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ABSTRACT: Application codes in a variety of areas are being updated for performance
on the latest architectures. We describe current bottlenecks and performance improvement
areas for applications including plasma physics, chemistry related to carbon capture and
sequestration, and material science. We include a variety of methods including advanced
hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto-
parallelization compilers.
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I. INTRODUCTION

In this paper we examine three different applications and
means for improving their performance, with a particular em-
phasis on methods that are applicable for many/multicore and
future architectural designs. The first application comes from
from magnetic fusion. Here we take an important magnetic
fusion particle code that already includes several levels of
parallelism including hybrid MPI combined with OpenMP. In
this case we study how to include advanced hybrid models that
use multi-threaded MPI support to overlap communication and
computation. In the second example, we consider a portion of
a large computational chemistry code suite. In this case, we
consider what parts of the computation are good candidates for
GPU acceleration, which is one likely architectural component
on future Cray platforms. Here we show performance imple-
mentation and improvement on a current GPU cluster. Finally,
we consider an application from fluids/material science that is
currently parallelized by a standard MPI-only model. We use
tools on the XT platform to identify bottlenecks, and show how
significant performance improvement can be obtained through
optimizing library utilization. Finally, since this code is MPI-
only, we consider if this code is amenable to hybrid paralleliza-
tion and discuss potential means for including hybrid code via
automatic hybridization tools.

II. FUSION APPLICATION

A. GTS — A massively parallel magnetic fusion application

The fusion application chosen for this study is the Gyroki-
netic Tokamak Simulation (GTS) code [27], which is a global
3D Particle-In-Cell (PIC) code to study the microturbulence

and associated transport in magnetically confined fusion plas-
mas of tokamak toroidal devices. Microturbulence is a very
complex, nonlinear phenomenon that is generally believed to
play a key role in determining the efficiency and instabilities
of magnetic confinement of fusion-grade plasmas [9]. GTS
has been developed in Fortran 90 (with a small fraction coded
in C) and parallelized using MPI and OpenMP with highly
optimized serial and parallel sections; i.e., SSE instructions or
other forms of vectorization provided by modern processors.
For this paper GTS simulation runs have been conducted
simulating a laboratory-size tokamak of 0.932m major radius
and 0.334m minor radius confining a total of 2.1 billion
particles using a domain decomposition of two million grid
points on Cray’s XT4 and XT5 supercomputers.

In plasma physics applications, the PIC approach amounts to
following the trajectories of charged particles in self-consistent
electromagnetic fields. The computation of the charge density
at each grid point arising from neighboring particles is called
the scatter phase. Prior to the calculation of the forces on
each particle from the electric potential (gather phase) —
we solve Poisson’s equation for computing the field potential,
which only needs to be solved on a 2D poloidal plane1. This
information is then used for moving the particles in time
according to the equations of motion (push phase), which is
the fourth step of the algorithm.

B. The Parallel Model
The parallel model of GTS has three independent levels: (1)

GTS uses a one-dimensional (1D) domain decomposition in

1Fast particle motion along the magnetic field lines in the toroidal direction
leads to a quasi-2D structure in the electrostatic potential.



the toroidal direction (the long way around the torus). This
is the original scheme of expressing parallelism using the
Message Passing Interface (MPI) to perform communication
between the toroidal domains. Particles can move from one
domain to another while they travel around the torus — which
adds another, a fifth, step to our PIC algorithm, the shift phase.
This phase is of major interest in the upcoming sections. Only
nearest-neighbor communication in a circular fashion (using
MPI Sendrecv functionality) is used to move the particles
between the toroidal domains. It is worth mentioning that
the toroidal decomposition is limited to 64 or 128 planes,
which is due to the long-wavelength physics that we are
studying. More toroidal domains would introduce waves of
shorter wavelengths in the system, which would be dampened
by a physical collisionless damping process known as Landau
damping; i.e. leaving the results unchanged [9]. Using higher
toroidal resolution only introduces more communication with
no added benefit. (2) Within each toroidal domain, we divide
the particles between several MPI processes, and each process
keeps a copy of the local grid2, requiring the processes within
a domain to sum their contribution to the total charge density
on the grid at the end of the charge deposition or scatter
step (using MPI Allreduce functionality). The grid work (for
the most part, the field solve) is performed redundantly on
each of these MPI processes in the domain and only the
particle-related work is fully divided between the processes.
Consequently, GTS uses two different MPI communicators;
i.e., an intradomain communicator which links the processes
within a common toroidal domain of the 1D domain de-
composition and a toroidal communicator comprising all
the MPI processes with the same intradomain rank in a
ringlike fashion. (3) Adding OpenMP compiler directives to
heavily used (nested) loop regions in the code exploits the
shared memory capabilities of many of today’s HPC systems
equipped with multicore CPUs. Although of limited scalability
due to the single-threaded sections between OpenMP parallel
loops and also due to NUMA effects arising from the shared
memory regions, this method allows GTS to run in a hybrid
MPI/OpenMP mode. Addressing the challenges and benefits
involved with hybrid MPI/OpenMP computing — i.e., taking
advantage of shared memory inside shared memory nodes,
while using message passing across nodes — and applications
of new OpenMP functionality (OpenMP tasking in OpenMP
3.0 [3]), is described in the next sections. These advanced
aspects of parallel computing should be applicable to many
massively parallel codes intended to run on HPC systems with
multicore designs.

Figure 1 shows the grid of GTS following the magnetic
field lines as they are twisting around the torus as well as
the toroidal domain decomposition of the torus. The two
cross sections demonstrate contour plots of density fluctua-
tions driven by Ion Temperature Gradient-Driven Turbulence

2Recently, research has been carried out to investigate different forms of
grid decomposition schemes — ranging from the pure MPI implementation
to the purest shared memory implementation using only one copy of the grid,
and all threads must contend for exclusive access [20].

Fig. 1. GTS’ toroidal domain decomposition with magnetic field lines and
density fluctuations

(ITGDT) [17], which is supposed to cause the experimentally
observed anomalous loss of particles and heat at the core
of magnetic fusion devices such as tokamaks. Blue and red
areas in the cross sections denote lower (negative) and higher
(positive) fluctuation densities, respectively. These fluctuations
attach to the magnetic field lines — a typical characteristic of
plasma turbulence in tokamak reactors.

In the following, we focus on one particular step of GTS
— the shifting of particles between toroidal domains — and
discuss how to exploit new OpenMP functionality, which will
be substantiated with performance results on our Cray XT
machines at NERSC at the end.

C. The GTS Particle Shifter & how to fight Amdahl’s Law

The shift phase is an important step in the PIC simulation.
After the push phase, i.e., once the equations of motion for
the charged particles are computed, a significant portion of the
moved particles are likely to end up in neighboring toroidal
domains. (Ions and electrons have a separate pusher and shift
routines in GTS.) This shift of particles can happen to the
adjacent or even to further toroidal domains of the tokamak
and is implemented with MPI Sendrecv functions operating
in a ring-like fashion. The amount of shifted particles as well
as the number of traversed toroidal domains depends on the
toroidal domain decomposition coarsening (mzetamax), the
time step resolution (tstep), and the number of particles per
cell (micell); all of which can be modified in the input file
processed by the GTS loader.

The pseudo-code excerpt in Listing 1 highlights the major
steps in the original shifter routine. The most important steps
in the shifter are iteratively applied and correspond to the
following: (1) checking if particles have to be shifted, which
is communicated by the allreduce call — Lines 3 to 10 in
Listing 1; (2) reordering the particles that keep staying on
the domain — Line 23 in Listing 1; (3) packing and sending
particles to left and right by MPI Sendrecv calls — Lines 13
to 20 and Lines 26 to 32 in Listing 1; and (4) incorporating
shifted particles to the destination toroidal domain (the two
loops at the end of the shifter) — Lines 35 to 43 in Listing 1.

The shifter routine involves heavy communication due to
the MPI Allreduce and especially because of the ring-like



1do i t e r a t i o n s =1 ,N
! compute p a r t i c l e s t o be s h i f t e d

3! $omp p a r a l l e l do
s h i f t p = p a r t i c l e s t o s h i f t ( p a r r a y ) ;

5
! communicate amount o f s h i f t e d

7! p a r t i c l e s and r e t u r n i f e q u a l t o 0
s h i f t p =x+y

9MPI ALLREDUCE( s h i f t p , s u m s h i f t p ) ;
i f ( s u m s h i f t p ==0) { re turn ; }

11
! pack p a r t i c l e t o move r i g h t and l e f t

13! $omp p a r a l l e l do
do m=1 , x

15s e n d r i g h t (m)= p a r r a y ( f (m) ) ;
enddo

17! $omp p a r a l l e l do
do n =1 , y

19s e n d l e f t ( n )= p a r r a y ( f ( n ) ) ;
enddo

21
! r e o r d e r r e m a i n i n g p a r t i c l e s : f i l l h o l e s

23f i l l h o l e ( p a r r a y ) ;

25! send number o f p a r t i c l e s t o move r i g h t
MPI SENDRECV( x , l e n g t h = 2 , . . ) ;

27! send t o r i g h t and r e c e i v e from l e f t
MPI SENDRECV( s e n d r i g h t , l e n g t h =g ( x ) , . . ) ;

29! send number o f p a r t i c l e s t o move l e f t
MPI SENDRECV( y , l e n g t h = 2 , . . ) ;

31! send t o l e f t and r e c e i v e from r i g h t
MPI SENDRECV( s e n d l e f t , l e n g t h =g ( y ) , . . ) ;

33
! add ing s h i f t e d p a r t i c l e s from r i g h t

35! $omp p a r a l l e l do
do m=1 , x

37p a r r a y ( h (m) ) = s e n d r i g h t (m) ;
enddo

39! add ing s h i f t e d p a r t i c l e s from l e f t
! $omp p a r a l l e l do

41do n =1 , y
p a r r a y ( h ( n ) ) = s e n d l e f t ( n ) ;

43enddo
}

Listing 1. Original GTS shift routine

MPI Sendrecv at every iteration step in each shift phase,
where several iterations per shift phase are likely to occur.
In addition, intense computation is involved mostly because
of the particle reordering that occurs after particles have been
shifted and incorporated into the new toroidal domain respec-
tively. Note, that billions of charged particles are simulated in
the tokamak causing approximately to the order of millions
particles to be shifted at each shifter phase.

