

Cray User Group 2010 Proceedings 1 of 10

PRACE Application Enabling Work at EPCC

Xu Guo, EPCC, The University of Edinburgh

and

Joachim Hein, EPCC, The University of Edinburgh

ABSTRACT: The Partnership for Advanced Computing in Europe (PRACE) created the

prerequisites for a pan-European HPC service, consisting of several tier-0 centres. In

2010, the PRACE project will move to the Implementation Phase. The now completed

work prepared all the necessary legal, administrative, and technical work for the pan-

European service implementation. This paper discusses the software enabling work done

in PRACE Work Package 6 by EPCC on the PABS application codes NAMD and

HELIUM, with a particular focus on the work carried out for the Cray XT5 prototype

system during the PRACE Preparatory Phase. This paper also includes a performance

comparison with non-Cray systems available to PRACE.

KEYWORDS: PRACE, application enabling, NAMD, HELIUM, Cray XT5, EPCC

1. Introduction

PRACE
PRACE, The Partnership for Advanced Computing in

Europe, aims to provide the European researches with a

persistent pan-European HPC service to enable world-
class science [1]. The Partnership, originally consisting of

16 partners from 14 countries, now has total 20 members
involved [2]. The PRACE project Preparatory Phase was

part-funded by the EU’s 7th Framework Programme
(FP7/2007-2013) under grant agreement n° RI-211528,

which started from January 2008 with a duration of 2
years [3]. During the Preparatory Phase, PRACE looked

into all aspects of the contractual and organisational
issues, the system management, application enabling and

future computer technologies for the pan-European HPC
service. The PRACE Implementation Phase will start in

June, 2010.

PRACE WP6 and PABS
The Work Package 6 (WP6) of the PRACE

Preparatory Phase was responsible for the applications

enabling on future petascale systems. Its primary goal was
to identify and understand the software libraries, tools,

benchmarks and skills required by users to ensure that

their application can use a Petaflop/s system productively

and efficiently [4]. WP6 was the largest technical activity
in the PRACE Preparatory Phase, which most of the

partners involved in. EPCC carried the overall
responsibility for WP6 and was heavily involved in the

technical work.

WP6 selected a set of representative applications
from a wide range of applications into the PRACE

Application Benchmark Suite (PABS) [5]. The PABS was
created based on the actual European HPC usage, the

coverage of scientific areas, the applications scalability
and the performance on different architectures. The final

PABS consists of 22 applications in total, including
ALYA, AVBP, BSIT, Code_Saturne, CPMD, CP2K,

ELMER, GADGET, GPAW, GROMACS, HELIUM,
NAMD, NEMO, NS3D, OCTOPUS, PEPC, QCD,

Quantum_Espresso, SPECFEM3D, TORB/EUTERPE,
TRIPOLI-4, and WRF [5].

During the Preparatory Phase, these applications were

ported to a number of PRACE prototypes and their
requirements for petascale architectures were captured.

The applications’ scalability and possible optimisations
for petascaling were also investigated in the WP6

activities. EPCC was mainly responsible for the
application work on NAMD and HELIUM, with

Cray User Group 2010 Proceedings 2 of 10

significant contributions from other PRACE partners,

relating to the non-Cray prototypes.

PRACE Cray XT5 prototype
The PRACE prototypes are a set of systems which

were selected to represent the current and emerging

technologies most suitable for supercomputer
architectures. The selected current systems comprise MPP

systems, thin- and fat-node clusters, vector systems and
system using the Cell processors. This paper focuses on

the study of NAMD and HELIUM on the Cray XT
prototype Louhi, which is located at CSC, Finland.

Louhi is one of the most widely used MPP prototypes

for the investigations of PRACE WP6. The system offers

Cray XT4 and XT5 nodes. The XT5 portion of the
system has 672 nodes each containing two quad-core 2.3

GHz AMD Opteron 64-bit Barcelona processors, and 180
XT5 nodes (belonging to the PRACE project)

each containing two quad-core 2.7 GHz AMD Opteron
64-bit Shanghai processors. The memory size per core is

1GB or 2GB. Its communications network utilises
the Cray SeaStar2 communication system. The nodes are

arranged in a 3D torus [6].

About this paper
This paper looks into the software enabling work

done by EPCC for the application NAMD and HELIUM

on the PRACE Cray XT5 prototype, Louhi. Both of the
codes were ported successfully to Louhi during the

Preparatory Phase. The porting experiences, scalability
and performance are described in this paper. The

optimisation strategies for petascaling were investigated
for the two codes and the effects are discussed here.

