of the data onto the master PE us-
ing a call to MPI_Gatherv, reconstruct the array and then
write it to disk using the standard, serial netCDF library.
Finally, the number of bytes written to disk is broadcast
back to all PEs which means that all PEs block until the
master has completed the write. The time taken to do all
of this for each domain is written to standard output and
it is this figure that has been used in the work here. Since
it includes the time taken by the call to MPI_Gatherv, it
is not strictly the time taken to write the data to disk but
it is the amount of wall-clock time ‘lost” due to doing the
output.

Figure 14 shows that the time taken to write a single
frame of history for the GNR configuration is approxi-
mately 26 seconds and is largely independent of the num-
ber of cores used by the simulation over the range displayed
(32-1024). On 1024 cores with the best-performing wrf bi-
nary, it takes 2.14 wall-clock seconds to integrate the model
forward in time by one time step. Since the model time-
step here is 18 seconds, this means that it takes 428 wall-
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Figure 14: The mean time taken to write a single history
frame for the GNR configuration as a function of job core
count. Values represent the mean of at least four separate
frame outputs and error bars show the associated standard
error.

clock seconds to simulate one model hour. The time taken
to write one history frame is 6.1 percent of this, mean-
ing that outputting the history every model hour will add
six percent to the job time. Given the dependence of the
method on MPI_Gatherv and the absence of any scaling in
figure 14, this percentage will only increase on higher PE
counts/larger model domains and we look at strategies for
coping with this in the following sections.

5.2 Striping

The Cray XT series makes use of the Lustre distributed,
parallel file-system which has hardware support for doing
parallel I/O. HECToR is configured with 72 Object Stor-
age Targets (OSTs; effectively the disks where the data
resides) and files may be striped across these to improve
performance.

Using CrayPat to examine the I/O performance of WRF
revealed that writes to disk are generally done four MB
at a time. Since the default I/O scheme in WRF uses
a single processor to write to the (large) history file for
each domain, the Cray rule of thumb (from training course
material) of using one OST per MB of a file would indicate
that four OSTs will be optimal. However, although the
amount of data written for a frame is of the order of 0.5
GB for each GNR domain, this data is made up of many
different variables, all of which are written separately. In
fact, instrumenting the source code revealed that a write
of a single frame for one GNR domain involved 160 calls
to the netCDF write routine. This is clearly not optimal
for achieving good I/O performance unless the netCDF
library performs some sort of caching.

Mean time to write frame (s)

3 : : G—o time(D1, Stripe size)
m-a time(D1, No. of OSTs)
[ G—o time(D2, Stripe size) )
2 G- time(D2, No. of OSTs)
r time(D3, Stripe size) 1
1 time(D3, No. of OSTs)
0
2 4 6 8

Stripe size (MB)/Number of OSTs

Figure 15: The mean time taken in calls to the netCDF
library to write a single history frame for the GNR con-
figuration as a function of both stripe size and number of
OSTs. Values represent the mean of at least four separate
frame outputs and error bars show the associated standard
error.

In figure 15 we show the results obtained for the time
spent in the WRF I/O-layer wrapper for the netCDF write
operation (ext_ncd_write_field routine) as a function of both
the stripe size and number of OSTs used for the output
files. These results confirm that the write performance is
unaffected by either the stripe size or the number of OSTs
used, as we would expect if the individual writes are small.
Note that obtaining consistent timings for this quantity
proved very difficult since large variations were frequently
seen. e.g. although the mean time to write domain 3 is
typically seven seconds, times of 30 seconds were often
seen and one write of the domain took 97 seconds. Pre-
sumably such exceptions are due to resource contention.
These cases were excluded from the mean values shown in
figure 15.

5.3 pNetCDF

As mentioned earlier, WRF comes with an I/O layer im-
plemented with pNetCDF — an extension of the netCDF
library that supports parallel I/O. Unfortunately WRF is
written such that when it is built to use this layer, every
PE writes its part of the data to disk. Each of these writes
is then for a relatively small amount of data and the large
number of writers accessing a single file creates contention.
It is not surprising therefore that this layer does not per-
form as well as the default, serial netCDF form.

When tested on 256 cores of HECToR , the average time
(from two model runs, each writing three frames of his-
tory) taken to write a frame of history for Domain 3 was
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Figure 16: The mean time ‘lost’ by each of the compute
nodes when writing a single history frame. WRF was run
with 1024 compute PEs plus the specified number of 10
servers.

11.5 seconds using the default I/O layer. When using the
pNetCDF layer, this increased to 102.7 seconds.

It appears therefore that, as implemented, the pNetCDF
layer in WRF is best suited to the case where the amount
of memory available to any individual PE is insufficient to
permit the gathering of data to a single writer.

5.4 Asynchronous I/0

As described in section 5.1, in the default I/O layer all
of the PEs must wait for the master PE to finish writing
the history data to disk before proceeding with the com-
putation. A useful optimization therefore is to set aside
one or more PEs for dealing exclusively with I/O. Once
the ‘compute’ PEs have transmitted their data to these
‘IO servers’ they are free to continue with the calculation
without waiting for the data to actually be written to disk.
WREF contains such functionality with the user able to se-
lect how many PEs to dedicate to I/O at run time through
the ‘namelist_quilt’ section of the input file.

We tested the performance of this functionality on HEC-
ToR for a job consisting of 1024 compute PEs and the
results are shown in figure 16. Essentially, use of the 10
servers reduces the time ‘lost’ by the compute PEs in writ-
ing a single frame of history from 30 to 19 seconds. The
optimum number of IO servers is 12 so that there are ap-
proximately 85 compute PEs per server.

