PRACE Application Enabling Work at EPCC

Xu Guo Applications Consultant EPCC, The University of Edinburgh xguo@epcc.ed.ac.uk +44 131 651 3530

Outline

- PRACE project overview
- Application enabling work @ EPCC:
 - NAMD
 - HELIUM
- Summary

Outline

PRACE project overview

- Application enabling work @ EPCC:
 - NAMD
 - HELIUM
- Summary

PRACE Application Enabling Work at EPCC

PRACE

- Partnership for Advanced Computing in Europe
 - Aims to provide the European researches with a persistent pan-European HPC service to enable world-class science, consisting of several tier-0 centres
- EU approved the PRACE Project Preparatory Phase (Grant: INFSO-RI-211528)
 - Project duration: January 2008 December 2009
 - Project budget: 20 M € , EC funding: 10 M €
 - Original 16 partners from 14 countries
 - By the end of 2009, 20 countries involved in and more are interested
- The Implementation Phase will start from June, 2010

PRACE Project Preparatory Phase

- Objective
 - Perform all legal, administrative, and technical work to create a legal entity and start providing Tier-0 HPC services in 2010
- PRACE project tasks in Preparatory Phase
 - Define the legal & administrative framework (WP2)
 - Dissemination, outreach & training (WP3)
 - Cooperate with the European HPC ecosystem (WP2/3)
 - Distributed computing (WP4)
 - Prototype system assessment (WP5)
 - Software enabling for prototype systems (WP6)
 - Procurement strategy: Petaflop/s systems for 2009/2010 (WP7)
 - Future Petaflop/s technologies, vendor cooperation (WP8)

PRACE WP6 in Preparatory Phase

- WP6: Software enabling for Petaflop/s systems
 - Worked closely with other work packages
- Primary goal
 - To identify and understand the software libraries, tools, benchmarks and skills required by users to ensure that their application can use a Petaflop/s system productively and efficiently.
- The largest technical activity in PRACE Preparatory Phase
 - Most of the PRACE partners involved in
 - EPCC carried the overall responsibility for WP6 and was heavily involved in the technical work

PABS

- PRACE Application Benchmark Suite
 - A set of representative applications benchmarks
 - To be used in the procurement process for Petaflop/s systems
 - ALYA, AVBP, BSIT, Code_Saturne, CPMD, CP2K, ELMER, GADGET, GPAW, GROMACS, *HELIUM*, *NAMD*, NEMO, NS3D, OCTOPUS, PEPC, QCD, Quantum_Espresso, SPECFEM3D, TORB/EUTERPE, TRIPOLI-4, and WRF
- Each application was ported to appropriate subset of prototypes
 - To capture the applications requirements for petascale systems
- Scalability and optimisation strategies were investigated

Prototypes for Petaflop/s Systems in 2009/2010

IBM BlueGene/P (FZJ) 0.85 GHz, PowerPC 450, 4 way 01-2008 / 06-2009 IBM Power6 (SARA) 4.7GHz Pwr6, 32 way, SMT, IB 07-2008

Cray XT5 (CSC) 2.3 GHz Barcelona, 8 way 2.7 GHz Shanghai, 8 way 11-2008

IBM Cell/Power (BSC) 12-2008

NEC SX9, vector part (HLRS) 02-2009

Intel Nehalem/Xeon (CEA/FZJ) 2.93 GHz Nehalem, dual socket quad-core Nodes, IB 06-2009

PRACE Application Enabling Work at EPCC

Outline

- PRACE project overview
- Application enabling work @ EPCC:
 - NAMD
 - BCO: Joachim Hein
 - Contributors: Martin Polak (ICA, Johannes Kepler University Linz, Austria), Paschalis Korosoglou (AUTH, Greece), Xu Guo
 - HELIUM
- Summary

NAMD Overview

- Molecular dynamics application from UIUC
- Emphasis on scalability
- Written in C++ using Charm++ parallel objects
- Domain decomposition
- Long range electro-static forces: Particle Mesh Ewald
- Load balance dynamically during first 300 steps
- Current version: NAMD 2.7 β2, released: November 2009
- For this study: 2.7 β 1, released: March 2009