Besides Louhi, the performance of NAMD and HELIUM
is also compared on a number of other PRACE

prototypes, including Huygens, an IBM Power6 system at
SARA, Netherlands; JUGENE, an IBM BlueGene/P

system at FZJ-JSC, Germany; and JuRoPa, a Sun x86
cluster with the Nehalem processors, located at FZJ-JSC,

Germany.

The Section 2 of this paper mainly discusses on the
work done for the application NAMD and Section 3 is for

the application HELIUM. A conclusion is given in section
4.

2. NAMD

Overview
NAMD is a molecular dynamics application designed

to simulate bio-molecular systems [7, 8]. It is widely used

and can be deployed on a wide variety of compute
platforms. NAMD is developed by the Theoretical and

Computational Biophysics Group in the Beckman Institute

for Advanced Science and Technology at the University
of Illinois at Urbana-Champaign. The application design

places a strong emphasis on scalability, allowing a large
number of processors to be deployed efficiently for a

single calculation. The application is quite flexible with
respect to the data format of the input files. It can read a

wide variety of the commonly used file formats for e.g.
force fields, protein structure etc.

NAMD 2.7β1, released in March 2009, was used for
the study in the PRACE Preparatory Phase. The second

beta version 2.7β2 was not released until November 2009,

towards the end of the PRACE Preparation Phase. It was

decided to keep investigating NAMD 2.7β1 to keep

everything consistent.

The NAMD source is written in C++ using Charm++
parallel objects

[9] for the data exchange between the

compute tasks. Building Charm++ is typically the first
step when building a NAMD executable. The source for

Charm++ 6.1 is included in the NAMD 2.7β1 source. In

addition a production version of NAMD requires a TCL
and a single precision version of FFTW 2.1.5.

For the force calculation NAMD uses a cut-off

distance. The cut-off is specified in the input files. For
atoms separated by less than the 0cut-off the forces are

calculated directly in position space. If atoms are
separated by more than the cut-off, only the long range

electro-static forces are considered. These are calculated
using the particle mesh Ewald (PME) method.

NAMD is parallelised using a spatial decomposition.

The simulation volume is divided into orthorhombic
regions called patches [7]. The diameter of these patches

has to be larger than the cut-off distance. Hence for the
calculation of the direct forces, knowledge of atom

position on the home patch and the 26 neighbouring
patches is all that is required.

NAMD automatically adjusts the load balance during

the first part of the simulation. The computational load is
measured for each patch and patches are moved between

the processors to balance the load. Most of the code
required for the load balancing features is part of

Charm++ instead of the actual NAMD source. The load
balancing takes the first 300 time steps of a simulation.

These slower initial steps need to be taken into
consideration when estimating the performance of a large

production run from a test simulation lasting only a few
hundred steps.

Cray User Group 2010 Proceedings 3 of 10

Building and Running NAMD on the Cray XT
To build NAMD on the Cray XT system, the gcc

4.3.3 compiler was used. The Cray XT is very well
supported by the Charm++ and NAMD development

team. To build Charm++ 6.1, the description file mpi-

crayxt was used, which is part of the Charm++ 6.1

distribution.

The “standard” Cray software stack does not provide
a TCL library, so it requires building as well. There was

no issue when building TCL version 8.4.19 using the gnu
compiler. Once this is in place, NAMD can be built using

the CRAY-XT-g++ architecture files of the distribution.

When running NAMD on the Cray XT, the issue of

the MPI-library running out of resources was frequently
encountered. The resources available to the MPI-library

are controlled via a number of environment settings.
When running NAMD, the MPI-library typically runs out

of resources during the load balancing step, when all
processors need to share their performance data with rank

0. In this situation on rank 0 the MPI library requires
enough memory to buffer the large number of unexpected

message. If rank 0 runs out of memory, the run will fail
with a clear error message explaining the problem. The

error message also suggests modifications to the MPI-
library’s resources to resolve the problem. Setting the

environment variables
export MPICH_UNEX_BUFFER_SIZE=100M

export MPICH_PTL_SEND_CREDITS=-1

inside the job submission script allowed NAMD to run

successfully on the Cray XT. Most nodes of the Louhi
system offer 1GB of main memory shared per core. The

above environment setting gives 10% of that memory to
the MPI library. This is a significant fraction of the

resource.