While most of the work on the particle arrays can be straight
forward parallelized with OpenMP worksharing constructs on
the loop level, a substantial amount of time is still spent in non-
parallelizable (single-threaded) particle array work (sorting)
and in the MPI communication which is processed sequentially
by the master thread in our hybrid parallel model. Figure 2(a)
demonstrates in a high-level view the original MPI/OpenMP

! $omp p a r a l l e l
2! $omp m as t e r

do i =1 ,N
4MPI Al l reduce ( in1 , out1 , l e n g t h , MPI INT ,

MPI SUM,MPI COMM WORLD, i e r r o r ) ;
6! $omp t a s k

MPI Al l reduce ( in2 , out2 , l e n g t h , MPI INT ,
8MPI SUM,MPI COMM WORLD, i e r r o r ) ;

! $omp end t a s k
10enddo

! $omp end m as t e r
12! $omp end p a r a l l e l

Listing 2. Overlap MPI Allreduce with MPI Allreduce

hybrid approach with its serial and parallel work sections at
each MPI process implemented in GTS. Hence, the expected
parallel speed-up for the shift routine — as well as of any
other parallel program following this hybrid approach — is
strictly limited by the time needed for the sequential fraction
of this section the MPI task; a fact that is widely known as
Amdahl’s law.

The goal is to reduce the overhead of the sequential parts
as much possible by overlapping MPI communication with
computation using the new OpenMP tasking functionality3. In
order to detect overlappable code regions and for preserving
the original semantic of the code, we (manually) look for
data dependencies on MPI statements and surrounding com-
putational statements before code transformations are applied.
Figure 2(b) gives an overview of the new hybrid approach
where MPI communication is executed while independent
computation is performed using OpenMP tasks. It can be
easily seen from Figure 2 that the runtime of our application
following the new approach is reduced approximately (add
OpenMP tasking overhead) by the costs of the MPI communi-
cation represented by the dashed arrow. Below we will present
three optimizations to the GTS shifter:

(1) We overlap the MPI Allreduce call at Line 9 from
Listing 1 with the two loops from Lines 14 and 18. We
preserve the original semantics of the program since the
packing of particles is independent on the output parameter
of the MPI Allreduce call. The transformed code segments
are shown in Listing 3, where we used OpenMP tasks
to overlap the MPI function call. Note, that shifting the
MPI Allreduce call below the two loops does not add extra
overhead. Note, the program leaves that function in case of
sum shift p == 0 and so, the packing statements right
after the MPI Allreduce call in the original code could be
pointlessly executed. However, unnecessary computation is not
the case because of x == y == 0 for each MPI process in
case of sum shift p == 0.

The master thread encounters (due to statement at Line
3 from Listing 3 only the thread with id 0 executes the

3OpenMP version 3.0 introduces the task directive, which allows the
programmer to specify a unit of parallel work called an explicit task which
express unstructured parallelism and define dynamically generated work units
that will be processed by the team [3].



(a) Original MPI/OpenMP hybrid model (b) MPI/OpenMP hybrid model using OpenMP tasks to overlap MPI

Fig. 2. Two different hybrid models in GTS using standard OpenMP worksharing (a) or the newly introduced OpenMP tasks to execute MPI communication
while performing computation (b).

s h i f t p =x+y
2! $omp p a r a l l e l

! $omp m as t e r
4! $omp t a s k

do m=1 , x
6s e n d r i g h t (m)= p a r r a y ( f (m) ) ;

enddo
8! $omp end t a s k

! $omp t a s k
10do n =1 , y

s e n d l e f t ( n )= p a r r a y ( f ( n ) ) ;
12enddo

! $omp end t a s k
14

MPI ALLREDUCE( s h i f t p , s u m s h i f t p ) ;
16! $omp end m as t e r

! $omp end p a r a l l e l
18i f ( s u m s h i f t p ==0) { re turn ; }

Listing 3. (1) Overlap MPI Allreduce in the GTS shifter

highlighted regions) the tasking statements and creates work
for the thread team for deferred execution; whereas the
MPI Allreduce call will be immediately executed, which gives
us the overlap. Note, that the underlying MPI implementation
has to support at least MPI THREAD FUNNELED as thread-
ing level in order to allow the master thread in the OpenMP
model performing MPI calls4.

However, the presented solution in Listing 3 is heavily
unbalanced (because of x 6= y; and the costs for the
MPI Allreduce call is usually lower than the time needed for
the loop computation) and does not provide any work for more
than three threads per MPI process. For this we subdivided
the tasks into smaller chunks to allow better load balancing
and scalability among the threads. This is shown in Listing 4
where the master thread generates multiple tasks with loops to
the extent of stride. Listing 4 has now four loops because of
the remaining computation in the two additional loops to the

4To determine the level of thread support from the current MPI library one
can execute MPI Init thread instead of MPI init.

i n t e g e r s t r i d e =1000
2! $omp p a r a l l e l

! $omp m as t e r
4! pack p a r t i c l e t o move r i g h t

do m=1 , x−s t r i d e , s t r i d e
6! $omp t a s k

do mm=0 , s t r i d e −1 ,1
8s e n d r i g h t (m+mm)= p a r r a y ( f (m+mm) ) ;

enddo
10! $omp end t a s k

enddo
12! $omp t a s k

do m=m, x
14s e n d r i g h t (m)= p a r r a y ( f (m) ) ;

enddo
16! $omp end t a s k

! pack p a r t i c l e t o move l e f t
18do n =1 , y−s t r i d e , s t r i d e

! $omp t a s k
20do nn =0 , s t r i d e −1 ,1

s e n d l e f t ( n+nn )= p a r r a y ( f ( n+nn ) ) ;
22enddo

! $omp end t a s k
24enddo

! $omp t a s k
26do n=n , y

s e n d l e f t ( n )= p a r r a y ( f ( n ) ) ;
28enddo

! $omp end t a s k
30MPI ALLREDUCE( s h i f t p , s u m s h i f t p ) ;

! $omp end m as t e r
32! $omp end p a r a l l e l

i f ( s u m s h i f t p ==0) { re turn ; }
Listing 4. (2) Overlap MPI Allreduce in the GTS shifter

extent of (x MOD stride) and (y MOD stride) respectively.
(2) Applying similar tasking techniques enables us to over-

lap the computation intense particle reordering from Line 23
of the original code in Listing 1 with communication intense
MPI Sendrecv statements from Lines 26, 28 and 30 of List-
ing 1. Since the particle ordering of remaining particles and the



1! $omp p a r a l l e l
! $omp m as t e r

3! $omp t a s k
f i l l h o l e ( p a r r a y ) ;

5! $omp end t a s k

7MPI SENDRECV( x , l e n g t h = 2 , . . ) ;
MPI SENDRECV( s e n d r i g h t , l e n g t h =g ( x ) , . . ) ;

9MPI SENDRECV( y , l e n g t h = 2 , . . ) ;
! $omp end m as t e r

11! $omp end p a r a l l e l
}

Listing 5. Overlap particle reordering in the GTS shifter

! $omp p a r a l l e l
2! $omp m as t e r

! add ing s h i f t e d p a r t i c l e s from r i g h t
4do m=1 , x−s t r i d e , s t r i d e

! $omp t a s k
6do mm=0 , s t r i d e −1 ,1

p a r r a y ( h (m) ) = s e n d r i g h t (m) ;
8enddo

! $omp end t a s k
10enddo

! $omp t a s k
12do m=m, x

p a r r a y ( h (m) ) = s e n d r i g h t (m) ;
14enddo

! $omp end t a s k
16

MPI SENDRECV( s e n d l e f t , l e n g t h =g ( y ) , . . ) ;
18! $omp end m as t e r

! $omp end p a r a l l e l
20

! add ing s h i f t e d p a r t i c l e s from l e f t
22! $omp p a r a l l e l do

do n =1 , y
24p a r r a y ( h ( n ) ) = s e n d l e f t ( n ) ;

enddo

Listing 6. Overlap MPI Sendrecv in the GTS shifter

sending or receiving of shifted particles is independently exe-
cuted, the optimized code shown in Listing 5 does not change
the semantics of the original GTS shifter. In the new code from
Listing 5 any thread in the team does the reordering (alone!)
while the master thread takes care of the MPI statements
(again, at least MPI THREAD FUNNELED has to be sup-
ported by the MPI library); which does not keep all the threads
per MPI process busy (in case OMP NUM THREADS
≥ 3), but still significantly speeds up the sequential code as
we will demonstrate at the end of the section.