Benchmark Test Cases

- Three test cases by: P. Coveney and Shunzhou Wan (UCL)
- Sizes: 1M, 2M and 9M atoms
 - TCR-pMHC-CD complexes in a membrane environment
 - Immune response research
 - Basic set of 1M atoms contains four complexes
 - Larger sets multiple copies of basic set in a box
- 2fs stepsize
- Trajectory of at least 10ns for scientific meaningful simulation (5,000,000 steps)

Resources for MPI Library on XT5

- During the load balance step, NAMD sends large number of unexpected message
- Rank 0 often fails, giving a clear error message that it has run out of buffer space for unexpected messages
- Setting (in pbs script) the following helps: export MPICH_UNEX_BUFFER_SIZE=100M export MPICH_PTL_SEND_CREDITS=-1
- Rem: 10% of available memory as MPI buffer space!

Memory Consumption

- Had memory problems on systems with 1GB/core, e.g. Louhi XT5@CSC/FI
- NAMD 2.7 β 1 offers simulation with reduced memory footprint
 - Specially build version for running, requires "vanilla" NAMD to compress input files
 - Essential for 9M atom benchmark and running 1M on 4 cores/node on BGP
- Below table for 2M atom system (CrayPat on XT5)

Number of	Memory	No Patch	Unload	Footprint	Average
tasks	reduction	on Zero	Zero	rank 0	footprint
256	No	Default	Default	1.58 GB	0.87 GB
512	No	Default	Default	1.58 GB	0.85 GB
1025	No	Default	Default	1.52 GB	0.85 GB
256	Yes	Default	Default	0.60 GB	0.44 GB
512	Yes	Default	Default	0.58 GB	0.44 GB
1025	Yes	Default	Default	0.60 GB	0.43 GB
256	Yes	Yes	Default	0.60 GB	0.43 GB
512	Yes	Yes	Default	0.58 GB	0.43 GB
1025	Yes	Yes	Default	0.59 GB	0.42 GB
256	Yes	Yes	Yes	0.56 GB	0.43 GB
512	Yes	Yes	Yes	0.60 GB	0.43 GB
1025	Yes	Yes	Yes	0.60 GB	0.42 GB

Version Performance on Cray XT5 Louhi

• NAMD 2.7b1 offers improved performance and scalability

1 Million atom system

Feasibility of A Simulation on PF system

 On a 20TF partition a 9M atom simulation is feasible (walltime of about a week)!

Opteron Performance (M1 and M2)

- Ranger executable build by NAMD authors
- Their own results (Preprint: PPL Paper: 10-03) see better scalability for Ranger over XT4 portion of Jaguar – presently reasons not understood

PRACE Application Enabling Work at EPCC

Compiler Optimisations on Cray XT5 Louhi

- Compiler: GCC 4.3.3
- Benchmark: 2 million atoms, 256 compute tasks
- Only modest sensibility to compiler optimisations

No	Compiler options	2.3GHz Barcelona	2.7GHz Shanghai			
		processor	processor			
1	-02	0.204 s	0.165 s			
2	-03	0.203 s	0.163 s			
3	-03 -funroll-loops	0.196 s	0.157 s			
4	-03 -ffast-math -static					
	-fexpensive-optimizations	0.203 s 0.160 s				
	-fomit-frame-pointer					
5	-03 -ffast-math -static					
	-fexpensive-optimizations 0.203 c 0.460 c					
	-fomit-frame-pointer	ointer U.203 S U.160 S				
	-funroll-loops					
6	-03 -funroll-loops	0.202 c	0.160 c			
	-ffast-math	0.202 5	0.100 5			
7	-03 -static					
	-fexpensive-optimizations 0466 0459 o					
	-fomit-frame-pointer 0.1305 0.1505					
	-funroll-loops					
121 20	10 DDACE Application E	appling Work at EPCC	1-2-1.			