Benchmark
 The input data sets containing TCR-pMHC-CD

complexes in a membrane environment was used for this

study [10]. The data sets are relevant for immune
response research. There were three different sets,

containing one, two and nine million atoms. The basic
data set with one million atoms contains four TCR-

pMHC-CD complexes. The larger data sets have been
generated by placing two or nine copies of this data set

inside a single box.

The configurations have a step size of 2 fs. Assuming
a minimum trajectory length of at least 10 ns for a

scientifically meaning full simulation, these configurations
require at least 5,000,000 million steps [11].

Memory footprint
The study in the very early stages of the PRACE

project used NAMD version 2.6. The NAMD’s memory
footprint was observed to be a key obstacle when running

multi million atom systems. It was not possible to run the
nine million atom configuration on any platform available

to the PRACE project using NAMD 2.6.

In the above context, the new possibility to reduce the

memory foot print in NAMD 2.7β1 is interesting [12].
This feature is presently classified as “experimental”. To

reduce the memory foot print, a special NAMD
executable with memory optimisation enabled needs to be

built. This special executable requires compressed input
files. To generate these input files, a normal NAMD

executable, without memory optimisation, is used.

Utilising this feature enabled the successful execution
of the 9 Million atom benchmark on a number of systems,

including the Cray XT. When using the Louhi system,
offering on average 1GB of memory per core, this

benchmark still failed when running on 4096 cores,
indicating out-of-memory errors.

To quantify the memory consumption, the CrayPat

tool was used to report on the heap memory consumption.
This was done for the 2 million atom benchmark and

repeated for a number of environment settings suggested
by the NAMD developers [12].

It was observed that the memory consumed on rank 0

is significantly different from the remaining ranks. Table
1 gives a summary of the profiling results. The table

reports on the memory consumed by rank 0 and the
average over the remaining ranks.

Number
of tasks

Memory
reduction

No Patch
on Zero

Unload
Zero

Footprint
rank 0

Average
footprint

256 No Default Default 1.58 GB 0.87 GB

512 No Default Default 1.58 GB 0.85 GB

1025 No Default Default 1.52 GB 0.85 GB

256 Yes Default Default 0.60 GB 0.44 GB

512 Yes Default Default 0.58 GB 0.44 GB

1025 Yes Default Default 0.60 GB 0.43 GB

256 Yes Yes Default 0.60 GB 0.43 GB

512 Yes Yes Default 0.58 GB 0.43 GB

1025 Yes Yes Default 0.59 GB 0.42 GB

256 Yes Yes Yes 0.56 GB 0.43 GB

512 Yes Yes Yes 0.60 GB 0.43 GB

1025 Yes Yes Yes 0.60 GB 0.42 GB

Table 1. Memory footprint for a 2 million atom simulation

The results show that enabling memory reduction has
a significant effect on the memory consumption as

Cray User Group 2010 Proceedings 4 of 10

claimed by the developers. The other investigated NAMD

settings, noPatchesOnZero and ldbUnloadZero do not

yield a significant effect on the memory consumption. At

least not for the benchmarks used within this project. It is
also interesting to note that the memory consumption is
essentially independent from the task count.

Performance
It is obvious to ask, how does the new NAMD

version 2.7β1 perform in comparison to the older version
2.6. For the test system with 1 million atoms, this is

shown in Figure 1 for a number of task counts. In this
subsection, all measurements are for a Cray XT5 with 2.3

GHz Opteron Barcelona processors, unless otherwise
noted.

Figure 1 shows that there is a substantial performance

improvement when using NAMD 2.7β1. This holds in
particular for the scalability of the application. The figure

also shows that there is a further slight improvement to the
performance when using an executable with the memory

optimisation enabled.

Figure 1 Performance comparison of NAMD 2.6 and 2.7ββββ1

Since simultaneous multi threading (SMT), aka hyper

threading, is not a feature on the Opteron processors
available in the present Cray XT systems, the NAMD

experience with SMT on the IBM Power 6 prototype is
reported here. The results are shown in Figure 2 for

NAMD 2.6 and 2.7β1. Figure 2 shows the performance

against the physical processors. E.g. when using SMT on
512 physical processors, 1024 compute tasks were used.

The figure below shows that all NAMD versions

investigated benefit from SMT. With SMT enabled, the

new NAMD 2.7β1 shows a substantial improved scaling

when compared to the older NAMD 2.6. NAMD

responding well to SMT has been observed before for a
Power5 system [13].

