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ABSTRACT: The Partnership for Advanced Computing in Europe (PRACE) created the 

prerequisites for a pan-European HPC service, consisting of several tier-0 centres.  In 

2010, the PRACE project will move to the Implementation Phase.  The now completed 

work prepared all the necessary legal, administrative, and technical work for the pan-

European service implementation. This paper discusses the software enabling work done 

in PRACE Work Package 6 by EPCC on the PABS application codes NAMD and 

HELIUM, with a particular focus on the work carried out for the Cray XT5 prototype 

system during the PRACE Preparatory Phase.  This paper also includes a performance 

comparison with non-Cray systems available to PRACE.  
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1. Introduction 

PRACE 
PRACE, The Partnership for Advanced Computing in 

Europe, aims to provide the European researches with a 

persistent pan-European HPC service to enable world-
class science [1].  The Partnership, originally consisting of 

16 partners from 14 countries, now has total 20 members 
involved [2]. The PRACE project Preparatory Phase was 

part-funded by the EU’s 7th Framework Programme 
(FP7/2007-2013) under grant agreement n° RI-211528, 

which started from January 2008 with a duration of 2 
years [3]. During the Preparatory Phase, PRACE looked 

into all aspects of the contractual and organisational 
issues, the system management, application enabling and 

future computer technologies for the pan-European HPC 
service. The PRACE Implementation Phase will start in 

June, 2010.  
 

PRACE WP6 and PABS 
The Work Package 6 (WP6) of the PRACE 

Preparatory Phase was responsible for the applications 

enabling on future petascale systems. Its primary goal was 
to identify and understand the software libraries, tools, 

benchmarks and skills required by users to ensure that 

their application can use a Petaflop/s system productively 

and efficiently [4]. WP6 was the largest technical activity 
in the PRACE Preparatory Phase, which most of the 

partners involved in. EPCC carried the overall 
responsibility for WP6 and was heavily involved in the 

technical work.  
 

WP6 selected a set of representative applications 
from a wide range of applications into the PRACE 

Application Benchmark Suite (PABS) [5]. The PABS was 
created based on the actual European HPC usage, the 

coverage of scientific areas, the applications scalability 
and the performance on different architectures. The final 

PABS consists of 22 applications in total, including 
ALYA, AVBP, BSIT, Code_Saturne, CPMD, CP2K, 

ELMER, GADGET, GPAW, GROMACS, HELIUM, 
NAMD, NEMO, NS3D, OCTOPUS, PEPC, QCD, 

Quantum_Espresso, SPECFEM3D, TORB/EUTERPE, 
TRIPOLI-4, and WRF [5].  

 
During the Preparatory Phase, these applications were 

ported to a number of PRACE prototypes and their 
requirements for petascale architectures were captured.  

The applications’ scalability and possible optimisations 
for petascaling were also investigated in the WP6 

activities. EPCC was mainly responsible for the 
application work on NAMD and HELIUM, with 
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significant contributions from other PRACE partners, 

relating to the non-Cray prototypes. 
  

PRACE Cray XT5 prototype 
The PRACE prototypes are a set of systems which 

were selected to represent the current and emerging 

technologies most suitable for supercomputer 
architectures. The selected current systems comprise MPP 

systems, thin- and fat-node clusters, vector systems and 
system using the Cell processors. This paper focuses on 

the study of NAMD and HELIUM on the Cray XT 
prototype Louhi, which is located at CSC, Finland. 

 
Louhi is one of the most widely used MPP prototypes 

for the investigations of PRACE WP6. The system offers 

Cray XT4 and XT5 nodes.  The XT5 portion of the 
system  has 672 nodes each containing two quad-core 2.3 

GHz AMD Opteron 64-bit Barcelona processors, and 180 
XT5 nodes (belonging to the PRACE project) 

each containing two quad-core 2.7 GHz AMD Opteron 
64-bit  Shanghai processors. The memory size per core is 

1GB or 2GB. Its communications network utilises 
the Cray SeaStar2 communication system. The nodes are 

arranged in a 3D torus [6]. 
 

