@ Science & Technology
Facilities Council

Configuring and Optimizing
the Weather Research and
Forecast Model on the Cray XT

Andrew Porter and Mike Ashworth
Computational Science and Engineering Department
STFC Daresbury Laboratory

andrew.porter@stfc.ac.uk

24th May 2010
Cray User Group, Edinburgh



@ Science & Technology
Facilities Council

Overview

Introduction

Machines

Benchmark Configuration

*Choice of Compiler/Flags

*MPI Versus Mixed Mode (MPI/OpenMP)
‘Memory Bandwidth Issues

*Tuning Cache Usage

Input/Output

« Default scheme
 pNetCDF
 |/O servers & process placement



Introduction - WRF

* Regional- to global-scale model for

research and operational weather-
forecast systems

* Developed through a collaboration
between various US bodies (NCAR,
NOAA...)

* Finite difference scheme + physics
parametrisations

* F90 [+ MPI] [+ OpenMP]
» 6000 registered users (June 2008)



Introduction — this work

WRF accounts for significant fraction of
usage of UK national facility (HECToR)

Aim here is to investigate ways of
ensuring this use is efficient

Mainly through (the many) configuration
options

Code optimization when/if required



@ Science & Technology
Facilities Council

« HECToR — UK national academic
supercomputing service
— Cray XT4

— 1x AMD Barcelona 2.3GHz quad-core chip per
compute node

— SeaStar2 interconnect

 Monte Rosa — Swiss National
Supercomputing Service (CSCS)
— Cray XT5

— 2xX AMD Istanbul 2.4GHz hexa-core chips per
compute node

— SeaStar2 interconnect

Machines Used



@ Science & Technology
Facilities Council

Benchmark Configuration
“Great North Run”

Three nested
domains with
two-way
feedback
between them:

D1 =356 x 196
D2 =319 x 322
D3 =391 x 328

D3 gives 1Km-
resolution data
over Northern
England.




@ Science & Technology
Facilities Council

Choice of Compiler/Flags

e HECTOR offers four different compilers!
o Portland Group (PGl)
o Pathscale (recently bought by Cray)
e Cray
e Gnu (gcc + gfortran)

e WWRF can be built in serial, shared-

memory (sm), distributed-memory (dm)
and mixed (dm+sm) modes...



)

Science & Technology
Facilities Council

Number of steps/wall-clock hour

1000

750

Initial Compiler Comparison for

dm (MP!) build

512
Number of cores

1024



)

Science & Technology

Facilities Council EffeCt Of EXtra FlagS

1000 .................... - '., ..........

& -® PGI default
A—a PGI opt

& -® PS default

..................................................................................................

A—A PS opt

Number of steps/wall-clock hour

0 ] : ] : ] : I
0 256 512 768 1024

Number of cores



() sipee s ety Compiler notes |

o 1.1K -> 1.2K time-steps/wall-clock hour on 1024
cores from increasing optimization with PGl

o -O3 —fast to —O3 —fastsse —Mvect=noaltcode
—Msmartalloc —Mprefetch=distance:8 -Mfprel

e 1.2K -> 1.3K by re-building to remove array
init'n prior to each inter-domain feedback stage

e PS with extra optimization flags only very
slightly slower than PGl

o Gnu (default) is 25% slower than PGl (default)
on 256 cores but only 10% slower on 1024

e Deficit much larger when extra optimization
turned on for PG



/ﬂ\ S &T hnol
CIence ecnno Ogy
R uncil

Verification of Results

o Compare

T at 2m for
6 hr run of
default &
optimized

| Dbinaries

| o Max. diff is

| only ~0.1K




)

Science & Technology

Facilities Council Mixed mode versus dm on
XT4 and XT5

- | —& HECToR., dm+sm E
e—o HECToR, dm ; : :
e—o Rosa, dm+sm

3000 | o i — S ey

Rosa, dm+sm, 2 MPI PEs per node

== 2000

1000

Number of time-steps per wall-clock hour

|

| | |

0 | |

0 512 1024 1536 2048 2560 3072 3584 4096

Number of cores



@ Science & Technology
Facilities Council

Compiler notes Il

e PS dm+sm binary faster than PGl
version

e dm+sm faster than dm on 512+ cores
e Reduced MP| communications
e Better use of cache
o WRF generally faster on 2.3 GHz quad-

core XT4 than on 2.4 GHz hexa-core
XT5

e Only dm+sm version comes close to
overcoming the difference



)

1

1

Time (s)

Science & Technology
Facilities Council

Under-populating XT5 nodes

| T T I T T
40 . = S o
I &= D2 refills (x10”)
2 i D2 refill rate (M/s) : :
~ D1 ICﬁllb(,\lOg) ..................... ....................
00| | | & DI refill rate (M/s) : :
80 i ( .......................................... ;\ .........................................................
| ERTRRRHESINUS. SSR—— ...............................................................
: : : : ® & & & 6 @
. 1 : | . | . | O | . | . | . | . |
4 6 8 10 12 72 . 6 8 10 12
Number of cores per node Number of cores per node