Figure 2 Effect of SMT on the IBM Power6 prototype

The next question to be discussed is the feasibility of
a multi million atom simulation. Figure 3 shows an

estimate, based on the NAMD benchmark time, for the
wall time required for 10ns simulation. The figure shows

for the Cray XT5 using 2.3 GHz Barcelona processors
and the IBM Power6 system. The horizontal axis is

labelled “Partition Peak”, which is the product of the
physical processors used and their peak performance.

Figure 3 Feasibility of multi million atom simulations when

using NAMD 2.7ββββ1

The figure shows that when using a 20TF partition,

either machine can simulate 10ns in less than 2 days wall
time for the 2 million atom system and would use about a

week of wall time for the 9 million atom system. If the

Cray User Group 2010 Proceedings 5 of 10

underlying scientific question is judged important enough

the wall times involved are by no means excessive.

Compiler optimisation
On the Cray XT, the effect of the compiler flags on

the NAMD performance was also investigated. This was

done with gcc 4.3.3 and the performance was measured on
2.3 GHz Opteron Barcelona and 2.7 GHz Opteron

Shanghai processors.

The architecture specific files for the Cray XT
supplied with the NAMD 2.7b1 source suggest the

following compiler options, called “default” here:
 -O3 -ffast-math -static
-fexpensive-optimizations

-fomit-frame-pointer

It is important to note that for gcc 4.3.3 the option
-fexpensive-optimizations is included at level –O2

or higher and is therefore redundant. The following table
lists the experiments and the best “Benchmark time” out

of a number of re-trials. This was investigated for NAMD
2.7b1 when using a reduced memory footprint. The 2

million atom benchmark was benchmarked on 256
compute tasks:

No Compiler options 2.3GHz

proc.

2.7GHz

proc.

1 -O2 0.204 s 0.165 s

2 -O3 0.203 s 0.163 s

3 -O3 –funroll-loops 0.196 s 0.157 s

4 -O3 -ffast-math -static
-fexpensive-optimizations
-fomit-frame-pointer

0.203 s 0.160 s

5 -O3 –ffast-math –static
-fexpensive-optimizations

-fomit-frame-pointer

–funroll-loops

0.203 s 0.160 s

6 -O3 -funroll-loops
-ffast-math

0.202 s 0.160 s

7 -O3 -static
-fexpensive-optimizations

-fomit-frame-pointer

-funroll-loops

0.196 s 0.158 s

Table 2 Compiler flags Effect on NAMD performance

There was only a small dependency on the compiler

options. The flags No 5, which are suggested by the

NAMD developers, give already a very good
performance. It was noticed that –funroll-loops gives

a slight performance advantage while the option
–ffast-math hinders performance. The best

performance is observed for No 3 which is marginally
better than the “default”.

Comparing Opteron systems
It is interesting to study the effect a different

communication network has on NAMD performance.
There are a number of systems using the Opteron

processors in the PRACE project. In addition to the
Louhi system, these include the HECToR system (Cray

XT4) in the UK and the Ranger system (SunBlade x6420,
Infiniband) in the US. During the project the HECToR

system got upgraded from 2.8GHz dual core processors to
2.3GHz quad core processors. Hence the results using

both types of processors are included here. At the time of
the benchmark the Ranger, Louhi and HECToR quad core

system featured the same 2.3GHz Barcelona Opteron
processors. The benchmarking on the Ranger system used

the executable installed by the NAMD developers for
general use, while on HECToR and Louhi the executables

used were built by the author.

The performance on these systems is shown in Figure
4. Compared with the other Cray systems the HECToR

dual core machine is slightly faster. This can be entirely
explained by the differences in clock frequency. For low

processor count, the performance is essentially the same
on the HECToR quad core system and the Louhi system.

Increasing the processor count, HECToR becomes faster
than Louhi. This is not surprising. On the HECToR

system (Cray XT4) each quad core processor has its own
dedicated SeaStar chip for network access, while on the

Louhi system (Cray XT5) there is one SeaStar serving two
quad core processors.

Figure 4 Performance of NAMD on different Opteron

systems. The upper set of curves shows the performance for

the 2 million atom benchmark, while the lower set to curves
holds for the 1 million atom benchmark

Cray User Group 2010 Proceedings 6 of 10

When comparing the Ranger system to the quad core

Cray systems, the performance is essentially the same for
low processor counts, which is expected, since all systems

use the same processors. The slight differences are most
likely to be explained by slight differences in the build

procedure. For the benchmarks used for the PRACE
project, the Ranger system does not scale as well as the

Cray systems. This is in contrast to the findings of [14].
In [14] for a different benchmark configuration of similar
size (1 million atoms) the NAMD performance on Ranger

and Jaguar (Cray XT4, 2.1 GHz quad core Opteron) is
compared. Better scalability was observed on Ranger.