About this paper  
This paper looks into the software enabling work 

done by EPCC for the application NAMD and HELIUM 

on the PRACE Cray XT5 prototype, Louhi. Both of the 
codes were ported successfully to Louhi during the 

Preparatory Phase. The porting experiences, scalability 
and performance are described in this paper. The 

optimisation strategies for petascaling were investigated 
for the two codes and the effects are discussed here. 

Besides Louhi, the performance of NAMD and HELIUM 
is also compared on a number of other PRACE 

prototypes, including Huygens, an IBM Power6 system at 
SARA, Netherlands; JUGENE, an IBM BlueGene/P 

system at FZJ-JSC, Germany; and JuRoPa, a Sun x86 
cluster with the Nehalem processors, located at FZJ-JSC, 

Germany. 
 

The Section 2 of this paper mainly discusses on the 
work done for the application NAMD and Section 3 is for 

the application HELIUM. A conclusion is given in section 
4. 

2. NAMD 

Overview 
NAMD is a molecular dynamics application designed 

to simulate bio-molecular systems [7, 8].  It is widely used 

and can be deployed on a wide variety of compute 
platforms.  NAMD is developed by the Theoretical and 

Computational Biophysics Group in the Beckman Institute 

for Advanced Science and Technology at the University 
of Illinois at Urbana-Champaign. The application design 

places a strong emphasis on scalability, allowing a large 
number of processors to be deployed efficiently for a 

single calculation.  The application is quite flexible with 
respect to the data format of the input files.  It can read a 

wide variety of the commonly used file formats for e.g. 
force fields, protein structure etc. 

 

NAMD 2.7β1, released in March 2009, was used for 
the study in the PRACE Preparatory Phase. The second 

beta version 2.7β2 was not released until November 2009, 

towards the end of the PRACE Preparation Phase. It was 

decided to keep investigating NAMD 2.7β1 to keep 

everything consistent. 
 

The NAMD source is written in C++ using Charm++ 
parallel objects

 
[9] for the data exchange between the 

compute tasks.  Building Charm++ is typically the first 
step when building a NAMD executable.  The source for 

Charm++ 6.1 is included in the NAMD 2.7β1 source.  In 

addition a production version of NAMD requires a TCL 
and a single precision version of FFTW 2.1.5. 

 
For the force calculation NAMD uses a cut-off 

distance.  The cut-off is specified in the input files.  For 
atoms separated by less than the 0cut-off the forces are 

calculated directly in position space.  If atoms are 
separated by more than the cut-off, only the long range 

electro-static forces are considered.  These are calculated 
using the particle mesh Ewald (PME) method. 

 
NAMD is parallelised using a spatial decomposition. 

The simulation volume is divided into orthorhombic 
regions called patches [7]. The diameter of these patches 

has to be larger than the cut-off distance.  Hence for the 
calculation of the direct forces, knowledge of atom 

position on the home patch and the 26 neighbouring 
patches is all that is required.  

 
NAMD automatically adjusts the load balance during 

the first part of the simulation. The computational load is 
measured for each patch and patches are moved between 

the processors to balance the load. Most of the code 
required for the load balancing features is part of 

Charm++ instead of the actual NAMD source. The load 
balancing takes the first 300 time steps of a simulation. 

These slower initial steps need to be taken into 
consideration when estimating the performance of a large 

production run from a test simulation lasting only a few 
hundred steps. 
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Building and Running NAMD on the Cray XT 
To build NAMD on the Cray XT system, the gcc 

4.3.3 compiler was used.  The Cray XT is very well 
supported by the Charm++ and NAMD development 

team.  To build Charm++ 6.1, the description file mpi-

crayxt was used, which is part of the Charm++ 6.1 

distribution.   
 

The “standard” Cray software stack does not provide 
a TCL library, so it requires building as well.  There was 

no issue when building TCL version 8.4.19 using the gnu 
compiler.  Once this is in place, NAMD can be built using 

the CRAY-XT-g++ architecture files of the distribution. 
 
