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Abstract

MPI Collective operations tend to play a large role in
limiting the scalability of high-performance scientific sim-
ulation codes. As such, developing methods for improving
the scalability of these operations is critical to improving
the scalability of such applications. Using recently devel-
oped infrastructure in the context of the FASTOS program,
we will study the performance of blocking collective opera-
tions, as well as those of the recently added MPI nonblock-
ing collective operations taking into account both shared
memory and network topologies.
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1 Introduction

Because of their absolute performance and scalability,
MPI collective operations tend to play a significant role in
limiting the scalability of high-performance scientific simu-
lation codes. Given that MPI collective routines are beyond
the direct reach of an application developer, it is critically
important to application scalability that MPI collectives per-
form well over an arbitrary memory subsystem. Optimizing
collective performance is an increasingly complex problem,
primarily because of the increasingly heterogeneous mem-
ory subsystems found on current and emerging high per-
formance computing (HPC) systems, most of which pos-
sess a myriad of access mechanisms replete with varying
latencies. Further complicating the matter is the fact that as
processor counts increase, network and memory resources
become evermore scarce. In order to continue scaling-up,
next generation collective implementations will need to ad-
ditionally be able to effectively utilize and sustain a finite
pool of resources.

Hierarchy aware collectives have long been recognized

as a partial solution to the problem of optimizing MPI col-
lectives over heterogenous memory subsystems. Some cur-
rent implementations of hierarchy aware collectives tend to
be rigid and non-extensible, hardwired for a specific plat-
form or memory subsystem (e.g. shared memory and point-
to-point) thus making it difficult or impossible to extend the
software infrastructure to accommodate new and/or emerg-
ing memory subsystems, thus resulting in the need to re-
implement the suite of collectives from scratch. Other hi-
erarchical implementations have been built in terms of ex-
isting MPI routines, e.g. using sub-communicators to cre-
ate hierarchies. This approach adds a large amount of la-
tency as collective routines must traverse an increasingly
deep software stack with each new level in the hierarchy.
Beyond high latency, this approach also makes it difficult to
pipeline data and consumes a large amount of memory re-
sources. The former approach is unattractive from the per-
spective of portable performance and code extensibility, the
latter approach is simply not scalable. Clearly, there is a
need for hierarchy aware collectives that are portable, ex-
tensible, and scalable.

In this paper, we present a portable, extensible, and scal-
able software infrastructure implemented within the Open
MPI code base that supports blocking and non-blocking
hierarchical collective operations. Our collectives are im-
plemented within the Open MPI modular component ar-
chitecture (MCA) as a collection of new frameworks that
are able to identify available memory subsystems and load
system specific collective components. These basic collec-
tive, or BCOL, components, can be strung together in a
hierarchical chain with each component responsible solely
for the execution of the collective on its level, the only in-
teraction between bcol levels is when information must be
passed from one level of the hierarchy to the next. This
approach is easily extensible; in order to accommodate an
arbitrary memory subsystem, all that is required is the in-
clusion of two new components; one which encapsulates a



rule for subgrouping processes within a communicator (an
SBGP component) and another which encapsulates the sub-
system specific collective implementations (a BCOL com-
ponent). For example, in our approach we have a point-
to-point bcol that encapsulates PML specific collective im-
plementations (MPI’s point-to-point transfer mechanism), a
bcol that encapsulates InfiniBand specific collectives, and
a bcol for optimized shared memory. With only these three
bcols we are able to create several hierarchical collectives at
runtime by simply by passing the desired MCA parameters
such as: shared memory and point-to-point, infiniband over
tcp, shared memory and InfiniBand. When InfiniBand re-
cently introduced its new new ConnectX-2’s CORE-Direct
support for creating high performance, asynchronous col-
lective operations that are managed by the host channel
adapter (HCA), we simply added a BCOL component to
support this new transfer mechanism.

The remainder of this paper is organized as follows; Sec-
tion 2 provides an overview of previous work on hierarchi-
cal collectives. Section 3 describes our design and imple-
mentation of a collection of new MCA frameworks within
the Open MPI code base. Results of numerical experiments
are presented and discussed in Section 4. Finally, conclu-
sions and future work are discussed in Section 5.

2 Related Work

Much of the work on collective communication hierar-
chies occurs in the context of grid computing, aimed pri-
marily at handling clusters connected by a relatively low-
performance network, with limited connectivity, which is
typified by the work described in [9, 3, 4, 5]. On the the-
oretical side, [3] provides a flexible parameterized LogP
model for analyzing collective communication in systems
with more than one level of network hierarchy.

