
The Automatic
Library Tracking

Database
Mark Fahey

National Institute for Computational Sciences
 Scientific Computing Group Lead

May 24, 2010

Cray User Group
May 24-27, 2010

Contributors

• Ryan Blake Hitchcock
• Patrick Lu
• Nick Jones
• Bilel Hadri

Cray User Group, May 24-27, 2010

Outline

• NICS/OLCF
• Motivation for tracking library use
• Design/Implementation
• Results
• Conclusions

Cray User Group, May 24-27, 2010

National Institute for
Computational Sciences
University of Tennessee
•  NICS is the latest NSF HPC center
•  Kraken #3 on Top 500

–  1.030 Petaflop peak; 831.7 Teraflops Linpack

4

First academic PF

Cray User Group, May 24-27, 2010

Kraken XT5

Kraken
Compute processor type AMD 2.6 GHz Istanbul

Compute cores 99,072

Compute sockets 16,512 hex-core

Compute nodes 8,256

Memory per node 16 GB (1.33 GB/core)

Total memory 129 TB

Cray User Group, May 24-27, 2010

Oak Ridge Leadership
Computing Facility

6

• JaguarPF #1 on Top 500
– 2.331 Petaflops peak, 1.759 Petaflops Linpack

• Center (40,000 ft2)

Cray User Group, May 24-27, 2010

JaguarPF XT5

JaguarPF
Compute processor type AMD 2.6 GHz Istanbul

Compute cores 224,256

Compute sockets 37,376 hex-core

Compute nodes 18,688

Memory per node 16 GB (1.33 GB/core)

Total memory 362 TB

Cray User Group, May 24-27, 2010

Motivation
•  Issues

– Centers support >100 software packages
–  Supporting multiple compilers (>=3)
– Multiple versions of each library

• Want to
–  have the software users need; “stay ahead” of user requests
–  change default versions as needed
–  clean up; keep list of software presented to users reasonable

• How do
– we know when to change defaults (to newer versions)
– we know when we can get rid of old versions
– we find out who is using

• deprecated software?
• software with bugs?
• software funded by NSF/DOE?

Cray User Group, May 24-27, 2010

Software maintained on Kraken

Objective

• Track libraries that are linked into executables
• Track executables run (and by inference) how

often are the libraries used?
– Of course, not necessarily true

Cray User Group, May 24-27, 2010

Assumptions/Requirements

• Must support statically linked executables
– Shared library support desirable as well

• Have as little impact on user as possible
– Lightweight solution

• No runtime increase
• Only link time and job launch have marginal increase in time

– Do not change user experience
• Linker and job launcher work as expected

• Tracking libraries
– Not function calls

• Only libraries actually linked into executable
Cray User Group, May 24-27, 2010

Design

• Wrap binutils “ld” and job launcher “aprun”
–  This allows us to track libraries at link time
–  This allows us to track executables that we can tie back to the

actually link and thus the libraries

•  ld - Intercept link line
– Update tags table
– Create altd.o to link into executable
– Call real linker (with tracemap option)
– Use output from tracemap to find libraries linked into executable
– Update linkline table
–  (Could stop here)

• aprun- Intercept job launcher
–  Pull information from altd section header in executable
– Update jobs table
– Call real job launcher

Cray User Group, May 24-27, 2010

altd.o

• Assembly code inserted into binaries

Cray User Group, May 24-27, 2010

MySQL database

• 3 tables: tags, linkline, and jobs

–  Tags – entry for every link executed
•  ld wrapper does 2 steps

– First pass, entry added to include user name, date stamp
– On the final pass of the ld wrapper, previous entry is updated with

the linkline table “id”
• This gives first count of library usage => # times used in link

–  Linkline – entry for each unique link line
•  Inserted if new on 2nd pass of ld wrapper

–  Jobs – entry for each executable launched
• The “tag id” and “build machine” is pulled from the binary and stored
• This table gives us another way to count library “usage”