When running NAMD on the Cray XT, the issue of 

the MPI-library running out of resources was frequently 
encountered.   The resources available to the MPI-library 

are controlled via a number of environment settings.  
When running NAMD, the MPI-library typically runs out 

of resources during the load balancing step, when all 
processors need to share their performance data with rank 

0. In this situation on rank 0 the MPI library requires 
enough memory to buffer the large number of unexpected 

message. If rank 0 runs out of memory, the run will fail 
with a clear error message explaining the problem.  The 

error message also suggests modifications to the MPI-
library’s resources to resolve the problem.  Setting the 

environment variables 
export MPICH_UNEX_BUFFER_SIZE=100M 

export MPICH_PTL_SEND_CREDITS=-1 

inside the job submission script allowed NAMD to run 

successfully on the Cray XT.  Most nodes of the Louhi 
system offer 1GB of main memory shared per core.  The 

above environment setting gives 10% of that memory to 
the MPI library.  This is a significant fraction of the 

resource. 
 

Benchmark 
 The input data sets containing TCR-pMHC-CD 

complexes in a membrane environment was used for this 

study [10].   The data sets are relevant for immune 
response research. There were three different sets, 

containing one, two and nine million atoms.  The basic 
data set with one million atoms contains four TCR-

pMHC-CD complexes.  The larger data sets have been 
generated by placing two or nine copies of this data set 

inside a single box. 
 

The configurations have a step size of 2 fs.  Assuming 
a minimum trajectory length of at least 10 ns for a 

scientifically meaning full simulation, these configurations 
require at least 5,000,000 million steps [11]. 

 

Memory footprint 
The study in the very early stages of the PRACE 

project used NAMD version 2.6.  The NAMD’s memory 
footprint was observed to be a key obstacle when running 

multi million atom systems.  It was not possible to run the 
nine million atom configuration on any platform available 

to the PRACE project using NAMD 2.6.   
 

In the above context, the new possibility to reduce the 

memory foot print in NAMD 2.7β1 is interesting [12].  
This feature is presently classified as “experimental”.  To 

reduce the memory foot print, a special NAMD 
executable with memory optimisation enabled needs to be 

built.  This special executable requires compressed input 
files.  To generate these input files, a normal NAMD 

executable, without memory optimisation, is used. 
 

Utilising this feature enabled the successful execution 
of the 9 Million atom benchmark on a number of systems, 

including the Cray XT.  When using the Louhi system, 
offering on average 1GB of memory per core, this 

benchmark still failed when running on 4096 cores, 
indicating out-of-memory errors.   

 
To quantify the memory consumption, the CrayPat 

tool was used to report on the heap memory consumption.  
This was done for the 2 million atom benchmark and 

repeated for a number of environment settings suggested 
by the NAMD developers [12].   

 
It was observed that the memory consumed on rank 0 

is significantly different from the remaining ranks.  Table 
1 gives a summary of the profiling results. The table 

reports on the memory consumed by rank 0 and the 
average over the remaining ranks. 

  
Number 
of tasks 

Memory 
reduction 

No Patch 
on Zero 

Unload 
Zero 

Footprint 
rank 0 

Average 
footprint 

256 No Default Default 1.58 GB 0.87 GB 

512 No Default Default 1.58 GB 0.85 GB 

1025 No Default Default 1.52 GB 0.85 GB 

256 Yes Default Default 0.60 GB 0.44 GB 

512 Yes Default Default 0.58 GB 0.44 GB 

1025 Yes Default Default 0.60 GB 0.43 GB 

256 Yes Yes Default 0.60 GB 0.43 GB 

512 Yes Yes Default 0.58 GB 0.43 GB 

1025 Yes Yes Default 0.59 GB 0.42 GB 

256 Yes Yes Yes 0.56 GB 0.43 GB 

512 Yes Yes Yes 0.60 GB 0.43 GB 

1025 Yes Yes Yes 0.60 GB 0.42 GB 

Table 1.  Memory footprint for a 2 million atom simulation 

 

The results show that enabling memory reduction has 
a significant effect on the memory consumption as 
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claimed by the developers.  The other investigated NAMD 

settings, noPatchesOnZero and ldbUnloadZero do not 

yield a significant effect on the memory consumption.  At 

least not for the benchmarks used within this project.  It is 
also interesting to note that the memory consumption is 
essentially independent from the task count.   

 

Performance 
It is obvious to ask, how does the new NAMD 

version 2.7β1 perform in comparison to the older version 
2.6.  For the test system with 1 million atoms, this is 

shown in Figure 1 for a number of task counts.  In this 
subsection, all measurements are for a Cray XT5 with 2.3 

GHz Opteron Barcelona processors, unless otherwise 
noted. 