(3) The careful reader might have noticed that the code
excerpt from Listing 1 only shows three MPI Sendrecv while
the original shift routine in Listing 1 depicts four of them.
Since the three MPI Sendrecv statements from Listing 5 are
potentially more time consuming than the particle reordering
(because of the middle MPI Sendrecv of Line 8 in Listing 5
sending a large array), we can overlap the fourth original
MPI Sendrecv of Line 32 in Listing 1 with the data inde-

pendent part of the remaining computation of the shifter, i.e.,
the loop from Line 36 in Listing 1 by using, again, the newly
introduced OpenMP tasking functionality. This results into the
code excerpt from Listing 6, where the second last loop from
Line 36 in Listing 1 has been overlapped with the fourth
MPI Sendrecv of Line 32 in Listing 1. Similar to the previous
code optimization from Listing 4 the master threads creates
multiple tasks for the loop from Line 36 in Listing 1 in order
to keep all the threads in the team busy while the master thread
is responsible for sending and receiving data from neighboring
MPI processes.

To sum up, by applying those three code transformations
we are able to overlap all (iteratively called) MPI functions
from the original shifter routine of GTS from Listing 1. We
are aware of the fact that for different parts of GTS or other
MPI parallel applications such optimizations cannot always
be applied due to complicated data dependencies. However,
the aim of these code examples starting from Listing 4 to
Listing 6 is to discuss these new optimization possibilities
provided by OpenMP tasks. The presented techniques, i.e.,
overlapping (collective) MPI communication with computa-
tion, has not been the design incentive in the first place of the
new tasking model, but we believe that it can play an important
role in many of future HPC systems based on the hybrid
MPI/OpenMP programming models. For the sake of complete-
ness we want to mention that nonblocking collective MPI
communication, e.g., non blocking allreduce communication
(MPI Iallreduce) are in the process of being standardized in
the upcoming MPI 3.0 standard [21]. Nonblocking collective
operations are already provided by libNBC [12], a portable
implementation of nonblocking collective communication on
top of MPI-1 which acts as the reference implementation for
the proposed MPI 3.0 functionality currently under consider-
ation by the MPI Forum. However, libNBC is restricted to a
few HPC platforms and also exhibits some overhead as seen
in previously performed research. In addition, we also see a
benefit in using OpenMP tasking to overlap collective MPI
communication regarding code portability since the optimized
code will run on any system with MPI even if OpenMP support
is not given, whereas libNBC is likely to be having made
available on a new system which might be difficult in a lot
of cases. Finally, it should be remarked that also OpenMP
tasking involves some extra overhead. Which approach —
using OpenMP tasking or new MPI nonblocking collectives
— performs best remains to be seen once the new MPI 3.0
version is available.

In the next section we will present performance results of
the above mentioned code transformations and compare them
to the results gathered when executing the original code.

D. Performance Results

The following experiments have been carried out at
NERSC’s Franklin — a Cray XT4 system having 9572 com-
pute nodes with each node consists of a 2.3 GHz single socket
quad-core AMD Opteron processor (Budapest) — and Hopper
— a Cray XT5, which in the current phase I has 664 compute
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Fig. 3. Evaluation of MPI/OpenMP hybrid model with GTC on Hopper.

nodes each containing two 2.4 GHz AMD Opteron quad-
core processors — machines. The second phase of Hopper,
arriving in Fall 2010, will be combined with an upgraded
phase 1 to create NERSC’s first peta-flop system with over
150000 compute cores. On Franklin we use the Cray Compiler
Environment (CCE) version 7.2.1 and the Cray supported MPI
library version 4.0.3 based MPICH2. On Hopper CCE version
7.1.4.111 and Cray MPICH2 version 3.5.0 is used.

1) Benefits & Limitations of hybrid Computing: Before we
present runtime numbers of the OpenMP tasking optimiza-
tions, we want to address the benefits and limitations of the
hybrid approach on the Gyrokinetic Toroidal Code (GTC) [8],
another global gyrokinetic PIC code, which shares the similar
architecture to the GTS code discussed in this paper, and
uses the same parallel model. Therefore, the following study
for GTC also applies to GTS. Figure 3 illustrates runtime
numbers of four GTC runs using the same input parameters
but varying the MPI/OpenMP ratio. All four runs are using
the same number of compute cores on Hopper. Hence, the first
group represents the runtime of GTC using a total of 192 MPI
processes where each MPI process creates 8 OpenMP threads.
Each group has eight columns reflecting the overall walltime,
which is the aggregation of the remaining seven columns, i.e.,
the PIC steps in GTC. The second group depicts experiments
with a total of 384 MPI processes with 4 OpenMP threads
per MPI process and so forth. Figure 3 clearly demonstrates
that the hybrid approach outperforms the pure MPI approach
(the fourth group in Figure 3) because of the less MPI
communication overhead involved and better usability of the
shared memory cores on the Hopper compute node. However,
this picture also points out the limitations (using 8 OpenMP
threads per MPI process performs similar to the pure MPI
approach) to a certain number of OpenMP threads per MPI
process due to NUMA and cache effects on the AMD Opteron
system. In addition, Figure 3 shows the impact of the shift
routine to the overall runtime which denotes in this experiment
to an average of 47% — therefore, a step in the PIC method
that is worth optimizing.

2) Performance Evaluation of OpenMP tasking to overlap
communication with computation: The diagrams shown in

Figure 4 present four GTS runs with different input files and
domain decomposition executed on the Franklin Cray XT 4
machine. Figure 4(a) gives the breakdown of the runtime for
the GTS shift routine with the torus divided up into 128
domains, where each toroidal section is further partitioned into
2 poloidal sections. The first two bars compare the overall
runtime of the shifter using the optimized version (shown
in dark gray) with the original one (light gray). The other
three groups compare the runtime of the three previously
introduced code pieces using OpenMP tasks with their original
counterparts from Listing 1: ”Allreduce” reflects the timing for
the code shown Listing 4, ”FillingHole” corresponds to the
code from Listing 5 and ”SendRecv” is the measurement for
Listing 6. Those three parts together with other computation
on the particle arrays (as indicated at Line 4 in the original
code shown in Listing 1) add up to the numbers presented
in the ”Shifter” group. Besides that different input settings
(e.g., varying the number of particles per cell) have been used
to generate Figures 4(a) to Figures 4(d), the main difference
is that the number of poloidal domains (npartdom) goes
from 2 to 16. As indicated in the introduction of the parallel
model of GTS in section II-B, all the MPI communication in
the shift phase uses a toroidal MPI communicator, which is
constant of size 128 in the four presented figures. However, as
it can be seen from Figure 4, it clearly makes a difference if
particles are shifted in the 128-MPI-processes-toroidal-domain
of a GTS run with an overall usage of 256 MPI processes
(Figure 4(a)) than in a 128-MPI-processes-toroidal-domain of
a GTS run with a total of 2048 MPI processes (Figure 4(d)).
This is mainly because the MPI processes part of the toroidal
MPI communicator in larger MPI runs of GTS are physically
further away from each other than in a GTS run with fewer
MPI poloidal domains; hence, causing more burden on the
Cray Seastar interconnect to sending messages. The speed
up, or to put it in other words, the difference between the
dark gray bar and the light gray bar, for each phase in the
shifter is the time consumed by the MPI communication which
is overlapped in the newly introduced shifter steps (to sim-
plify matters, neglecting the overhead involved with OpenMP
tasking and assuming that the costs of loops workshared
with traditional ”omp parallel do” statements is the same
as processing those loops workshared with OpenMP tasks.).
Moreover, we can observe that the benefit of the ”SendRecv”
optimization (Listing 6) also depends on the number of MPI
domains. While Figures 4(a) to Figures 4(c) show no or
only marginal performance benefits, the speed-up due to the
”SendRecv” optimization is about 18% in Figure 4(d) which
represents a 2048 MPI processes run. The tremendous speed
up due to the ”Allreduce” optimization from Listing 5 (more
than 100%) in the 1024 MPI processes run is pleasant, but
is likely to be just a positive outlier and requires further
investigation.

Next, we want to conclude our experiments with a dis-
cussion about the overlapping of MPI communication with
consecutive, independent MPI communication.
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Fig. 4. Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI process with varying domain decomposition and particles per cell
on Franklin showing that MPI communication can be successfully overlapped with independent computation using OpenMP tasks.

1! $omp p a r a l l e l
! $omp m as t e r

3do i =1 ,N
MPI Al l reduce ( in1 , out1 , l e n g t h , MPI INT ,

5MPI SUM,MPI COMM WORLD, i e r r o r ) ;
! $omp t a s k

7MPI Al l reduce ( in2 , out2 , l e n g t h , MPI INT ,
MPI SUM,MPI COMM WORLD, i e r r o r ) ;

9! $omp end t a s k
enddo

11! $omp end m as t e r
! $omp end p a r a l l e l

Listing 7. Overlap MPI Allreduce with MPI Allreduce

3) Overlap communication with communication: Going
one step further in reducing the time spent in sequentially5

executed MPI communication, we want to show early results
of experiments with overlapping of MPI communication with
other MPI communication succeeding in the control flow of
the parallel program that is data independent on the preced-
ing one. Examples in GTS are the consecutive independent
MPI Sendrecv statements in the shifter from above and four

5In the hybrid MPI/OpenMP programming model the remaining cores are
idle when one core executes an MPI command.

consecutive independent MPI Allreduce calls in the ion pusher
phase.