Understanding the reasons for this difference between the
investigation by the code developer and the present study

would be interesting.

Comparing PRACE prototypes
Figures 5 shows the comparison on the relative

efficiency of NAMD for the one million atoms benchmark
on the PRACE prototypes mentioned in the introduction

of this paper. Figure 6 shows the comparison for the nine
million atoms benchmark. The performance is compared

against the peak performance of the partition used
(product of core-count and peak performance of the core).

Due to memory limitations there are no results on the
BlueGene/P for the nine million atom benchmark and also

there is no data point for the Cray XT5 (Barcelona) for a
40 TFlop partition due to this. This illustrates, while the

memory reduction is helpful, it does not fully overcome
the problems. Excluding the Sun x86 Cluster, one notices

a difference in performance between the prototypes for
smaller partition sizes. However for larger partition sizes

these differences are minimal and the performance
becomes effectively independent from the prototype

chosen.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 10 100

Partition size (peak TFlop/s)

R
e

la
ti

v
e

 e
ff

ic
ie

n
c

y

IBM BlueGene/P

Cray XT5b

Cray XT5s

IBM Power6

Sun x86 Cluster

Figure 5 Performance of NAMD on the PRACE Prototypes

for the 1 million atoms Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 10 100

Partition size (peak TFlop/s)

R
e

la
ti

v
e

 e
ff

ic
ie

n
c

y

Cray XT5b

Cray XT5s

IBM Power6

Sun x86 Cluster

Figure 6 Performance of NAMD on the PRACE Prototypes

for the 9 million atoms Benchmark

On the Sun x86 cluster the performance is good for

small partition sizes, while scalability on this prototype is
poor. The reasons are not understood. When these tests

were performed, the architecture was newly installed and
might not have been tuned properly or something might

have been broken.

3. HELIUM

Overview
The application HELIUM uses time-dependent

solutions of the full-dimensional Schrödinger equation to
simulate the interaction between an intense linearly-

polarized laser pulse and a Helium atom [15]. It is
developed by the Queen's University Belfast and has

access restrictions.

The HELIUM source code is written in a single
Fortran 90 file with more than 14000 lines. It uses MPI

for the parallelising implementation. In the HELIUM
code, the total work in a whole grid space is divided into a

set of blocks, which are distributed onto the MPI
processes. Each process will operate on the square region

of the assigned block space. For a fixed total problem
size, there are multiple decomposition approaches to

divide the whole grid space into blocks by changing the
block size and the block number in each dimension.

There are several parameters in the source code to

control the simulation conditions and the execution
behaviour. The total problem size, block size, block count

and core number required for the execution can all be set
by a number of parameters in the source code prior to

compilation. HELIUM will write out results once every
several time steps and the output frequency can also be

specified in the source code with particular parameters.
Changing the parameters and re-building the HELIUM

Cray User Group 2010 Proceedings 7 of 10

executable will produce different HELIUM test cases

suitable for benchmarking.

The HELIUM test case with a fixed total problem
size of 1540 grid units was used for the investigations

during the PRACE Preparatory Phase. The total number
of time steps was set to 80 and the writing operation was

set to be executed once every 20 time steps.

Porting HELIUM to Cray XT5
Porting HELIUM to the Cray XT5 prototype Louhi is

relatively straightforward as the source code is only one

single file and no specific libraries or environments are
required for the compilation and execution. Both the PGI

Fortran90 compiler and the PathScale Fortran90 compiler
can be used directly for building small HELIUM test

cases. However, when using the PGI compiler one
encounters a reallocation limit compiling issue when

building the test cases with medium or large problem size,
so all the compiling on Louhi used the PathScale

Fortran90 compiler. The default flag used for porting was:
–O2.

There were several modifications needed for the

original version code to pass the syntax check applied by
the PathScale compiler. These changes have been merged

to the latest version code by the developer.

When running the HELIUM test cases, it is important
to use proper core numbers to run the test cases. The core

numbers required for execution is depended on the
parameters of total problem size and block number in the

source code. Therefore not all the core numbers can be
used for benchmarking the selected test cases. A wrong

core number will lead to an execution failure.