 
Figure 1 shows that there is a substantial performance 

improvement when using NAMD 2.7β1.  This holds in 
particular for the scalability of the application.  The figure 

also shows that there is a further slight improvement to the 
performance when using an executable with the memory 

optimisation enabled. 
 

 
Figure 1 Performance comparison of NAMD 2.6 and 2.7ββββ1 

 
Since simultaneous multi threading (SMT), aka hyper 

threading, is not a feature on the Opteron processors 
available in the present Cray XT systems, the NAMD 

experience with SMT on the IBM Power 6 prototype is 
reported here.  The results are shown in Figure 2 for 

NAMD 2.6 and 2.7β1.  Figure 2 shows the performance 

against the physical processors.  E.g. when using SMT on 
512 physical processors, 1024 compute tasks were used. 

 
The figure below shows that all NAMD versions 

investigated benefit from SMT.  With SMT enabled, the 

new NAMD 2.7β1 shows a substantial improved scaling 

when compared to the older NAMD 2.6.  NAMD 

responding well to SMT has been observed before for a 
Power5 system [13]. 

  

 
Figure 2 Effect of SMT on the IBM Power6 prototype 

 

The next question to be discussed is the feasibility of 
a multi million atom simulation.  Figure 3 shows an 

estimate, based on the NAMD benchmark time, for the 
wall time required for 10ns simulation.  The figure shows 

for the Cray XT5 using 2.3 GHz Barcelona processors 
and the IBM Power6 system.  The horizontal axis is 

labelled “Partition Peak”, which is the product of the 
physical processors used and their peak performance. 

 

 
Figure 3 Feasibility of multi million atom simulations when 

using NAMD 2.7ββββ1 

 
The figure shows that when using a 20TF partition, 

either machine can simulate 10ns in less than 2 days wall 
time for the 2 million atom system and would use about a 

week of wall time for the 9 million atom system.  If the 
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underlying scientific question is judged important enough 

the wall times involved are by no means excessive. 
 

Compiler optimisation 
On the Cray XT, the effect of the compiler flags on 

the NAMD performance was also investigated.  This was 

done with gcc 4.3.3 and the performance was measured on 
2.3 GHz Opteron Barcelona and 2.7 GHz Opteron 

Shanghai processors. 
 

The architecture specific files for the Cray XT 
supplied with the NAMD 2.7b1 source suggest the 

following compiler options, called “default” here: 
 -O3 -ffast-math -static   
-fexpensive-optimizations  

-fomit-frame-pointer 

It is important to note that for gcc 4.3.3 the option              
-fexpensive-optimizations is included at level –O2 

or higher and is therefore redundant. The following table 
lists the experiments and the best “Benchmark time” out 

of a number of re-trials. This was investigated for NAMD 
2.7b1 when using a reduced memory footprint. The 2 

million atom benchmark was benchmarked on 256 
compute tasks: 

  
No Compiler options 2.3GHz 

proc. 

2.7GHz 

proc. 

1 -O2 0.204 s 0.165 s 

2 -O3 0.203 s 0.163 s 

3 -O3 –funroll-loops 0.196 s 0.157 s 

4 -O3 -ffast-math -static                
-fexpensive-optimizations          
-fomit-frame-pointer 

0.203 s 0.160 s 

5 -O3 –ffast-math –static  
-fexpensive-optimizations        

-fomit-frame-pointer    

–funroll-loops 

0.203 s 0.160 s 

6 -O3 -funroll-loops       
-ffast-math 

0.202 s 0.160 s 

7 -O3 -static             
-fexpensive-optimizations           

-fomit-frame-pointer    

-funroll-loops 

0.196 s 0.158 s 

Table 2  Compiler flags Effect on NAMD performance 

 
There was only a small dependency on the compiler 

options.  The flags No 5, which are suggested by the 

NAMD developers, give already a very good 
performance.  It was noticed that –funroll-loops gives 

a slight performance advantage while the option  
–ffast-math hinders performance. The best 

performance is observed for No 3 which is marginally 
better than the “default”. 