Figure 5 presents runtime comparisons of succeeding and
independent MPI Allreduce calls with varying messages sizes.
Figure 5(a) and Figure 5(b) show the time it takes with 1024
MPI process (2 OpenMP threads per MPI process), 512 MPI
processes (4 OpenMP threads per MPI process) and 256 MPI
processes (8 OpenMP threads per MPI process) to execute the
code shown in Listing 7, which is highlighted in dark gray
bars and compare it with the costs of processing the code
from Listing 7 without OpenMP compiler support, i.e., without
the overlap. Consequently, the number of used CPU cores is
constant (==2048) in these experiments. Figure 5(a) reflects
a run with MPI Allreduce calls of just one integer variable
whereas Figure 5(b) shows results for MPI Allreduce calls
of an integer array of size 100. While no performance gain
can be observed in the experiment with allreduces of size 1
(Figure 5(a)), we can see a slight overlap in Figure 5(b) for
the 4- and 8-OpenMP-threads run. The run with 4 OpenMP
threads is of major interest since it reflects the recommended
MPI/OpenMP ratio for production runs on Hopper, which
can been verified when looking at GTS performance results
on Hopper in Figure 3. However, we also see that no full
overlap could be achieved, but expect better threading support
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Fig. 5. Performance evaluation for overlapping execution of two consecutive MPI Allreduce calls on Hopper.

from upcoming MPI libraries. We are aware of the fact that
100% overlap is impossible to achieve due to the sequential
nature of communication in a single network, but these early
experimental data has already demonstrated that some (to the
programmer invisible) steps of the MPI Allreduce call can
be successfully overlapped. Moreover, with optimal support
of the MPI THREAD MULTIPLE threading level in MPI
libraries such as already implemented in MPICH2 — where
any thread can call MPI functions at any time — we expect
a significant performance gain in (partially) overlapping more
consecutive independent collective MPI function calls (e.g.,
the four consecutive independent MPI Allreduce calls occur-
ring in the ion pusher phase of GTS) in a hybrid programming
model since future systems will have hardware support for
multiple, concurrent communication channels per node [25].
Similar experiments to the one shown in Listing 7 have been
conducted on Hopper with consecutive MPI Sendrecv calls
achieving similar same speed-ups.

E. Conclusion

Summing up, we have demonstrated that overlapping MPI
communication with independent computation by the newly
introduced OpenMP tasking model has a large potential, espe-
cially for massively parallel applications such as GTS scaling
up to several thousands of compute cores. Consequently we
believe that similar strategies can be applied to other massively
parallel codes running on cluster equipped with multicore
processors. As collective and/or point-to-point time increas-
ingly becomes a bottleneck on future HPC clusters comprising
thousands of multicore processors, using threading to keep
the number of MPI processes per node to a minimum and to
overlap — if possible — those MPI calls with independent
surrounding statements is a promising strategy. Furthermore,
we showed early experimental data of overlapping MPI com-
munication with independent MPI communication, which we
believe to be another valuable feature for future multicore HPC
systems. Finally, we point out the presented code transfor-
mations and data dependence analysis have been manually
carried out and could be performed by automated source-

to-source translating compilers such as the ROSE compiler
framework [22] using static analysis techniques to guide subse-
quent code optimizations. The ROSE compiler framework will
be introduced in more detail in section IV-E of the material
modeling application.

III. CHEMISTRY APPLICATION

A. Introduction

Q-Chem is a computational chemistry software that spe-
cializes in quantum chemistry calculations, which includes
Hartree-Fock (HF), density functional theory (DFT), coupled
cluster (CC), configuration interaction, and Møller-Plesset per-
tubation theory. Many of these calculation methods provides
researchers with the ability to accurately predict molecular
equilibrium structures, which entails minimizing energy with
respect to atomic positions. Due to the extreme reliability of
these theoretical predictions, they can be considered suitable
alternatives to experimental structure determination. In this
paper, we focus on the second-order Møller-Plesset perturba-
tion theory (MP2), which initially starts off with the mean-
field HF approximation [1] and treats the correlation energy
via Rayleigh-Schrödinger perturbation theory to the second
order [19]. More specifically, we focus on a MP2 method that
utilizes the resolution-of-the-identity (RI) approximation [18],
in which the incorporation of the RI-approximation into the
MP2 theory (RI-MP2) results in usage of auxiliary basis set
to approximate charge distributions, subsequently reducing the
computational cost of the MP2 method.

Compared to DFT, which is a popular alternative method
used to conduct electronic structure calculations, RI-MP2 does
not suffer from the self-interaction problem [15] and can
account for 80-90% of the correlation energy [14]. Moreover,
geometry optimizations using MP2 methods have generated
equilibrium structures more reliable than HF, popular DFT al-
ternatives and in some cases even CCSD. Unfortunately, there
exists a fifth-order computational dependence on the system
size when the MP2 and RI-MP2 theory is formulated in a basis
of orthonormal set of eigenfunctions that diagonalize the Fock
matrix. Comparatively, DFT methods can demonstrate nearly



linear scaling for reasonably extended molecular systems,
which is a major reason why DFT remains more popular. Thus,
in order to obtain RI-MP2 geometry optimizations for large
molecular systems in a reasonable time, we need to explore
ways to cut down on the computational cost. In this work,
we utilize graphics processor units (GPU) to speed up the
RI-MP2 energy gradient calculations. Similar work has been
conducted on the RI-MP2 energy calculation and a speedup
of 4.3x has been observed in single point energy calculations
of linear alkanes [26]. Compared to the CPU, more transistors
in GPUs are devoted to data processing as opposed to cache
memory and flow control. As such, there exists potential for
massive parallelism within the GPUs and applications that can
be easily formatted into the SIMD (single instruction, multiple
data) instructions can benefit greatly from using GPUs.

B. GPU RI-MP2 gradient algorithm

In this section, we first explain the CPU algorithm used
in Q-Chem, analyze the computational cost associated with
the different steps of the current program, and finally provide
an alternative GPU algorithm. In Q-Chem, the CPU RI-MP2
gradient code works under following constraints: quadratic
memory, cubic disk storage, quartic I/O requirements, and
quintic computational cost with respect to system size. We
adhered to these constraints while optimizing for the com-
putational cost. The initial RI-MP2 gradient algorithm (while
omitting the self-consistent field (SCF) procedure) consists of
seven major steps: (1) RI-overhead: formation of the (P |Q)−1

matrix, (2) construction and storage of the three-centered
integrals in the mixed canonical MO basis/auxiliary basis:
(ia|P ) (3) construction of the CQia matrix, (4) assembly of
the ΓQia (i.e. RI-MP2 correction to the two particle density
matrix), P (2)

ca (i.e. virtual-virtual correction to the one-particle
density matrix), and P

(2)
kj (i.e. active-active correction to the

one-particle density matrix), (5) construction of ΓRS (i.e.
the RI-MP2 specific two-particle density matrix), (6) ΓQia
transposition, and (7) assembly of the L, P , and W matrices;
solution of the Z-vector equation and final gradient evaluation.

TABLE I
STEP4, STEP7, AND TOTAL WALL TIME IN SECONDS

n = 1 n = 2 n = 4 n = 8 n = 16
step4 2.1 21.5 485.3 4993.8 80913.1
step7 21.6 112.1 455.6 1737.9 11532.5
total 66.0 264.7 1289.1 7102.4 96901.9

Figure 6 provides proportional wall times for each one of
the aforementioned steps for different glycine-n molecules for
n = 1, 2, 4, 8, and 16 with cc-pVDZ correlation-consistent
basis sets. All of these initial simulations were conducted on
the Greta cluster, which consists of AMD quad-core Opteron
processors. From the figure, we can see that as the system size
increases, time spent in step 4 becomes proportionally larger.
For example, for glycine-16 (115 atoms) input, 83% of the
total RI-MP2 routine wall time is spent in step 4. Subsequently,

we focus our effort to reduce the step 4 computation time.
For large size molecules, step 7, which finalizes the gradient
evaluation occupies the next largest step time and we list the
total times in Table I for various glycine molecules.

Next, we further analyze what is actually happening in the
step 4 portion of the code. Step 4 consists of assembly of ΓQia,
P

(2)
ca , and P

(2)
kj matrices, which are obtained from BLAS 3

matrix matrix multiplications and entail quintic computational
efforts due to iterations over all i and j. In addition, there
exists three quartic I/O steps, which are needed to construct
the core quantities described above as unfortunately for large
molecules, we cannot fit all the necessary data into CPU
memory all at once and thus need to read and write into
temporary files stored in the hard drive as the code progresses.
Here is a more detailed look at the algorithm involved in this
step [5], which is also included in the CPU RI-MP2 paper.

We have converted this step 4 CPU routine to CPU+GPU
CUDA C routine. For our numerical simulations, we have
used the Tesla/Turing GPU cluster at NERSC, which is a
testbed consisting of two shared-memory nodes named Tesla
and Turing. Each are Sun SunFire x4600-M2 servers with
8 AMD quad-core processors, 256 GB shared memory with
the two nodes sharing an NVidia QuadroPlex 2200-S4, which
contains four NVidia FX-5800 Quadro GPUs, with each GPU
having 4GB of memory and 240 CUDA parallel processor
cores.