The HELIUM execution usually consumes large
amounts of memory. Overcoming the memory limitations

is a key issue when porting HELIUM. The memory
required by the test cases can be roughly estimated based

on some parameters in the source code, including the
block size. For the test case with a fixed problem size, the

required memory size could be varying when using
different block decomposition approaches. However, there

is no guarantee for the upper limit by the estimation, so it
is very difficult to predict the total memory required. The

execution freezes or fails altogether, if the system runs out
of memory, even when the test case executables can be

built successfully. Louhi nodes offer either 8 GB or 16
GB of memory, shared between the 8 cores of the node.

When using proper block decompositions to run the
HELIUM test cases, the executions can generally be

successful on fully populated nodes. Utilising only four or
two task per 8-way node can sometimes help to solve the

memory limitation issues, but the delivered performance

was usually very poor.

Compiler optimisation for HELIUM on Cray XT5
The effect of compiler flags on the HELIUM

performance was investigated on Louhi. For this the test

case with a fixed problem size of 1540 grid units was
used. The measurements were performed on the 2.3 GHz

Barcelona processors using either a total of 630 cores or
of 1540 cores. This investigation is based on the

PathScale compiler options only.

The flag –O3 and -OPT:Ofast were applied as the

starting point of the compiling optimisation. –O3 is the

highest optimisation level of the PathScale compile.
-OPT:Ofast is another common used performance

tuning option for the PathScale compiling. It was effective
when using the two flags together to speed the code

execution without breaking the code results correctness.

The CrayPat tool was used to understand the routine
expenses in the source code. Based on the profiling results

on Louhi, the most expensive routines all have large
calculation loops. PathScale compiler provides several

loop related sub-options for the flag –OPT and a specific

loop nested optimiser flag -LNO:<suboptions>, to help

apply the loop optimisation techniques without code

changing by hand [6]. The following table shows the loop

optimisation options which were investigated and tested

for the HELIUM test case on Louhi.

Flags Usage Effects

-LNO:fusion=2

The highest-level loop fusion. It can

help change the temporal locality.
-LNO:fission=0 Loop fission with the lowest level as

it will cancel out the effect of loop

fusion if switched on.
-OPT:
unroll_analysis
=ON

Turn on the unroll analysis.

-LNO:
full_unroll_size

=2000

Loop unrolling with the default

unrolling loop size 2000. It can
increase the loop body size and give

more scope for better schedules and

reduce branch frequency while

keeping the code readability.
-LNO:simd=2 The highest-level loop vectorisation.

Use SIMD instructions to improve

the calculation performance.
–OPT:pad_common
=ON

To reduce conflict cache misses. It

was not applied in the end as the

effect was not as good as expected.

Table 3 The PathScale compiler flags used for HELIUM loop

optimisation on Cray XT5 (Barcelona)

Cray User Group 2010 Proceedings 8 of 10

The final flags delivering the best observed

performance for the HELIUM test case with problem size
of 1540 grid units on Louhi are:

-O3 -OPT:Ofast:unroll_analysis=ON

-LNO:fusion=2:fission=0

:full_unroll_size=2000:simd=2

-LIST:all_options=ON

Table 4 shows the HELIUM performance improvement
using these optimised compiler flags.

Cores -O2 -O3

-OPT:Ofast

-O3 -OPT:Ofast

:unroll_analysis=ON

-LNO:fusion=2:fission=0

:full_unroll_size=2000

:simd=2

-LIST:all_options=ON

630 936 s 731 s 729 s

1540 338 s 316 s 312 s

Table 4 HELIUM performance improvement with compiling

optimisation on Cray XT5 (Barcelona)

Reducing MPI cost
The CrayPat MPI profile showed that the MPI

communications have more and more impact on the code
performance when utilising a large number cores. To

reduce the communications cost, the debugging routine
Test_MPI was removed. The routine Test_MPI called

several MPI communication routines at the code
initialisation stage for the testing purposes only, which

was unnecessary for the real code execution.

The effect of removing the MPI debugging routine
depends a lot on the system, probably due to the different

MPI implementations. The performance improvement was
not quite obvious on Cray XT5, compared with the effect

on the IBM Power 6 prototype. Table 5 and Table 6 are
the performance comparison on the Cray XT5 system and

the IBM Power 6 system before and after removing the
debugging MPI routine.

