
Configuring and Optimizing
the Weather Research and
Forecast Model on the Cray XT

Andrew Porter and Mike Ashworth
Computational Science and Engineering Department
STFC Daresbury Laboratory

andrew.porter@stfc.ac.uk

24th May 2010
Cray User Group, Edinburgh

• Introduction
• Machines
• Benchmark Configuration
• Choice of Compiler/Flags
• MPI Versus Mixed Mode (MPI/OpenMP)
• Memory Bandwidth Issues
• Tuning Cache Usage
• Input/Output
•  Default scheme
•  pNetCDF
•  I/O servers & process placement

Overview

Introduction - WRF

•  Regional- to global-scale model for
research and operational weather-
forecast systems

•  Developed through a collaboration
between various US bodies (NCAR,
NOAA...)

•  Finite difference scheme + physics
parametrisations

•  F90 [+ MPI] [+ OpenMP]
•  6000 registered users (June 2008)

Introduction – this work

•  WRF accounts for significant fraction of
usage of UK national facility (HECToR)

•  Aim here is to investigate ways of
ensuring this use is efficient

•  Mainly through (the many) configuration
options

•  Code optimization when/if required

Machines Used

•  HECToR – UK national academic
supercomputing service
–  Cray XT4
–  1x AMD Barcelona 2.3GHz quad-core chip per

compute node
–  SeaStar2 interconnect

•  Monte Rosa – Swiss National
Supercomputing Service (CSCS)
–  Cray XT5
–  2x AMD Istanbul 2.4GHz hexa-core chips per

compute node
–  SeaStar2 interconnect

Benchmark Configuration
“Great North Run”

Three nested
domains with
two-way
feedback
between them:
D1 = 356 x 196
D2 = 319 x 322
D3 = 391 x 328

D3 gives 1Km-
resolution data
over Northern
England.

Choice of Compiler/Flags

  HECToR offers four different compilers!
  Portland Group (PGI)
  Pathscale (recently bought by Cray)
  Cray
  Gnu (gcc + gfortran)

  WRF can be built in serial, shared-
memory (sm), distributed-memory (dm)
and mixed (dm+sm) modes...

Initial Compiler Comparison for
dm (MPI) build

Effect of Extra Flags

Compiler notes I

  1.1K -> 1.2K time-steps/wall-clock hour on 1024
cores from increasing optimization with PGI
  -O3 –fast to –O3 –fastsse –Mvect=noaltcode

–Msmartalloc –Mprefetch=distance:8 -Mfprel
  1.2K -> 1.3K by re-building to remove array

init'n prior to each inter-domain feedback stage
  PS with extra optimization flags only very

slightly slower than PGI
  Gnu (default) is 25% slower than PGI (default)

on 256 cores but only 10% slower on 1024
  Deficit much larger when extra optimization

turned on for PGI

Verification of Results

  Compare
T at 2m for
6 hr run of
default &
optimized
binaries

  Max. diff is
only ~0.1K

Mixed mode versus dm on
 XT4 and XT5

Compiler notes II

  PS dm+sm binary faster than PGI
version

  dm+sm faster than dm on 512+ cores
  Reduced MPI communications
  Better use of cache

  WRF generally faster on 2.3 GHz quad-
core XT4 than on 2.4 GHz hexa-core
XT5
  Only dm+sm version comes close to

overcoming the difference

Under-populating XT5 nodes

•  De-populating steadily reduces time in both
user and MPI code

•  Rate of cache fills for user code steadily
increases: ‘memory wall’

Improving cache usage

  Efficient use of large, on-chip memory cache
is very important in getting high performance
from x86-type chips

  Under MPI, WRF gives each process a 'patch'
to work on. These patches can be further
decomposed into 'tiles' (used by the OpenMP
implementation)
e.g. decomposition of
domain into four
patches with each patch
containing six tiles:

Performance variation with tiling

Notes on tiling performance

  Most effect on low core-count jobs
because these have large patches and
thus large array extents

  In this case, still get ~5% speed-up by
using four tiles for both 512- and 1024-
core MPI jobs

  HWPC data shows that improvement is
largely due to better use of L2 ‘victim’
cache (20% hit rate => 70+% hit rate)

I/O Considerations

•  All benchmark results presented so far
carefully exclude effects of doing I/O

•  But, MUST write data to file for job to be
scientifically useful…

•  Data written as ‘frames’
– a snapshot of the system at a given point in

time
– One frame for GNR is ~1.6GB in total but

this is spread across 3 files (1 per domain)
and many variables

Approaches to I/O in WRF

•  Default: data for whole model domain
gathered on ‘master’ PE which then writes
to disk

•  All PEs
block while
master is
writing

•  Does not
scale

•  Memory
limitations

Parallel netCDF (pNetCDF)

•  Uses the pNetCDF library from Argonne
•  Every PE writes
•  Current method of last resort when

domain won’t fit into memory of single PE
– Will become more of a problem as model

sizes and numbers of cores/socket increase
•  Slow

– Lots of small writes
– e.g. 256-core job, mean time to write domain

3 with default method = 12s. Increases to
103s with parallel netCDF!

I/O Quilting

•  Use dedicated ‘I/O servers’ to write data
•  Compute PEs free to continue once data

sent to I/O servers
•  No longer have to block while data is

sent to disk
•  Number of I/O servers may be tuned to

minimise time to gather data
•  Only ‘master’ I/O server currently writes

– Domain must still fit into memory

Process mapping

•  How best to assign compute PEs to I/O
servers?

•  By default, all I/O servers end up grouped
together on a few compute nodes

Compute process

I/O process

MPI Communicator

I/O

I/O quilting performance

Effect of process mapping

Conclusions
  PGI best for dm build, PS for sm+dm
  sm+dm scales best; performs much better

than dm on fatter nodes of XT5
  Less MPI communication
  Better cache usage

  Codes like WRF that are memory-
bandwidth bound are not well-served by
proliferation of cores/socket

  I/O quilting reduces time lost to I/O and is
insensitive to process placement/mapping

Acknowledgements

•  EPSRC and NAG, UK for funding
•  Alan Gadian, Ralph Burton (University

of Leeds) and Michael Bane (University
of Manchester) for project direction

•  John Michelakes (NCAR) for problem-
solving assistance and advice

andrew.porter@stfc.ac.uk