For all simulations, we have used CUDA Toolkit and SDK
v2.3. For matrix matrix multiplications, we initially used
the CUBLAS 2.0 library but later on switched to Vasily
Volkov’s GEMM kernel given that CUBLAS cannot be called
with the asynchronous API. This is a big downside of the
current CUBLAS library and accordingly it disallows us to
concurrently copy data from CPU to the GPU (and vice versa)
while using any of the CUBLAS matrix matrix multiplications.
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Loop over active occupied orbitals, i
Load (ia|P ) ∀ a, P , given i from disk

Loop over batches of active occupied orbitals, ob

Loop over j ∈ ob
Load CPjb ∀ b, given j from disk
Make (ia|jb) = ΣP (ia|P )CPjb ∀ a, b
Make tabij = (ia||jb)/∆ab

ij ∀ a, b
Accumulate tabij ∀ a, b, j ∈ ob, given i
Increment ERI−MP2+ = 1

4 t
ab
ij (ia||jb)

Increment Pca+ = Σbt
ab
ij t

cb
ij ∀ a, c, given ij

Increment ΓPia+ = Σbt
ab
ij C

P
jb ∀ a, P , given ij

End Loop over j ∈ ob

Loop over batches of active virtual orbitals, ob
Extract tabij ∀ a ∈ vb, b, j ∈ ob, given i
Write tabij ∀ a ∈ vb, b, j ∈ ob, given i to disk

End Loop over batches of active virtual orbitals, ob

End Loop over batches of active occupied orbitals, ob

Write ΓPia ∀ a, P , given i to disk

Loop over batches of active virtual orbitals, vb
Load tabij ∀ a ∈ vb, b, j ∈ ob, given i

Loop over a ∈ vb
Extract tabij ∀ b, j, given (ia)
Increment Pkj+ = Σbt

ab
ik t

ab
ij ∀ j, k, given (ia)

End Loop over a ∈ vb

End Loop over batches of active virtual orbitals, vb
End Loop over active occupied orbitals, i

Fig. 7. Detailed look at the algorithm behind step 4

In our code, we are only interested in the double precision
matrix matrix multiplications given that extra precision is
important in most quantum chemistry calculations. Double-
precision general matrix multiply subroutines (DGEMM) are
considerably slower than the single-precision general matrix
multiply subroutines (SGEMM) (at least for non-Fermi archi-
tecture GPUs) as we obtain a maximum value of around 75
GFLOPS using the GPU as opposed to reports of around 350
GFLOPS for SGEMM. For the CUBLAS DGEMM routine,
performance numbers varied greatly depending on whether the
dimensions of the input matrices were multiples of 16 or not.
For example, upon multiplying a 4340 x 915 matrix A with
915 x 915 matrix B, we found the performance number to be
53.04 GFLOPS. On the other hand, upon multiplying a 4352
x 928 matrix A with 928 x 928 matrix B, we obtained 74.36
GFLOPS. In comparison, using Volkov’s DGEMM kernel
gave us smaller variation (73.50 and 74.77 GFLOPS for the
aforementioned cases). It’s unclear why the numbers vary so

greatly in the CUBLAS DGEMM routine but we suspect it
might be related to the fact that global memory loads and
stores by threads of a half warp (16 threads) and accordingly,
these transactions are not being properly coalesced in the
CUBLAS DGEMM routine for matrices whose dimensions
are not multiples of 16.

The step 4 algorithm can be seen in figure 7. Given that the
number of active occupied orbitals is greater than the number
of active virtual orbitals, the most computationally intensive
part of the step 4 routine occurs during the loop over j ∈ ob.
Most of this paper will concentrate on the algorithm inside this
loop. Within the j ∈ ob loop, the CPU code was transformed
into a CPU + GPU code in a following way in our initial
implementation. First, the matrix CPjb was read from hard drive
for a given j. Afterwards, the matrix, which is stored as a
one-dimensional vector, was transferred from the CPU to the
GPU memory via the PCI Express using the cudaMemcpy
CUDA kernel call. Because Tesla/Turing has a PCI Express
1.1 with only 8 lanes, the data transfer bandwidth peaked only
at around 1.4 GB/sec. A new NERSC GPU cluster called Dirac
is equipped with PCI Express 2.0 with 16 lanes so we expect
the data transfer bandwidth to be much higher in this cluster
(5 − 6 GB/sec). Unfortunately, Dirac is still undergoing its
initial configurations and unavailable to users at this moment.
Once the data is in the GPU, we call the DGEMM kernel
and obtain (ia|jb) with the matrix matrix multiplications. For
subsequent operations inside the loop, we need not transfer the
data stored in the GPU memory back to the CPU given that we
can conduct all of our operations inside the GPU. In general,
transferring data back and forth over the PCI Express lane is
costly and should be avoided as much as possible. Fortunately
in our program, we only need to transfer the GPU data back to
the CPU at the end of the loop when our work is finished. At
the end of our first implementation, the total computation cost
inside this loop for a given iteration is as follows: Ttot = Tread
+ Ttransfer + Tmm1 + Tmm2 + Tmm3 + Trest, where Tread is
the time it takes to read the matrix from the hard drive to the
CPU memory, Ttransfer is the time it takes to transfer matrix
data from the CPU to the GPU memory, Tmmi

is the time it
takes to conduct the ith matrix matrix multiplication routine,
and Trest is the time it takes to conduct other operations within
the GPU. For almost all input sizes, Trest becomes trivial as
it consists of less than 1% of Ttot.

From this initial implementation, we have made further
optimizations in the CPU + GPU step 4 routine. First,
we move the j = 0 CPjb file read routine and the j = 0
cudaMemcpy routine outside of its initial loop. Accordingly
inside the loop, we can concurrently execute the first matrix
matrix multiplication (i.e. Make (ia|jb)) in the GPU with the
loading of the second j = 1 CPjb from the hard drive. This
is possible because in CUDA, control is returned to the host
(i.e. CPU) thread before the device (i.e. GPU) has completed
its task, which allows programmers to overlap CPU work
with GPU work. This feature comes in extremely handy
especially when the GPU work is sufficiently long enough.
Next, we switch the order in evaluation of Pca and ΓPia for a



reason that will be explained subsequently. Because these two
quantities are not dependent on one another, we can safely
switch the order. Finally, we overlap evaluating Pca with a
copy routine that transfers the j = 1 CPjb from the CPU to
the GPU, keeping in mind that this data was read from the
file read routine that overlapped the first GPU matrix matrix
multiplication. In order to conduct asynchronous copies, we
have to use the CUDA driver API called cudaMemcpyAsync.
We switched the order of the matrix matrix multiplications
(Pca and ΓPia in order to avoid a data race condition that
would have resulted from using the GPU data CPjb as both an
input to a matrix matrix multiplication as well as a copied
data from the CPU. It’s important to note that in order to
utilize cudaMemcpyAsync, we need to use page-locked host
memory, which is a memory allocated on the host side via
CUDA routine (e.g. cudaMallocHost). This memory should
be conserved as too much usage results in overall degradation
in performance. Figure 8 is a flowchart of the new CPU -
GPU routine that summarizes the important algorithm. The
portion of the pseudo-code only relevant to aforementioned
discussion is shown here.

Loop over batches of active occupied orbitals, ob

Load CPjb ∀ b, for j=0 from disk
move CPjb ∀ b, for j=0 from CPU to GPU

Loop over j ∈ ob
Make (ia|jb) = ΣP (ia|P )CPjb ∀ a, b (GPU)
Load CP(j+1)b ∀ b, given j + 1 from disk (CPU)
Make tabij = (ia||jb)/∆ab

ij ∀ a, b (GPU)
Accumulate tabij ∀ a, b, j ∈ ob, given i (GPU)
Increment ERI−MP2+ = 1

4 t
ab
ij (ia||jb) (GPU)

Increment ΓPia+ = Σbt
ab
ij C

P
jb ∀ a, P , given ij (GPU)

Increment Pca+ = Σbt
ab
ij t

cb
ij ∀ a, c, given ij (GPU)

move CP(j+1)b ∀ b, for j + 1 from CPU to GPU

End Loop over j ∈ ob

Fig. 8. Step 4 CPU - GPU algorithm

At the end of our second implementation, the total wall
time inside the loop for a given iteration is as follows: Ttot '
max(Tmm1

, Tread) + Tmm2
+ max(Tmm3

, Ttransfer) + Trest.
We need not worry about the cost of initial Tread and Ttransfer
for j = 0 case given that the total number of iteration inside
the loop is large enough that this cost becomes negligible. As
system size increases, the quintic matrix matrix multiplication
calculations should dominate over the quartic I/O reads and
transfers and accordingly, these costs will go away in principle.
Unfortunately in Tesla/Turing, the lack of local scratch results
in poor I/O performance (100 − 150 MB/sec in worst case)
and subsequently, Tread becomes greater than Tmm1 for many

of our input molecules. For relatively smaller molecules, the
cache memory size is large enough that most of the data that
has been read in the ith (outermost loop) iteration is kept inside
the cache, resulting in better I/O performance and Tmm1

>
Tread. But for a system in which the size is not large enough
such that the quintic computation does not dominate the wall
time over the quartic I/O processes, the latter remains to be
a problem on Tesla/Turing. One solution to combat for poor
I/O performance is to conduct two different reads inside the
loop with each of these reads loading one half of the matrix
respectively. The second read can be overlapped with other the
2nd GPU routine inside the loop such that we can further hide
the cost incurred by the CPU. Effectively, max(Tmm1

, Tread) +
Tmm2 will become max(Tmm1 , Tread1 ) + max(Tmm2 , Tread2 ).
There are some improvements in the performance numbers as
file read is separated as such. We surmise that these problems
will go away on the new Dirac cluster with improved I/O
performance.