 

Comparing Opteron systems 
It is interesting to study the effect a different 

communication network has on NAMD performance.  
There are a number of systems using the Opteron 

processors in the PRACE project.  In addition to the 
Louhi system, these include the HECToR system (Cray 

XT4) in the UK and the Ranger system (SunBlade x6420, 
Infiniband) in the US.  During the project the HECToR 

system got upgraded from 2.8GHz dual core processors to 
2.3GHz quad core processors.  Hence the results using 

both types of processors are included here.  At the time of 
the benchmark the Ranger, Louhi and HECToR quad core 

system featured the same 2.3GHz Barcelona Opteron 
processors.  The benchmarking on the Ranger system used 

the executable installed by the NAMD developers for 
general use, while on HECToR and Louhi the executables 

used were built by the author.   
 

The performance on these systems is shown in Figure 
4.  Compared with the other Cray systems the HECToR 

dual core machine is slightly faster.  This can be entirely 
explained by the differences in clock frequency.  For low 

processor count, the performance is essentially the same 
on the HECToR quad core system and the Louhi system.  

Increasing the processor count, HECToR becomes faster 
than Louhi.  This is not surprising.  On the HECToR 

system (Cray XT4) each quad core processor has its own 
dedicated SeaStar chip for network access, while on the 

Louhi system (Cray XT5) there is one SeaStar serving two 
quad core processors.     

 

 
Figure 4 Performance of NAMD on different Opteron 

systems.  The upper set of curves shows the performance for 

the 2 million atom benchmark, while the lower set to curves 
holds for the 1 million atom benchmark 
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When comparing the Ranger system to the quad core 

Cray systems, the performance is essentially the same for 
low processor counts, which is expected, since all systems 

use the same processors.  The slight differences are most 
likely to be explained by slight differences in the build 

procedure.  For the benchmarks used for the PRACE 
project, the Ranger system does not scale as well as the 

Cray systems.  This is in contrast to the findings of [14].  
In [14] for a different benchmark configuration of similar 
size (1 million atoms) the NAMD performance on Ranger 

and Jaguar (Cray XT4, 2.1 GHz quad core Opteron) is 
compared.  Better scalability was observed on Ranger.  

Understanding the reasons for this difference between the 
investigation by the code developer and the present study 

would be interesting. 
 

Comparing PRACE prototypes 
Figures 5 shows the comparison on the relative 

efficiency of NAMD for the one million atoms benchmark 
on the PRACE prototypes mentioned in the introduction 

of this paper. Figure 6 shows the comparison for the nine 
million atoms benchmark. The performance is compared 

against the peak performance of the partition used 
(product of core-count and peak performance of the core).  

Due to memory limitations there are no results on the 
BlueGene/P for the nine million atom benchmark and also 

there is no data point for the Cray XT5 (Barcelona) for a 
40 TFlop partition due to this.  This illustrates, while the 

memory reduction is helpful, it does not fully overcome 
the problems.  Excluding the Sun x86 Cluster, one notices 

a difference in performance between the prototypes for 
smaller partition sizes. However for larger partition sizes 

these differences are minimal and the performance 
becomes effectively independent from the prototype 

chosen. 
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Figure 5   Performance of NAMD on the PRACE Prototypes 

for the 1 million atoms Benchmark 
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Figure 6   Performance of NAMD on the PRACE Prototypes 

for the 9 million atoms Benchmark 

 
On the Sun x86 cluster the performance is good for 

small partition sizes, while scalability on this prototype is 
poor.  The reasons are not understood.  When these tests 

were performed, the architecture was newly installed and 
might not have been tuned properly or something might 

have been broken.   

3. HELIUM 

Overview 
The application HELIUM uses time-dependent 

solutions of the full-dimensional Schrödinger equation to 
simulate the interaction between an intense linearly-

polarized laser pulse and a Helium atom [15]. It is 
developed by the Queen's University Belfast and has 

access restrictions. 
 

The HELIUM source code is written in a single 
Fortran 90 file with more than 14000 lines. It uses MPI 

for the parallelising implementation. In the HELIUM 
code, the total work in a whole grid space is divided into a 

set of blocks, which are distributed onto the MPI 
processes. Each process will operate on the square region 

of the assigned block space.  For a fixed total problem 
size, there are multiple decomposition approaches to 

divide the whole grid space into blocks by changing the 
block size and the block number in each dimension. 