– Usage => how many times code was run

Cray User Group, May 24-27, 2010

tags table

tag_id linkline_id username exit_code link_date

91126 14437 user1 0 2010-04-28

91127 0 user2 -1 2010-04-28

91128 14435 user3 0 2010-04-28

91129 6835 user2 0 2010-04-28

91130 14438 user4 0 2010-04-28

91131 14439 user1 0 2010-04-28

91132 14439 user1 0 2010-04-28

Cray User Group, May 24-27, 2010

linkline table
linkline
_id

linkline

14437 ../bin/cg.B.4 /usr/lib/../lib64/crt1.o /usr/lib/../lib64/crti.o
/opt/gcc/4.4.2/snos/lib/gcc/x86_64-suse-linux/4.4.2/crtbeginT.o
/sw/xt/tau/2.19/cnl2.2_gnu4.4.1/tau-2.19/craycnl/lib/libTauMpi-gnu-mpi-pdt.a
/sw/xt/tau/2.19/cnl2.2_gnu4.4.1/tau-2.19/craycnl/lib/libtau-gnu-mpi-pdt.a
/usr/lib/../lib64/libpthread.a /opt/cray/mpt/4.0.1/xt/seastar/mpich2-gnu/lib/libmpich.a
/opt/cray/pmi/1.0-1.0000.7628.10.2.ss/lib64/libpmi.a /usr/lib/alps/libalpslli.a
 /usr/lib/alps/libalpsutil.a /opt/xt-pe/2.2.41A/lib/snos64/libportals.a […. gcc 4.4.2 libraries …]
/usr/lib/../lib64/libc.a /usr/lib/../lib64/crtn.o

14438 highmass3d.Linux.CC.ex /usr/lib64/crt1.o /usr/lib64/crti.o
/opt/pgi/9.0.4/linux86-64/9.0-4/lib/trace_init.o /usr/lib64/gcc/x86_64-suse-linux/4.1.2/crtbeginT.o
/sw/xt/hypre/2.0.0/cnl2.2_pgi9.0.1/lib//libHYPRE.a
/opt/cray/pmi/1.0-1.0000.7628.10.2.ss/lib64/libpmi.a /usr/lib/alps/libalpslli.a /usr/lib/alps/libalpsutil.a
/opt/xt-pe/2.2.41A/lib/snos64/libportals.a /usr/lib64/libpthread.a /usr/lib64/libm.a
/usr/local/lib/libmpich.a [… pgi 9.0.4 libraries …]
/usr/lib64/librt.a /usr/lib64/libpthread.a /usr/lib64/libm.a
/usr/lib64/gcc/x86_64-suse-linux/4.1.2/libgcc_eh.a
/usr/lib64/libc.a /usr/lib64/gcc/x86_64-suse-linux/4.1.2/crtend.o /usr/lib64/crtn.o

14439 probeTest /usr/lib/../lib64/crt1.o /usr/lib/../lib64/crti.o
/opt/gcc/4.4.2/snos/lib/gcc/x86_64-suse-linux/4.4.2/crtbeginT.o
/opt/cray/mpt/4.0.1/xt/seastar/mpich2-gnu/lib/libmpich.a
/opt/cray/pmi/1.0-1.0000.7628.10.2.ss/lib64/libpmi.a /usr/lib/alps/libalpslli.a /usr/lib/alps/libalpsutil.a
/opt/xt-pe/2.2.41A/lib/snos64/libportals.a /usr/lib/../lib64/libpthread.a
[… gcc 4.4.2 libraries …] /usr/lib/../lib64/libc.a /usr/lib/../lib64/crtn.o