We can obtain a rough estimate and determine when Tread
will be comparable to Tmm1

in a following way. The matrix
CPjb has a dimension (NVirtbra, X), where NVirtbra = number
of virtual orbitals and X = number of auxiliary basis functions.
If we assign B to be the I/O bandwidth for a read operation in
GB/sec, Tread = 109B / (8·NVirtbra·X). Furthermore, matrix
(ia|P ) has dimension (NVirtbra, NVirtbra) and accordingly,
the total number of FLOP in the matrix matrix multiplication is
equal to 2(NVirtbra)(NVirtbra)(X). If we designate Bflop to be
the matrix matrix multiplication GFLOPS, Tmm1 = 109Bflop /
(2·NVirtbra·NVirtbra·X). As a result, when Tread = Tmm1

, we
have the following equality: B = 4Bflop

NV irtbra . For mid to large
size molecules such as glycine-8 and glycine-16 (58 and 115
atoms altogether), NVirtbra = 467 and 915 respectively. Given
that our peak DGEMM numbers are around 75GFLOPS, we
would need for input read bandwidth to be greater than
642MB/sec in glycine-8 and 327MB/sec in glycine-16 to avoid
I/O being the bottleneck. For the new NVidia Fermi chips, the
DGEMM performance expects to be larger and accordingly,
we will need better I/O performance as well so that the I/O
cost remains hidden.

Provided that we have excellent I/O available to us, there
exists another additional room for improvement. The term
(ia|jb) represents the two-electron integral where indices
represent virtual and active molecular orbitals. As such, (ia|jb)
is just a matrix transpose of (ja|ib) and we can reduce the
number of computation of these terms by half by storing the
(ia|jb) terms. Since these terms cannot be kept in memory
due to their large size, we can overlap GPU routines with
CPU routines that transfer data from the GPU to the CPU
memory and finally to the hard drive to keep the CPU costs
hidden. In practice, this can be done without incurring too
much additional computational cost and would result in Tmm1

reducing to 0.5Tmm1
. Unfortunately, our algorithm would

require additional quartic I/O steps and exceed the cubic disk
storage requirements, which might be problematic.
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Fig. 9. Four main routines wall times in step 4 for glycine-8 molecule

C. Results

For our results, we focus on the step 4 simulation time for
glycine-8 molecule. We compare the results obtained from the
Tesla and Turing (TnT) cluster with the ones obtained from
the Franklin (Cray XT4) cluster, which consists of 2.3GHz
single socket quad-core AMD Opterons. Specifically, we look
at the four most time-consuming routines in step 4: loading
CPjb, making (ia|jb), making Pca, and making ΓPia.

From figure 9, we see that the I/O performance in Franklin
is much better than in TnT (over 7 times faster) mostly
due to existence of local scratch on Franklin. In the GPU
routine, the load in CPjb is overlapped with the GPU making
(ia|jb) routine as mentioned in the previous section and
thus, the bottleneck becomes the I/O CPU read in the case
of glycine-8. Specifically, max(Tread, Tmm1 ) = max(912.4,
357.8) = 912.4 seconds. Just by looking at the matrix matrix
multiplication routines, there exists about 6 times improvement
in the DGEMM performance going from CPU to GPU. The
total step 4 wall time for simulations conducted on Franklin
(CPU), TnT (CPU), and TnT (CPU + GPU) are 4945, 6542,
and 1405 seconds respectively. The discrepancy in wall time
between Franklin (CPU) and TnT (CPU) comes not ony from
CPjb load but from other I/O routines not seen from 9. As it
stands, there exists about 4.7x performance improvement in
moving from CPU to the CPU + GPU routine on TnT. In
the hypothetical situation where I/O bandwidth performance
is as good in TnT as in Franklin, the CPU+GPU wall time
would drop down to around 850 seconds, which would indicate
around 5.8x improvement from the Franklin cluster and 7.7x
improvement from the current TnT cluster.

In summary, we have accelerated the Q-Chem RI-MP2 code
by utilizing both the GPU and the CPU. We identified step
4 as being the main bottleneck in the program and used
concurrent file reads with GPU matrix matrix multiplications.
We have also overlapped data transfer from the CPU memory
to the GPU memory with additional GPU matrix matrix
multiplications by using pinned memory. Overall in the TnT
cluster, I/O file read times far exceed the matrix multiplication
routines for mid to large size molecules. As seen from the
results obtained from simulating glycine-8 on the Franklin
cluster, which has local scratch, we expect the I/O read time to

be cut to zero (due to the overlap with the GPU calculations)
for clusters with better I/O.

IV. FLUID/MATERIALS APPLICATION

A. The ALE-AMR fluid/solid mechanics application for mate-
rial modeling

ALE-AMR is a new fluid/solid mechanics code that is used
for modeling materials at a wide range of temperatures and
densities [16]. This code solves the fluid equations with an
anisotropic stress tensor on a structured adaptive mesh using an
ALE (Arbitrary Lagrangian Eulerian) method combined with
a structured dynamic adaptive mesh interface. Its basic method
for combining ALE with AMR is based on an algorithm first
suggested by Anderson and Pember [2]. Here, AMR stands
for Adaptive Mesh Refinement. The structured adaptive mesh
library provides much of the parallelism in ALE-AMR by
dividing the work into patches that can be farmed out to
various processors that communicate using MPI. Additional
parallelism is provided by implicit solver libraries. How to
best exploit the parallelism in these libraries is the major focus
of this section.

The current version of ALE-AMR supports a variety of
physics models that are introduced via operator splitting,
and a new sophisticated algorithm for material failure and
fragmentation. The code can model a variety of materials
including plasmas, vapors, fluids, brittle and ductile solids, and
the effective viscosity of most materials can be represented.
Plans are underway to include surface tension effects. Most
recently a new diffusion based model for heat conduction and
radiation transport has been added to the code. The code is
currently being used as a major component in the design of
targets for the National Ignition Facility (NIF), which is the
world largest laser. The code is also being applied to model
experiments at the National Drift Compression Experiment
(NDCX) in Berkeley and other high-energy facilities in France
and Germany. Unlike the GTS code described earlier, this code
does not already have OpenMP mixed into the MPI code. So
the question for it is bifold: what ways are possible to speed up
the code without changing the MPI parallel model and would
the code benefit from a hybrid programming model such as
MPI with OpenMP.

B. Diffusion Solver Speed-up

1) Introduction: Recent work on this code includes the de-
velopment of heat conduction and radiation transport physics
modules. These effects are important to many of the NIF
target configurations that produce large temperature gradients
in the target materials. Both of these physical effects are
modeled using the diffusion equation which is discretized by a
newly developed AMR capable Finite Element Method (FEM)
solver [10]. The use of a FEM diffusion solver to model heat
conduction and radiation transport is well studied [23] as is the
integration of these physics modules into a hydrodynamic code
[24]. However, the extension of these methods to AMR grids
is novel, as such there are some interesting issues encountered
in the parallel behavior of this approach.



In the following section we will give an introduction to
the methods employed by the AMR capable diffusion solver
recently introduced into ALE-AMR. This will be followed by
a description of some parallel computation issues that we have
recently experienced and an explanation of the approaches
we used to debug these issues and improve the worst case
performance drastically.

2) AMR Capable Diffusion Solver: To work with ALE-
AMR a solver must be capable of operating on the multi-
level, multi-processor, block structured, patch-based SAMRAI
data representing the ALE-AMR field variables. The FEM,
however, requires data in a single level composite mesh format.
It is possible to use the SAMRAI data to form a fully
connected composite mesh, however, this is not necessary.
The hierarchical block structured nature of the SAMRAI data
makes it possible to form a relatively simple mapping between
the SAMRAI indices and the indices of a flattened composite
mesh. This mapping can be formed without the need of
creating and storing the composite mesh. The connectivity of
most nodes in this mesh can be found trivially. The nodes and
cells at coarse-fine interfaces, however, are significantly more
complicated. Extra connectivity data about these special nodes
and cells is stored to complete the composite mesh mapping.

At the beginning of an ALE-AMR simulation, the composite
mesh mapping is formed on the initial grid. Whenever the grid
changes through Lagrangian motion or AMR, the composite
mesh mapping is updated to reflect the changed grid. Using
this mesh mapping it is possible to obtain the global id
numbers for all of the nodes in a given cell. However, the
cells at the coarse-fine interfaces have extra nodes due to
the refinement. Those extra nodes require basis functions
to represent the solution within the cell and basis functions
that maintain continuity across the coarse-fine interface are
advantageous. We build on the transition element work found
in [11] to create a family of elements suitable for our purposes.

Using the composite mesh mapping and this family of
transition elements it is now possible to apply the FEM within
the framework of ALE-AMR. We now turn our attention to
the solution of the following diffusion equation.