 
There are several parameters in the source code to 

control the simulation conditions and the execution 
behaviour. The total problem size, block size, block count 

and core number required for the execution can all be set 
by a number of parameters in the source code prior to 

compilation. HELIUM will write out results once every 
several time steps and the output frequency can also be 

specified in the source code with particular parameters. 
Changing the parameters and re-building the HELIUM 
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executable will produce different HELIUM test cases 

suitable for benchmarking. 
 

The HELIUM test case with a fixed total problem 
size of 1540 grid units was used for the investigations 

during the PRACE Preparatory Phase. The total number 
of time steps was set to 80 and the writing operation was 

set to be executed once every 20 time steps. 
 

Porting HELIUM to Cray XT5 
Porting HELIUM to the Cray XT5 prototype Louhi is 

relatively straightforward as the source code is only one 

single file and no specific libraries or environments are 
required for the compilation and execution. Both the PGI 

Fortran90 compiler and the PathScale Fortran90 compiler 
can be used directly for building small HELIUM test 

cases. However, when using the PGI compiler one 
encounters a reallocation limit compiling issue when 

building the test cases with medium or large problem size, 
so all the compiling on Louhi used the PathScale 

Fortran90 compiler. The default flag used for porting was: 
–O2. 

 

There were several modifications needed for the 

original version code to pass the syntax check applied by 
the PathScale compiler. These changes have been merged 

to the latest version code by the developer. 
 

When running the HELIUM test cases, it is important 
to use proper core numbers to run the test cases. The core 

numbers required for execution is depended on the 
parameters of total problem size and block number in the 

source code. Therefore not all the core numbers can be 
used for benchmarking the selected test cases. A wrong 

core number will lead to an execution failure. 
 

The HELIUM execution usually consumes large 
amounts of memory. Overcoming the memory limitations 

is a key issue when porting HELIUM. The memory 
required by the test cases can be roughly estimated based 

on some parameters in the source code, including the 
block size. For the test case with a fixed problem size, the 

required memory size could be varying when using 
different block decomposition approaches. However, there 

is no guarantee for the upper limit by the estimation, so it 
is very difficult to predict the total memory required. The 

execution freezes or fails altogether, if the system runs out 
of memory, even when the test case executables can be 

built successfully. Louhi nodes offer either 8 GB or 16 
GB of memory, shared between the 8 cores of the node. 

When using proper block decompositions to run the 
HELIUM test cases, the executions can generally be 

successful on fully populated nodes. Utilising only four or 
two task per 8-way node can sometimes help to solve the 

memory limitation issues, but the delivered performance 

was usually very poor. 
 

Compiler optimisation for HELIUM on Cray XT5 
The effect of compiler flags on the HELIUM 

performance was investigated on Louhi. For this the test 

case with a fixed problem size of 1540 grid units was 
used. The measurements were performed on the 2.3 GHz 

Barcelona processors using either a total of 630 cores or 
of 1540 cores. This investigation is based on the 

PathScale compiler options only. 
 

The flag –O3 and -OPT:Ofast were applied as the 

starting point of the compiling optimisation. –O3 is the 

highest optimisation level of the PathScale compile.  
-OPT:Ofast is another common used performance 

tuning option for the PathScale compiling. It was effective 
when using the two flags together to speed the code 

execution without breaking the code results correctness. 
 

The CrayPat tool was used to understand the routine 
expenses in the source code. Based on the profiling results 

on Louhi, the most expensive routines all have large 
calculation loops. PathScale compiler provides several 

loop related sub-options for the flag –OPT and a specific 

loop nested optimiser flag -LNO:<suboptions>, to help 

apply the loop optimisation techniques without code 

changing by hand [6]. The following table shows the loop 

optimisation options which were investigated and tested 

for the HELIUM test case on Louhi. 
 

Flags Usage Effects 

-LNO:fusion=2 
 

The highest-level loop fusion. It can 

help change the temporal locality. 
-LNO:fission=0 Loop fission with the lowest level as 

it will cancel out the effect of loop 

fusion if switched on.  
-OPT: 
unroll_analysis 
=ON  

Turn on the unroll analysis. 
 

-LNO: 
full_unroll_size 

=2000 
 

Loop unrolling with the default 

unrolling loop size 2000. It can 
increase the loop body size and give 

more scope for better schedules and 

reduce branch frequency while 

keeping the code readability. 
-LNO:simd=2 The highest-level loop vectorisation. 