Cores
Before removing
Test_MPI

After removing
Test_MPI

630 729 s 729 s

1540 312 s 311 s

Table 5 Performance comparison before and after removing

Test_MPI in HELIUM on Cray XT5 (Barcelona)

Cores
Before removing
Test_MPI

After removing
Test_MPI

630 714 s 712 s

1540 319 s 309 s

Table 6 Performance comparison before and after removing
Test_MPI in HELIUM on IBM Power6

Merging loops for HELIUM on Cray XT5
Based on the CrayPat routine profiling on Louhi,

there were four very expensive routines in the original
code, including Incr_with_1st_Deriv_op_in_R1,

Incr_with_1st_Deriv_op_in_R2,

Incr_with_2nd_Deriv_in_R1,

and Incr_with_2nd_Deriv_in_R2. It was founded in

these routines that they all have some heavy calculations
which were split into several loops with the same

boundaries. This was not very efficient for the loop
iterations. Besides, the loops didn’t go through in a proper

order, which could cause more cache misses. Therefore,
such loops were merged together with a proper iteration

order to improve the HELIUM performance on the Cray
XT5 prototype system.

The following tables are the performance comparison

before and after merging the loops. All the tests were
taken after removing the MPI debugging routine in the

code. It can be seen from Table 7 and Table 8 that after
merging the loops, the HELIUM performance was

improved effectively on Louhi and the cache misses
reduced as well.

Cores Before merging loops After merging loops

630 729 s 723 s

1540 311 s 302 s

Table 7 Performance comparison before and after merging

loops in HELIUM on Cray XT5 (Barcelona)

L1 Cache misses L2 Cache misses

Cores Before
merging

loops

After
merging

loops

Before
merging

loops

After
merging

loops

630 6.62E+09 2.30E+09 2.97E+09 7.05E+08

1540 1.69E+08 1.50E+08 1.63E+08 9.02E+07

Table 8 Cache misses comparison before and after merging

loops in HELIUM on Cray XT5 (Barcelona)

Performance and scalability
Figure 7 shows the performance of HELIUM on

Louhi before and after applying all the optimisations
discussed above. The original scaling results are

represented by the green line and the optimised new
results are shown by the red line. The results were

measured based on the test case with a fixed problem size
of 1540 grid units on the 2.3 GHz Opteron Barcelona

processors. It can be seen from Figure 7 that the HELIUM
test case scaled from 630 cores up to 2485 cores. For all

core counts the performance is improved after applying
the optimisation techniques.

Cray User Group 2010 Proceedings 9 of 10

Figure 7 HELIUM performance before and after

optimisation on Cray XT5 (Barcelona)

Figure 8 is the corresponding cost plot of Figure 7.

The cost represents the product of execution time and the

core number. A horizontal cost curve implies a linear
scaling. Figure 8 shows when using less than 1540 cores,

the HELIUM test case had a super-linear/linear scaling.
However, when using much larger core number to run the

code, the scalability tailed off significantly, which is
probably mainly due to the heavy MPI overheads. After

applying the optimisations, the cost of HELIUM reduced
but there was no obvious improvement for the scalability

tail-off.

Figure 8 HELIUM scaling cost before and after optimisation

on the Cray XT5 prototype system Louhi (Barcelona)

Comparison on PRACE prototype systems
Figure 9 shows the relative efficiency comparison on

multiple PRACE prototypes for HELIUM, which is
similar with the investigation for the NAMD research

discussed in the Section 2. The performance of HELIUM

is compared against the peak performance of the partition.

The test case used for the comparison has a fixed problem
size of 1540 grid units.

It can be seen from Figure 9 that for the HELIUM

application test case, both the Cray XT5 system and the
IBM BlueGene/P system scaled well, but the Cray XT5

was between 1.5 and 1.7 times as efficient as the IBM
BlueGene/P. The performance on the IBM Power6 and
the Sun x86 cluster was good when using small partition

size, but the scalability on these two prototype systems
was poor.

Figure 9 Performance of HELIUM test case (problem size
1540) on PRACE prototype systems

4. Conclusion

In the WP6 of PRACE project Preparatory Phase,

EPCC was responsible for the applications enabling work
of NAMD and HELIUM on future petaflop/s systems.

Both of the applications were ported to a number of
PRACE prototypes, including the Cray XT5 prototype,

Louhi. The scalability of the two applications was
investigated and the optimisation strategies for petascaling

were implemented based on the profiling results, which
delivered better performance and scalability for the two

applications. In general, both applications are fit for the
future petaflop/s systems of the forth coming PRACE

Implementation Phase.

NAMD has a good scalability on the Cray XT
systems. It scaled up to more than 4000 cores on Louhi

with the 1 million and 2 million atom benchmark on the
2.3GHz Barcelona Opteron processors and can scaled

using many thousands of cores on other Cray XT systems.

The new version NAMD 2.7β1 was ported successfully to
Louhi, which delivered a substantially improved

performance compared with the older version NAMD 2.6.