* De-populating steadily reduces time in both
user and MPI code

 Rate of cache fills for user code steadily
iIncreases: ‘memory wall’



Improving cache usage

o Efficient use of large, on-chip memory cache
IS very important in getting high performance
from x86-type chips

e Under MPI, WRF gives each process a 'patch’
to work on. These patches can be further
decomposed into 'tiles' (used by the OpenMP
implementation)

e.g. decomposition of
domain into four
patches with each patch
containing six tiles:




)

Science & Technology
Facilities Council

Performance variation with tiling

20 | | |
15 @—® 64 cores ]
—o 128 "
O *—o 256 "
2 052 " .
— —o 1024 "
~
Q
£ 10 ]
=
3
o, i
=
5 _
. | | g
0 12 16

Number of tiles

20



Notes on tiling performance

e Most effect on low core-count jobs
because these have large patches and
thus large array extents

e In this case, still get ~5% speed-up by
using four tiles for both 512- and 1024-
core MPI jobs

e HWPC data shows that improvement is
largely due to better use of L2 ‘victim’
cache (20% hit rate => 70+% hit rate)



@ Science & Technology
Facilities Council

/O Considerations

* All benchmark results presented so far
carefully exclude effects of doing I/O

« But, MUST write data to file for job to be
scientifically useful...

« Data written as ‘frames’
— a snapshot of the system at a given point in
time
— One frame for GNR is ~1.6GB in total but

this is spread across 3 files (1 per domain)
and many variables



Science & Technology

i Approaches to I/O in WRF

Default: data for whole model domain
gathered on ‘master’ PE which then writes
to disk

All PEs
block while
master Is
writing
Does not
scale

Memory |
limitations % | 2.;6 | siz | 7(;8 | 1024

Number of cores

.........................................................................................................................................................

2
o)
T

12 PSP PP ST URUPPPN

e
T T

Mean time to write one history frame (s)

.........................................................................................................................................................

=
T




&zt Parallel netCDF (pNetCDF)
» Uses the pNetCDF library from Argonne

* Every PE writes

» Current method of last resort when
domain won't fit into memory of single PE

— Will become more of a problem as model
sizes and numbers of cores/socket increase

¢ Slow
— Lots of small writes

— e.g. 256-core job, mean time to write domain
3 with default method = 12s. Increases to
103s with parallel netCDF!



/0 Quilting

Use dedicated ‘I/O servers’ to write data

Compute PEs free to continue once data
sent to I/O servers

No longer have to block while data is
sent to disk

Number of I/O servers may be tuned to
minimise time to gather data

Only ‘master’ I/O server currently writes
— Domain must still fit into memory




@ Science & Technology
Facilities Council

N
~

e How best t

L

/\

L

ﬂ
O Io\lo\lo\lolo o oo

//‘
fl

N

/0

.
L

servers?

» By default, all I/O servers end up grouped
together on a few compute nodes

Process mapping

[ ] Compute process

B 1/0 process

ek

C__ > MPI Communicator

OO &) d ) E

:

:

Oy oy oy o
o oo & o a

I O ) ) E
L\ S\ 2\ A\

[]
[]

[]
[]

OO0 o oo H

[]
[]
[]

assign compute PEs to I/O



)

Science & Technology
Facilities Council

(s)

fo—
S

Time lost to writine history data

-

/O quilting performance

3() T T : T
&—e Default process placement i
& Round-robin process placement
25 w5 ara s aia e aaln s a el a s aa i a e A e a e e en e e ale"e e e s A s a e e s a e s n e s na s e e e aa e a e n e e e e e e e e e e e
2() ................
l 5 ...................................................................................................................................... . .................
10 ' : ' : ' 5
0 5 10 15

Number of 10 servers



@ Science & Technology
Facilities Council

Effect of process mapping

Time to write frame (s)

&€ Consec. default
& Consec, custom
= RR. custom

10() 2! 6 8

Number of 10 servers

b2



Conclusions

e PGl best for dm build, PS for sm+dm

e sm+dm scales best; performs much better
than dm on fatter nodes of XT5
e Less MPI communication
e Better cache usage

e Codes like WRF that are memory-
bandwidth bound are not well-served by
proliferation of cores/socket

e |/O quilting reduces time lost to I/O and is
Insensitive to process placement/mapping



Acknowledgements

« EPSRC and NAG, UK for funding

« Alan Gadian, Ralph Burton (University
of Leeds) and Michael Bane (University
of Manchester) for project direction

» John Michelakes (NCAR) for problem-
solving assistance and advice

andrew.porter@stfc.ac.uk