Use SIMD instructions to improve 

the calculation performance. 
–OPT:pad_common 
=ON 

To reduce conflict cache misses. It 

was not applied in the end as the 

effect was not as good as expected. 

Table 3 The PathScale compiler flags used for HELIUM loop 

optimisation on Cray XT5 (Barcelona) 
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The final flags delivering the best observed 

performance for the HELIUM test case with problem size 
of 1540 grid units on Louhi are:  

-O3 -OPT:Ofast:unroll_analysis=ON 

-LNO:fusion=2:fission=0 

:full_unroll_size=2000:simd=2  

-LIST:all_options=ON 

Table 4 shows the HELIUM performance improvement 
using these optimised compiler flags. 

 
Cores -O2  -O3 

-OPT:Ofast 

-O3 -OPT:Ofast 

:unroll_analysis=ON 

-LNO:fusion=2:fission=0 

:full_unroll_size=2000 

:simd=2  

-LIST:all_options=ON 

630 936 s 731 s 729 s 

1540 338 s 316 s 312 s 

Table 4 HELIUM performance improvement with compiling 

optimisation on Cray XT5 (Barcelona) 

 

Reducing MPI cost 
The CrayPat MPI profile showed that the MPI 

communications have more and more impact on the code 
performance when utilising a large number cores. To 

reduce the communications cost, the debugging routine 
Test_MPI was removed. The routine Test_MPI called 

several MPI communication routines at the code 
initialisation stage for the testing purposes only, which 

was unnecessary for the real code execution. 
 

The effect of removing the MPI debugging routine 
depends a lot on the system, probably due to the different 

MPI implementations. The performance improvement was 
not quite obvious on Cray XT5, compared with the effect 

on the IBM Power 6 prototype. Table 5 and Table 6 are 
the performance comparison on the Cray XT5 system and 

the IBM Power 6 system before and after removing the 
debugging MPI routine.  

 

Cores 
Before removing 
Test_MPI 

After removing 
Test_MPI 

630 729 s 729 s 

1540 312 s 311 s 

Table 5 Performance comparison before and after removing 

Test_MPI in HELIUM on Cray XT5 (Barcelona) 

 

Cores 
Before removing 
Test_MPI 

After removing 
Test_MPI 

630 714 s 712 s 

1540 319 s 309 s 

Table 6 Performance comparison before and after removing 
Test_MPI in HELIUM on IBM Power6  

 

Merging loops for HELIUM on Cray XT5 
Based on the CrayPat routine profiling on Louhi, 

there were four very expensive routines in the original 
code, including Incr_with_1st_Deriv_op_in_R1,  

Incr_with_1st_Deriv_op_in_R2, 

Incr_with_2nd_Deriv_in_R1,  

and Incr_with_2nd_Deriv_in_R2. It was founded in 

these routines that they all have some heavy calculations 
which were split into several loops with the same 

boundaries. This was not very efficient for the loop 
iterations. Besides, the loops didn’t go through in a proper 

order, which could cause more cache misses. Therefore, 
such loops were merged together with a proper iteration 

order to improve the HELIUM performance on the Cray 
XT5 prototype system.  

 
The following tables are the performance comparison 

before and after merging the loops. All the tests were 
taken after removing the MPI debugging routine in the 

code. It can be seen from Table 7 and Table 8 that after 
merging the loops, the HELIUM performance was 

improved effectively on Louhi and the cache misses 
reduced as well.  

 

Cores Before merging loops After merging loops  

630 729 s 723 s 

1540 311 s 302 s 

Table 7 Performance comparison before and after merging 

loops in HELIUM on Cray XT5 (Barcelona) 

 

L1 Cache misses  L2 Cache misses  

Cores Before 
merging 

loops 

After 
merging 

loops 

Before 
merging 

loops 

After 
merging 

loops 

630 6.62E+09 2.30E+09 2.97E+09 7.05E+08 

1540 1.69E+08 1.50E+08 1.63E+08 9.02E+07 

Table 8 Cache misses comparison before and after merging 

loops in HELIUM on Cray XT5 (Barcelona) 

 