Cray User Group 2010 Proceedings 10 of 10

The code performance has only a small dependency on the

compiler options. Using the new “experimental” NAMD
feature to reduce the memory consumption of the code has

enabled the simulation of multi-million atom systems on a
Petaflop/s system. The wall clock time required for the

simulation of such a system with a reasonably sized
trajectory is manageable on a modern HPC platform.

HELIUM is relatively straightforward to be ported to

the Cray XT5, but it requires proper settings in the source

code for the problem size, decomposition approach as
well as the core number. The memory consumption of

HELIUM is large. This becomes a key issue when porting
large problem size test cases to a compute platform

offering limited amounts of memory per compute core.
The performance of HELIUM was improved efficiently

by the PathScale compiler options, especially by using the
loop optimisation flags. This is mainly because that

HELIUM has several expensive routines with large loop
calculations. Merging such large loops with the same

boundaries in a proper order can also improve the
HELIUM performance, which leads to a better cache

usage on the Cray XT5. Compared with other PRACE
prototypes, HELIUM delivers good scalability and

performs efficiently on the Cray XT5 prototype system
Louhi.

Acknowledgments

The authors would like to thank the PRACE partner

contributors Martin Polak (ICA, Johannes Kepler
University Linz, Austria), Paschalis Korosoglou (AUTH,

Greece) and Andrew Sunderland (STFC Daresbury
Laboratory, UK) for their contributions.

The authors would also like to thank their colleagues,
the applications developers and the vendor staff for all

their great support and help.

About the Authors

Xu Guo is an Application Consultant of EPCC, The
University of Edinburgh. She can be reached at EPCC,

University of Edinburgh, James Clerk Maxwell Building,
Mayfield Road, Edinburgh, EH9 3JZ, UK. Email:

xguo@epcc.ed.ac.uk.
Joachim Hein is a Computing Architect at EPCC, The

University of Edinburgh. He also works as a researcher at
the Centre for Mathematical Sciences at Lund University.

Email: j.hein@ed.ac.uk.

Reference

[1] About PRACE. Online at http://www.prace-project.eu

(Referenced on 30/04/2010).
[2] PRACE principal and general partners. Online at
http://www.prace-project.eu/about-prace/partners

(Referenced on 30/04/2010).
[3] PRACE brochure 2009. Online at http://www.prace-

project.eu/documents/PRACE_brochure_09.pdf
(Referenced on 30/04/2010).

[4] Software enabling for Petaflop/s systems. Online at
http://www.prace-project.eu/activities/work-package-6

(Referenced on 30/04/2010).
[5] Press release: PRACE Benchmark Suite Finalised.

Online at http://www.prace-project.eu/documents/press-
releases-pdfs/prace_benchmark_pr.pdf (Released on

15/02/2010; Referenced on 30/04/2010).
[6] Louhi User’s Guide, the 2

nd
 Edition. Online at

http://www.csc.fi/english/pages/louhi_guide (Referenced
on 30/04/2010).

[7] NAMD2: Greater Scalability for Parallel Molecular

Dynamics, L. Kalé, et al., Journal of Computational

Physics 151, 283 (1999)
[8] Scalable Molecular Dynamics with NAMD, J.

Phillips, et al., Journal of Computational Chemistry 26,
1781 (2005)

[9] Charm++: Parallel Programming with Message-

Driven Objects, L. Kalé, S.Krishnan, in: Parallel

Programming using C++, by G.V. Wilson and P. Lu.
MIT Press, 175 (1996)

[10] Peter Coveney, Shunzhou Wan, private
communication

[11] Peter Coveney, private communication
[12] http://www.ks.uiuc.edu/Research/namd/wiki/index.cg

i?NamdMemoryReduction
[13] An Investigation of Simultaneous Multithreading on

HPCx, Alan Gray et al., HPCx technical report,
http://www.hpcx.ac.uk/research/hpc/tech
nical_reports/HPCxTR0604.pdf

[14] Understanding Application Performance on Three

Predominant Supercomputer Architectures: Intrepid,

Ranger and Jaguar, using Micro-benchmark, Abhinav
Bhatele et al., Preprint, PPL Paper: 10-03,
http://charm.cs.illinois.edu/papers/Per
fCompIJHPCA10.shtml

[15] Numerical integration of the time-dependent

Schrödinger equation for laser-driven helium, Edward S.

Smyth, Jonathan S. Parker, K.T. Taylor, Computer

Physics Communications 114 (1998) 1-14.