With the introduction of 1O servers the bottleneck as-
sociated with doing I/O is no longer the actual sending of
data to disk but is instead the gathering of data from the
compute PEs onto the IO servers (the actual time spent
writing remains unchanged but no longer delays the com-
pute PEs). In the WRF code, each IO server is associated

Time to write one frame (s)

10

Consec, custom
Consec. default

No quilting
RR. default

Figure 17: The effect of process placement (default or
custom) and compute-PE to I0-server assignment (round-
robin or consecutive) on the mean time ‘lost’ by the com-
pute nodes when writing a single history frame. WRF was
run with 128 compute PEs plus four IO servers.

with a number of compute PEs and together these PEs
are mapped into an MPI communicator. The gathering
of data from the compute PEs onto the IO server is then
implemented using an MPI_Gatherv across this communi-
cator. WRF is implemented such that the last n;o PEs in
MPI_.COMM_WORLD are taken to be the 10O servers and
compute PEs are then associated with these 10 servers in
round-robin fashion.

By default, MPI tasks on the Cray XT are mapped to
compute nodes in SMP style and consequently the WRF
IO servers all end up packed together on a handful of nodes.
This is not ideal given that all of the compute PEs must
send their data to these 10 servers — a great deal of network
contention will result. The situation can be improved by
specifying a custom mapping of MPI tasks to nodes and
we have experimented with using this to distribute the 10
servers evenly amongst the nodes.

The round-robin association of compute PEs with 10
servers also has performance consequences given the cur-
rent trend in MPP machines towards ‘fat’ nodes; the num-
ber of cores per compute node is steadily increasing. On
HECTOoR it is currently four but is set to increase to 24
in June 2010. Cray’s Message-Passing Toolkit (MPT) is
optimized for such an architecture. For example, intra-
node MPI communication is done via shared memory so
the associated data never has to travel via the compute
node interconnect. It therefore seems sensible to capitalize
on this by associating consecutive compute PEs with an
IO server with the result that, in general, all of the com-
pute PEs on a single compute node will be sending their
data to the same 10 server giving MPT the opportunity
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Figure 18: The mean time ‘lost’ by the compute nodes

when writing a single history frame for 516 compute PEs
on Rosa.

to aggregate the communications.

Figure 17 shows the effects on I/O performance of chang-
ing the process placement and compute-PE to IO-server
assignment. It is clear from these results that for a job
of this modest size, the choice of process placement and
mapping has very little effect on the time taken to write
a frame of history. That said, changing the assignment of
compute-PEs to I0-servers from round-robin to consecu-
tive does have a small, beneficial effect.

In order to test these conclusions we performed further
runs on a more realistic, larger PE count of 516 on Rosa
and the results are shown in figure 18. Comparing the red
and black curves, we see that specifying a custom process
placement does have a beneficial effect when six or 12 10
servers are used. This is possibly because, with the default
process placement, these cases would consist of having one
or two sockets occupied solely by IO servers. Moving on
to the assignment of compute PEs to 10 servers, the green
and red curves show that assigning consecutive blocks of
compute PEs to 10 servers gives, in general, slightly better
performance. However, as with the smaller test job, the
variations in performance given by these considerations are
small compared with the performance improvement gained
by having any 1O servers at all.

6 Conclusions

We have considered various aspects of the performance
of the WRF model on a Cray XT4 with four cores per
node and an XT5 with 12 cores per node. Building WRF
in mixed (MPI+OpenMP) mode was found to give the
best absolute and parallel-scaling performance and in fact
proved to be essential in trying to achieve the same per-

formance on the fatter nodes of the XT5 as was obtained
on the XT4.

The memory-bandwidth aspects of the performance re-
duction seen on the XT5 system were investigated by
systematically under-populating the nodes used by a job
and collecting hardware performance counter data. This
showed that memory bandwidth remains a bottleneck even
when nodes are populated with just one task per socket.
Unfortunately, the current trend towards chips with in-
creasing numbers of cores will only exacerbate this problem
for all codes that are memory-bandwidth limited.

When an application is up against the ‘memory wall’,
it becomes even more important to ensure that it makes
efficient use of on-chip cache. WRF makes use of OpenMP
threads by further decomposing a PE’s patch of the model
domain into tiles that are shared amongst them. This
functionality is available even when WRF is not built with
OpenMP support and therefore allows the user to tune the
size of the arrays involved in the computation. We found
that such tuning significantly improved the hit rate of the
D2 cache (from 20 up to 70+%) and in so doing could im-
prove WRF’s performance by ~5% on 1024 PEs through
to ~20% on 64 PEs.

Ultimately, any environmental-science code must write
results to disk and do so as quickly as possible. We have ex-
perimented with the various WRF I/0 and Lustre config-
uration options. Improving the performance of the writes
themselves proved unsuccessful since they consist of a large
number of small writes, one for each variable. It may
be productive to experiment with the caching used in the
netCDF library in order to tackle this. Of the WRF I/0
options, the ‘I/O quilting’ functionality proved the most
successful. This hides the actual time taken to write the
data to disk by using dedicated ‘IO server’ PEs. The time-
limiting step is then the gathering (via MPI_Gatherv) of
data from the compute PEs to the IO servers. Experi-
ments in altering the way in which compute PEs are as-
signed to IO servers and in the mapping of PEs to compute
nodes achieved only small improvements compared to the
improvement obtained by introducing any 10 servers. It
is likely that the performance of the data-gathering stage
could be improved through using MPI point-to-point com-
munications rather than the global gathers that the current
implementation performs. We plan to experiment with this
in the future.
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