Performance and scalability 
Figure 7 shows the performance of HELIUM on 

Louhi before and after applying all the optimisations 
discussed above. The original scaling results are 

represented by the green line and the optimised new 
results are shown by the red line. The results were 

measured based on the test case with a fixed problem size 
of 1540 grid units on the 2.3 GHz Opteron Barcelona 

processors. It can be seen from Figure 7 that the HELIUM 
test case scaled from 630 cores up to 2485 cores. For all 

core counts the performance is improved after applying 
the optimisation techniques.  
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Figure 7 HELIUM performance before and after 

optimisation on Cray XT5 (Barcelona) 

 
Figure 8 is the corresponding cost plot of Figure 7. 

The cost represents the product of execution time and the 

core number. A horizontal cost curve implies a linear 
scaling. Figure 8 shows when using less than 1540 cores, 

the HELIUM test case had a super-linear/linear scaling. 
However, when using much larger core number to run the 

code, the scalability tailed off significantly, which is 
probably mainly due to the heavy MPI overheads.  After 

applying the optimisations, the cost of HELIUM reduced 
but there was no obvious improvement for the scalability 

tail-off. 
 

 
Figure 8 HELIUM scaling cost before and after optimisation 

on the Cray XT5 prototype system Louhi (Barcelona) 

 

Comparison on PRACE prototype systems 
Figure 9 shows the relative efficiency comparison on 

multiple PRACE prototypes for HELIUM, which is 
similar with the investigation for the NAMD research 

discussed in the Section 2. The performance of HELIUM 

is compared against the peak performance of the partition. 

The test case used for the comparison has a fixed problem 
size of 1540 grid units. 

 
It can be seen from Figure 9 that for the HELIUM 

application test case, both the Cray XT5 system and the 
IBM BlueGene/P system scaled well, but the Cray XT5 

was between 1.5 and 1.7 times as efficient as the IBM 
BlueGene/P. The performance on the IBM Power6 and 
the Sun x86 cluster was good when using small partition 

size, but the scalability on these two prototype systems 
was poor. 

 

 
Figure 9 Performance of HELIUM test case (problem size 
1540) on PRACE prototype systems 

 

4. Conclusion 

In the WP6 of PRACE project Preparatory Phase, 

EPCC was responsible for the applications enabling work 
of NAMD and HELIUM on future petaflop/s systems. 

Both of the applications were ported to a number of 
PRACE prototypes, including the Cray XT5 prototype, 

Louhi. The scalability of the two applications was 
investigated and the optimisation strategies for petascaling 

were implemented based on the profiling results, which 
delivered better performance and scalability for the two 

applications. In general, both applications are fit for the 
future petaflop/s systems of the forth coming PRACE 

Implementation Phase. 
 

NAMD has a good scalability on the Cray XT 
systems. It scaled up to more than 4000 cores on Louhi 

with the 1 million and 2 million atom benchmark on the 
2.3GHz Barcelona Opteron processors and can scaled 

using many thousands of cores on other Cray XT systems. 

The new version NAMD 2.7β1 was ported successfully to 
Louhi, which delivered a substantially improved 

performance compared with the older version NAMD 2.6. 
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The code performance has only a small dependency on the 

compiler options. Using the new “experimental” NAMD 
feature to reduce the memory consumption of the code has 

enabled the simulation of multi-million atom systems on a 
Petaflop/s system.  The wall clock time required for the 

simulation of such a system with a reasonably sized 
trajectory is manageable on a modern HPC platform. 

 
HELIUM is relatively straightforward to be ported to 

the Cray XT5, but it requires proper settings in the source 

code for the problem size, decomposition approach as 
well as the core number. The memory consumption of 

HELIUM is large.  This becomes a key issue when porting 
large problem size test cases to a compute platform 

offering limited amounts of memory per compute core. 
The performance of HELIUM was improved efficiently 

by the PathScale compiler options, especially by using the 
loop optimisation flags. This is mainly because that 

HELIUM has several expensive routines with large loop 
calculations. Merging such large loops with the same 

boundaries in a proper order can also improve the 
HELIUM performance, which leads to a better cache 

usage on the Cray XT5. Compared with other PRACE 
prototypes, HELIUM delivers good scalability and 

performs efficiently on the Cray XT5 prototype system 
Louhi. 
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