∇ · δ∇u+ σu = f (1)

Applying the standard Galerkin approach yields the following
linear system approximation

Au + b = f
A = Mσ −Kδ

(Mα)ij =
∫

Ω
αφiφjdΩ

(Kα)ij =
∫

Ω
α∇φi · ∇φjdΩ

b = 0

(2)

where M is the mass matrix, K is the stiffness matrix,
and an insulating boundary yields b = 0. The integrals
are approximated over the elements with a family of mass
lumping quadrature rules and the global mass and stiffness
matrices are assembled using connectivity data obtained from
the composite mesh mapping. We solve the resulting system

of equations using the HYPRE [4] BiCG solver and the Euclid
[13] preconditioner.

Both heat conduction and radiation transport can be mod-
eled with relative ease using this diffusion solver. For heat
conduction the equation can be time evolved implicitly by
using the solver at each time step yielding

Cv
Tn+1−Tn

∆t = ∇ ·Dn∇Tn+1 − αTn+1

δ = Dn, σ = −α− Cv

∆tT
n, f = −Cv

∆tT
n (3)

where Cv is the specific heat, T is temperature represented at
the nodes, D is the heat conductivity, and α is the absorptivity.
The variables δ, σ, and f are the diffusion equation parameters
from (1). Similarly the diffusion approximation to radiation
transport can be implicitly time evolved yielding

En+1
R

−En
R

∆t = ∇ · λ( c
κr

)∇En+1
R + κ̃p(B

n − cEn+1
R )

Cv
Tn+1−Tn

∆t = −κ̃p(Bn − cEn+1
R )

δ = λ( c
κr

), σ = −κ̃pc− 1
∆t , f = − 1

∆t − κ̃pB
n

(4)

where ER is the radiation energy represented at the nodes,
λ is a function used to impose flux limiting on the diffusion
approximation, c is the speed of light, κr is the Rosseland
opacity, κ̃P is a modification to Planck opacity which is used
to linearize the equation as in [23], and B is the blackbody
intensity.

3) Parallel Issues: This diffusion solver and accompanying
physics modules have been put through a variety of unit tests,
accuracy checks, validation studies, and performance analyses
some of which can be found in [10]. The solver performs well
in all of these tests, however, when employed to solve larger
parallel problems in 3D, the solver performance often degrades
to the point that it is unusable. To illustrate this problem
we report some timing data we gathered while attempting to
understand this problem on a 3D point explosion simulation
with a uniform 2-level AMR mesh.

wall clock time (s)
number of CPUs 27x27x27 mesh 81x81x81 mesh

1 21 73
2 15 420
4 9 816
8 7 960

TABLE II
WALL CLOCK TIMINGS OF THE ALE-AMR CODE SOLVING THE POINT

EXPLOSION PROBLEM ON A 2-LEVEL AMR MESH. USING THE 27x27x27
MESH, THE PERFORMANCE IS QUITE REASONABLE. HOWEVER, WHEN

USING THE 81x81x81 MESH WITH MORE THAN 1 CPU, PERFORMANCE IS
SERIOUSLY DEGRADED.

As this table shows, the solver performance can be reason-
able in some situations as with the 27x27x27 mesh, and be
terrible in other situations as with the 81x81x81 mesh. The
performance also seems to be reasonable with only 1 CPU
allocated to the problem, but becomes rapidly worse as more
CPUs are added.

In order to better understand this problem, we use
Open—SpeedShop, a performance analysis tool developed
by the Krell institute and recently installed at the NERSC



facility. This tool instruments a code to gather data on how
often a program is executing different areas of the code,
as well as collecting data on characteristics like time spent
in parallel communication. Using this data it is possible to
gain insight into where a program is spending the most wall
clock time and the resources that each part of the program
consumes. Specifically, we ran ’usertime’ experiments in
Open—SpeedShop and viewed the ’hot called path’ of the
ALE-AMR both for normal and degraded performance. The
hot call path is the call stack of the program that is most
often encountered, and a good indicator of the code bottleneck.
Below we provide hot call path data that we obtained from
these experiments Figure 10. This data turns out to be quite

Fig. 10. Hot call path obtained by the Open—SpeedShop tool. This represents
a case where the program is running with the degraded performance issue.

illuminating, as it seems that in the degraded case the program
is spending most of the wall clock time in HYPRE during the
preconditioner formation. The normal case spends most of the
time constructing and evaluating Jacobians which we expect
to have a high computational cost in any FEM, and may be a
future target for optimization in the ALE-AMR code.

These results suggest that we need to understand what is
happening inside of HYPRE that is causing such performance
degradation. Fortunately, HYPRE has some options that can
give us a glimpse into how it is operating. We began enabling
debug messages to get a better sense of what HYPRE is

doing. This quickly told us that the solver iteration count was
not changing significantly between the normal and degraded
simulation cases. This implies that the time spent per HYPRE
iteration is drastically different in the two cases. This leads us
to consider the possibility that the systems being formed in the
degraded case are in some way far more expensive to solve. In
order to better understand this possibility we modified ALE-
AMR to output the system A matrix and plot the sparsity
pattern. We also set up Euclid to print out the matrix it is
generating for the preconditioner. These sparsity plots show

  

nz = 270566

"A" for 81x81x81 mesh on 1 CPU

Fig. 11. Sparsity plots of the A matrix and the corresponding matrix created
by Euclid for preconditioning. Notice the large amounts of additional non-zero
entries in the preconditioner.

that the preconditioner matrix has a large amount of non-zero
fill. This can be a manageable problem in serial since there
is no communication to worry about. However, in parallel
this large amount of non-zero fill can be devastating as many
of the new non-zeros will require communication during the
preconditioner formation.

At this point, we must better understand how the Euclid
preconditioner works in order to illuminate what is occurring
in the degraded case. One method for the solution of a linear
system with a matrix A is to decompose the matrix into lower
and upper triangular parts L and U so that A = LU . Using this
decomposition it is efficient to solve LUx = b with a simple
front and back solve technique. In 3D simulations the A matrix
can be quite large with a sizable diagonal bandwidth, which
makes computing and using this decomposition prohibitively
expensive. This is due to the fact that in computing the
LU decomposition, all of the zero values from the farthest
diagonal band to the main diagonal will be filled with non-
zeros, yielding L and U matrices with little sparsity.

The Euclid approach to this problem is to form Incomplete
L̃ and Ũ (ILU) approximations that maintain some degree of
sparsity. The simple front and back solve technique is then
used to as the inversion operation of a preconditioner for A.
This improves the conditioning of the matrix system thereby
accelerating convergence to the solution. The trade-offs in this
approach are between the computation cost of computing and



applying the incomplete matrices and the rate of convergence
to the solution. Generally, when L̃ and Ũ are closer to the
actual L and U thus having less sparsity, the convergence is
faster, but the cost of computing and applying L̃ and Ũ is
higher.

It is now possible to consider remedies to the degraded
performance issue using this understanding of the ILU al-
gorithm that is used by Euclid. The problem is caused by
excessive non-zero fill in the degraded case, so altering the
fill parameters in Euclid seems a fruitful path. As a first cut
at this problem, we simply set Euclid to disallow any non-
zero fill by using the ’level 0’ option, forcing the sparsity
of the L̃Ũ matrix to be the same as in the A matrix. This
option may not be optimal in all cases as the preconditioner
will be a more crude approximation to A and the HYPRE
solver may need more iterations to converge. However, this
approach should at least alleviate the excessive zero fill
problem. To test this understanding, we re-ran the series of
point explosion simulations on the 81x81x81 2-level AMR
mesh that previously led to degraded performance.

num. CPU wall clock time (s)
1 67
2 43
4 28
8 23

TABLE III
WALL CLOCK TIMINGS OF THE ALE-AMR CODE SOLVING THE POINT
EXPLOSION PROBLEM ON AN 81x81x81 2-LEVEL AMR MESH. IN THE

MULTIPROCESSOR CASE THE RUNTIME HAS BEEN IMPROVED
CONSIDERABLY (10X - 40X) BY SETTING THE EUCLID PRECONDITIONER

TO AVOID ANY NON-ZERO FILL.

This timing data shows that the degraded performance
has been significantly improved and the problem now scales
reasonably with the number of CPUs. Another run through
Open—SpeedShop shows that the bottleneck in this case now
resides in the Jacobian computation as was the case with non-
degraded performance. These are both indicators that the this
particular performance issue has been addressed, and barring
any other issues, the diffusion solver is ready to run large 3D
parallel simulations.

C. Hybrid Parallelisation

Adding an effective hybrid code model is not an easy
task, and in this case consider what the benefits of such a
model would be to ALE-AMR and how one would begin its
implementation. One of the possible benefits, along with speed
up from a hybrid model is memory consumption. A recent
study, [7] in this proceedings shows that the memory reduction
due to hybrid programming with MPI can be significant.
This is likely to be more important for future architectural
designs that have more memory limited cores. However, it is
also known that sometimes adding a hybrid model to a code
can actually slow the code down rather than improving the
performance [6]. As part of choosing where to start adding
hybrid code and to gauge its usefulness, we have performed
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Fig. 12. Looking at a fixed number of MPI tasks on a varying number of
processors shows the potential of running OpenMP on the idle cores.

the following simple experiments. We take some standard
cases of running the ALE-AMR code with a fixed number
of MPI tasks. We then look at how the code performs with
the same number of MPI tasks, yet with more and more
cores (or nodes). The idea is that if the code slows down
as more cores are added, the OpenMP implementation would
have to be extremely efficient to overcome the degradation.
However, if the code actually speeds up when more nodes or
cores (unused cores) are available, then this code is a good
candidate for hybrid speedup. The hybrid benefit would then
be a combination of the speedup attained by simply adding
more cores (fixed number of MPI tasks) and the new OpenMP
parallelisation.