Cray User Group, May 24-27, 2010

jobs table

run_inc tag_id executable usern
ame

run_date job_launc
h_id

build_ma
chine

 144091 91126 /nics/b/home/user1/
NPB3.3/bin/cg.B.4

user1 2010-04-28 548346 kraken

144099 91131 /nics/b/home/user1/
probeTest

user1 2010-04-28 548357 kraken

144102 91132 /nics/b/home/user1/
probeTest

user1 2010-04-28 548357 kraken

144179 91128 /lustre/scratch/user3/CH4/
vasp_vtst.x

user3 2010-04-28 548444 kraken

144192 91128 /lustre/scratch/user3/CH4/
vasp_vtst.x

user3 2010-04-28 548488 kraken

144356 91128 /lustre/scratch/user5/src/
CH4/vasp_vtst.x

user5 2010-04-29 548638 kraken

Cray User Group, May 24-27, 2010

Cray User Group, May 24-27, 2010

Results

• Most used libraries provided by Cray

Rank Kraken JaguarPF

1 CrayPAT/5.0 CrayPAT/4.x

2 Libsci/10.4 PETSc/3.0

3 PETSc/3.0 PAPI/3.6

4 FFTW/3.2 ACML/4.2

5 HDF5/1.8 HDF5/1.8

3 months of Kraken data, JaguarPF data is for all of 2009

Cray User Group, May 24-27, 2010

Results

Rank Kraken JaguarPF

1 SPRNG/2.0b SZIP/2.1

2 PETSc/2.3 HDF5/1.6

3 Iobuf/beta Trilinos/9

4 TAU/2.19 PSPLINE/1.0

5 SZIP/2.1 NetCDF/3.6

• Most used libraries provided by centers

3 months of Kraken data, JaguarPF data is for all of 2009

Cray User Group, May 24-27, 2010

Results
• Most used applications on Kraken (last 3 months)

Rank Library # instances

1 interpo** 60,032
2 namd* 8,389
3 amber* 5,784
4 chimera 4,000
5 mpiblast 2,917

Absolute number of executions, not CPU hours!
And only “launched jobs”.

Rank Library # instances

1 arps 11,844

2 amber 6,789

3 namd 6,450

4 chimera 4,473
…
8 mpiblast 2,919

ALTD From Torque job scripts

•  Typically job script mining counts more because includes staff and matches strings that can
appear in multiple places; and ALTD will miss some early after being turned on
•  ALTD counted more for namd because we catch it each time it is launched,
 the scripts searching for namd in job scripts can’t tell if it is inside a loop.

* Counting both center-provided and user-built applications
** Compiled on athena and run on Kraken

Cray User Group, May 24-27, 2010

Results

• Least used libraries on JaguarPF for 2009

0 Usage Libraries

fftpack

0 Usage Libraries
+Version

tau/2.17

hdf5 (various parallel
versions)

fftw/3.2 (locally built)

acml/4.0.1

Clearly, supporting fftpack can stop
Old versions of tau and acml, for example, can be removed.
Locally built hdf5 and fftw/3 libraries are not being used because there is a
 Cray analogue!

Cray User Group, May 24-27, 2010

Miscellaneous

• If a library is unused (or used very little)
– How do we really know if we can stop support

• Maybe the users “went away” for awhile
• Need long duration and “recent” usage views

• Found we can’t just ignore all .o files
– Iobuf – IO buffering library is a .o

Cray User Group, May 24-27, 2010

Installation details

• Written in Python, original version in C
• Actual mode of interception

– Modulefiles (prepend PATH)
– Move/rename ld and aprun
–  Tied into admin’s “aprun wrapper” as an aprun-prologue

• See Matt Ezell’s talk on Tuesday at 3:30

• Built in ability to turn tracking on/off with env vars
–  Per person if desired

• Gets complicated with tools like Totalview
–  Either “fix” Totalview or unload ALTD

•  Modified Totalview on JaguarPF
– Unload ALTD modulefile on Kraken

Cray User Group, May 24-27, 2010

Conclusions

•  In production and tracking usage
– We don’t really know if the libraries were used
– We do know they were linked into the application

• Almost unnoticed by users
– One or two hiccups along the way, but were addressed quickly

• Mining the data is hard
–  Even with mostly consistent software installations, many

exceptions when looking for patterns

• Can start making decisions about software support
based on real usage
–  1. Stop providing FFTPACK and an old version of ACML, TAU
–  2. Users linking with Cray provided libraries

• Will be preparing a release of ALTD soon
Cray User Group, May 24-27, 2010