Performance Comparison M1 Benchmark

24 May 2010

Performance Comparison M9 Benchmark

- Well rounded overall picture, apart from x86 Cluster (Nehalem/IB)
 - Machine new at the time of the test (Broken? Untuned?)
- Memory/task is still an issue (no BGP for M9, no 40TF point for Louhi)

Outline

- PRACE project overview
- Application enabling work @ EPCC:
 - NAMD
 - HELIUM
 - BCO: Xu Guo
 - Contributor: Andrew Sunderland (STFC Daresbury Laboratory, UK)
- Summary

HELIUM Overview

- Uses time-dependent solutions of the full-dimensional Schrodinger equation to simulate the behavior of helium atoms
- Developed by Queen's University Belfast
 - Has access restrictions

HELIUM Test Case

- A single Fortran 90 file with more than 14000 lines
- Using MPI parallelism
 - Total work in the whole grid space is divided into Blocks
 - Each processor works on one block
 - Multiple decomposition approaches for a fixed total problem size by changing block size and block number
- Particular parameters in source code
 - Control the simulation conditions and execution behaviour
 - E.g. the total problem size, block size, block count, required core number, I/O frequency, etc.
- Test case used in PRACE
 - Fixed problem size: 1540 grid units
 - Total time steps: 80
 - Output frequency: once every 20 time steps

Porting HELIUM to Cray XT5 Louhi

- Compiler selection
 - Pathscale Fortran 90 compiler
 - PGI: reallocation limit compiling issue with large parameter values
- Proper core numbers for execution
 - Depended on the total problem size and block number
 - Wrong core number will lead to execution failure
- Memory requirement
 - Memory limit is the key issue for porting HELIUM
 - Can be roughly estimated based on parameters in source code but no guarantee for upper requirement
 - Execution will freeze up and fail when reaching the memory limit
 - Half-populated or quad-populated may help for porting but performance could be low

Compiling Optimisations on Cray XT5 Louhi

- PathScale 3.2.0
- Higher optimisation level and tuning options
 - -02 --> -03 -OPT:Ofast
- PathScale compiler nested loop optimisations flags
 - -LNO:<suboptions>
 - Used options for loop fusion, loop unrolling, loop vectorisation
 - Others: loop fission, array padding, etc.
- Test case size of 1540 grid units on Barcelona processors

Cores	-02	-03	-O3 -OPT:Ofast:unroll_analysis=ON	
		-OPT:Ofast	-LNO:fusion=2:fission=0:full_unroll_size=2000	
			:simd=2 -LIST:all_options=ON	
630	936 s	731 s	729 s	
1540	338 s	316 s	312 s	

Reducing MPI Cost

- Removing unnecessary MPI debugging steps at the initialisation stage
 - The modifications has been merged into the latest version HELIUM by the developer
- The effect depends a lot on the system
 - MPI implementations

Cray XT5 Louhi (Barcelona)

Cores	Before	After
630	729 s	729 s
1540	312 s	311 s

IBM Power 6 Huygens

Cores	Before	After
630	714 s	712 s
1540	319 s	309 s

Merging Loops for HELIUM on Cray XT5 Louhi

- Expensive routines with multiple calculation loops
 CrayPat profiling
- Merge loops with the same boundaries together
- Loop through in a proper order
- Test case size of 1540 grid units on Barcelona processors
 - Performance improved
 - L1 / L2 cache misses reduced

Cores	Before	After
630	729 s	723 s
1540	311 s	302 s

Cores	L1 Cache misses		L2 Cache misses	
	Before	After	Before	After
630	6.62E+09	2.30E+09	2.97E+09	7.05E+08
1540	1.69E+08	1.50+E08	1.63E+08	9.02E+07

HELIUM Performance on Cray XT5 Louhi

• Test case of fixed problem size 1540 grid units

HELIUM scaling performance on Cray XT5 (Louhi)

HELIUM Scaling Cost on Cray XT5 Louhi

- Scaling Cost = Execution time * Core number
 - A horizontal cost curve implies a linear scaling

28

HELIUM cost on Cray XT5 (Louhi)

Comparison on PRACE Prototypes

• Test case of fixed problem size 1540 grid units

Summary

PRACE

- In 2008/2009, "The progress of the preparatory phase project is satisfactory in all areas" – Project review 28/10/2009, Brussels
- PRACE is ready to start the Implementation Phase in 2010
- Application enabling work @ EPCC
 - NAMD & HELIUM
 - Latest versions were ported to PRACE prototypes, including Cray XT5
 - Improved the performance and scalability
 - Both applications fit for the future petaflop systems of the forth coming phase
- EPCC is looking forward to continuing the contributions in the PRACE Implementation Phase