Adding the OpenMP hybrid model to an existing code can
be a daunting task. Thus, we are exploring ways in which to
make this process easier.

In considering utilizing shared memory parallelism in ALE-
AMR, we first consider optimizing the SAMRAI (Structured
Adaptive Mesh Refinement Infrastructure) software library.
ALE-AMR utilizes SAMRAI for underlying functions of re-
finement/coarsening, load balancing, and MPI communication
of mesh patch elements. While the overlying ALE-AMR code-
base defines computationally intensive physics algorithms, it
relies completely on SAMRAI for the interprocess tier, and
its parallelization can yield considerable benefits to overall
application performance.

D. The ROSE Compiler Framework

The ROSE tool kit [22] is a sophisticated and comprehen-
sive infrastructure to create custom source-to-source trans-
lators developed at LLNL by Daniel J. Quinlan et al.. It
provides mechanisms to translate input source code into an
intermediate representation, called the Abstract Syntax Tree
(AST), libraries to traverse and manipulate the information
stored in the AST, as well as mechanisms to transform the
altered AST information back into valid source code. The
AST representation and the supporting data structures make
exploiting knowledge of the architecture, parallel commu-
nication characteristics, and cache layout straightforward in



the specification of transformations. Due to its efficient con-
struction and (static) analysis capabilities of the intermediate
representation, ROSE is especially well suited for analyzing
large scale applications, which has been a central design goal
for this compiler framework. In addition, ROSE is particularly
well suited for building custom tools for program optimiza-
tion, arbitrary program transformation, domain-specific opti-
mizations, complex loop optimizations, performance analysis,
software testing, OpenMP automatic parallelization and loop
transformations, and (cyber-)security analysis. Further, a large
number of program analyses and transformations have been
developed for ROSE. They are designed to be utilized by
users via simple function calls to interfaces. The program
analyses available include call graph analysis, control flow
analysis, data flow analysis (live variables, data dependence
chain, reaching definition, alias analysis, etc.), class hierarchy
analysis, data dependence and system dependence analysis.
ROSE’s automatic parallelization tool, autoPar, is capable of
multithreading sequential C and C++ code by analyzing for-
loops and amending them with OpenMP pragmas. autoPar
operates on the source code build tree in place of the compiler,
generating translated source files, and compiling and linking
the executable.

E. First Autotuning attempts

Our initial attempts at automatically multithreading SAM-
RAI have been unsuccessful, and have uncovered several
limitations in the current version of autoPar. The autoPar
tool incorrectly translats class name and namespace scope
resolution in SAMRAI’s C++ code. This is not a complete
surprise, especially considering that SAMRAI’s more than 230
thousand lines of C++ code exploits many modern software
design and implementation techniques. Since autoPar is an
evolving part of ROSE, the ROSE development team has
gladly accepted test cases resulting from these initial attempts,
to further improve autoPar. Figure 13 shows the lines of code
and languages in ALE-AMR and the SAMRAI library.

Using autoPar on SAMRAI is a reasonable starting point
due to the fact that SAMRAI is a third-party software library
to be used by client parallel applications. Designed to be
general use code, it promises to be more easily parallelized
than ALE-AMR. However, considering that SAMRAI is 230
thousand lines of C++ code while ALE-AMR is 130, it is
worth investigating the possibility of using autoPar on ALE-
AMR itself.

V. CONCLUSIONS

In this paper we show how significant performance improve-
ment is possible on three different large application codes
by a variety of techniques. We emphasize that these are real
full application codes, and not reduced synthetic or otherwise
adjusted benchmark codes. For the magnetic fusion code, GTS,
we show that overlapping communication and computation is
a very promising approach for a hybrid (MPI + OpenMP)
code that is already optimized. For the quantum chemistry
code, Q-Chem, we show the benefit of using GPU’s for

Fig. 13. Breakdown of the programming languages used in the ALE-AMR
code and those used in the SAMRAI library for particular releases of the
codes.

matrix matrix multiplications and overlapping data transfers
from CPU memory to GPU memory with GPU computations.
For the fluids/material science code, ALE-AMR, we show
the importance of profiling matrix-solver libraries and studied
options in adding threading (OpenMP) to this MPI-only code
including issues associated with using an automated source-
to-source translating compiler.

VI. ACKNOWLEDGMENTS

A majority of the work in this paper was supported by
the Petascale Initiative in Computational Science at NERSC.
Some additional research on this paper was supported by the
Cray Center of Excellence at NERSC. Additionally, we are
grateful for interactions with John Shalf, Mike Aamodt, and
Nick Wright, and other members of the COE. Work by LLNL
was performed under the auspices of the U.S. Department of
Energy by the University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48.

REFERENCES

[1] N.S. Ostlund A. Szabo. Modern Quantum Chemistry: An Introduction
to Advanced Electronic Structure Theory. Dover, 1989.

[2] R. W. Anderson, N. S. Elliott, and R. B. Pember. An arbitrary lagrange-
eulerian method with adaptive mesh refinement for the solution of the
euler equations. J. Comput. Phys., 199(2):598–617, 2004.

[3] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan
Lin, Federico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guan-
song Zhang. The design of openmp tasks. IEEE Trans. Parallel Distrib.
Syst., 20(3):404–418, 2009.

[4] E. Chow, A. J. Cleary, and R. D. Falgout. Design of the hypre
preconditioner library. In Proceedings of the SIAM Workshop on
Object Oriented Methods for Inter-operable Scientific and Engineering
Computing (Yorktown Heights 1998), October 1998.

[5] R. Distasio, R. Steele, Y. Rhee, Y. Shao, and M. Head-Gordon. An
improved algorithm for analytical gradient evaluation in resolution-of-
the-identity second-order moller-plesset perturbation theory: aaplication
to alanine tetrapeptide conformational analysis. Journal of Computa-
tional Chemistry, 28:839–856, 2006.

[6] A. E. Koniges et al. SC09 Tutorial.
[7] H. Shan et al. Analyzing the effect of different programming models

upon performance and memory usage on cray xt5 platforms. This
proceedings.

[8] S. Ethier, W. M. Tang, and Z. Lin. Gyrokinetic particle-in-cell sim-
ulations of plasma microturbulence on advanced computing platforms.
Journal of Physics: Conference Series, 16(1):1, 2005.



[9] S. Ethier, W. M. Tang, R. Walkup, and L. Oliker. Large-scale gyrokinetic
particle simulation of microturbulence in magnetically confined fusion
plasmas. IBM J. Res. Dev., 52(1/2):105–115, 2008.

[10] A. Fisher, D. Bailey, T. Kaiser, B. Gunney, N. Masters, A. Koniges,
D. Eder, and R. Anderson. Modeling heat conduction and radiation
transport with the diffusion equation in nif ale-amr. In Proceedings
of the Sixth International Conference on Inertial Fusion Sciences and
Applications (San Francisco, 2009), September 2009.

[11] A. Gupta. A finite element for transition from a fine to a coarse grid.
International Journal for Numerical Methods in Engineering, 12(1):35–
45, 1978.

[12] Torsten Hoefler, Andrew Lumsdaine, and Wolfgang Rehm. Implemen-
tation and performance analysis of non-blocking collective operations
for mpi. In SC ’07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, pages 1–10, New York, NY, USA, 2007. ACM.

[13] D. Hysom and A. Pothen. A scalable parallel algorithm for incom-
plete factor preconditioning. SIAM Journal of Scientific Computation,
22(6):2194–2215, 2001.

[14] F. Jensen. Introduction to Computational Chemistry. Wiley, 1999.
[15] B. G. Johnson, C. A. Gonzales, P. M. W. Gill, and J. A. Pople. A

density functional study of the simplest hydrogen abstraction reaction.
effect of self-interaction correction. Chemical Physics Letters, 221:100–
108, 1994.

[16] A. E. Koniges, N. D. Masters, A. C. Fisher, R. W. Anderson, D. C. Eder,
T. B. Kaiser, D. S. Bailey, B. Gunney, P. Wang, B. Brown, K. Fisher,
F. Hansen, B. R. Maddox, D. J. Benson, M. Meyers, and A. Geille.
Ale-amr: A new 3d multi-physics code for modeling laser/target effects.
Journal of Physics, (inpress), 2010.

[17] J. N. Leboeuf, V. E. Lynch, B. A. Carreras, J. D. Alvarez, and L. Garcia.
Full torus Landau fluid calculations of ion temperature gradient-driven
turbulence in cylindrical geometry. Physics of Plasmas, 7(12):5013–
5022, 2000.

[18] A. Komornicki M. Feyereisen, G. Fitzgerald. Use of approximate
integrals in ab initio theory. an application in mp2 energy calculations.
Chemical Physics Letters, 208:359–363, 1993.

[19] M.J. Frisch M. Head-Gordon, J.A. Pople. Mp2 energy evaluation by
direct methods. Chemical Physics Letters, 153:503–506, 1988.

[20] Kamesh Madduri, Samuel Williams, Stéphane Ethier, Leonid Oliker,
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