In the context of HPC, most of the work on hierarchical
collectives has been exploiting the low-latency shared mem-
ory communication available between processes on a given
host [11, 2]. For example LA-MPI, Open MPI, MVAPICH,
and MPICH2 have such support. This includes shared
memory algorithms for MPI Bcast, MPI Reduce, and MPI
Allreduce. However, an important conclusion draw in [2]
is that shared memory collectives remain difficult to imple-
ment efficiently because the performance is highly depen-
dent on characteristics of a particular architecture’s mem-
ory subsystem. Non-uniform memory architectures, cache
sizes and hierarchy, together with process placement greatly
influence the performance of shared-memory collective al-
gorithms.Implementations that combine both hierarchical
and shared memory collectives are discussed in many works
[8, 10, 11].

Zhu et al. provides implements hierarchy aware collec-
tives in MPICH2 [14] based entirely on message-passing

primitives that exploits the two-level hierarchy found on
modern symmetric multiprocessors (SMP) and further de-
velop a performance model to determine the how beneficial
it is to use shared memory. Sanders and Träff present hier-
archical algorithms for MPI Alltoall [6, 12] and MPI Scan
[7] on clusters of SMP nodes. Other than their effort, most
hierarchical work has centered around algorithms for MPI
Bcast, MPI Reduce, MPI Allreduce, MPI Barrier, and MPI
Allgather.

Wu et al. provide an excellent discussion [13] of SMP-
aware collective algorithm construction in terms of shared-
memory collectives, shared-memory point-to-point com-
munication, and regular network communication. Their al-
gorithmic framework also overlaps inter-node communica-
tion with intra-node communication. This approach gen-
erally pays the largest dividends in the case of medium-
sized messages, where the message is large enough to amor-
tize the additional overhead introduced by the non-blocking
communication, yet is small enough that it is not dominated
by the inter-node message transfer time.

3 Design Overview

The scalability of many scientific applications is often
limited by the scalability of the collective operations. As
such, optimizing the scalability and performance of these
operations is vital to these applications, and much effort
is put into improving the performance of these operations.
With fifteen such blocking operations, and a corresponding
set of nonblocking collective operations scheduled to be de-
fined in the version three of the MPI standard, the effort
involved in optimizing such collective operations is large.
In particular, the effort to keep such operations performing
close to optimal on new systems continues to be a challenge
as new optimization opportunities arise. Therefore, a key
design goal of this new implementation of hierarchical col-
lectives is to preserve as much previous optimization work,
when new system configurations appear, thereby minimiz-
ing the effort to take advantage of new system capability.

Therefore, the following design principles are used: 1)
Discovery of system topology is decoupled from the imple-
mentation of the MPI collective algorithms. 2) The topol-
ogy discovery functions are used to create subgroups within
the MPI communicator. These subgroups overlap only in
that on rank within the group, the local leader, appears in
at least one other group. 3) The MPI-level collective oper-
ations are network agnostic, and described in terms of col-
lective operations within the local groups. 4) Multiple ver-
sion of the basic collective operations are supported. 5) Re-
sources, such as data buffers, may be shared between sub-
groups, with out breaking the abstraction barriers defined
for the basic collectives.

As an example, Figure 1 represents the communication
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Figure 1. Recursive doubling barrier algo-
rithm. The circles represent MPI ranks run-
ning on two different nodes, two ranks per
node. The arrows represent data being sent
from one rank to another.

pattern for a four rank MPI barrier operation using the re-
cursive doubling algorithm. In an implementation of this
operation that does not consider topology, the same com-
munication primitives will be used for all data exchange,
such as MPI-level point-to-point data primitives.

However, if one exploits the system hierarchy, a differ-
ent algorithm may be used which minimizes traffic over the
network between hosts. Such an approach is depicted in
Figure 2. In such an approach, fan-in to the local leader
(rank two on host one, and rank three on host two) may be
performed using shared memory communications, with the
local leaders participating in the recursive doubling barrier,
and then the rest of the local ranks notified of completion
by their respective local leaders. Such an approach, while
involving more communication phases than a simple recur-
sive doubling algorithm, is attractive as it reduces external
network traffic, and allows for the utilization of potentially
lower latency local communications.

To support such an approach we have taken advantage
of Open MPI’s modular component architecture [1]. We
have added a new hierarchical collective collective opera-
tion component to the COLL framework, which is called
ML. We also added two new collective frameworks, one
which supports hierarchy discovery which is called SBGP,
and is short for subgrouping. The other supports basic col-
lective operations, which is called BCOL, and is short for
basic collectives. The architecture is depicted in Figure 3.
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Figure 2. Hierarchical barrier algorithm. The
circles represent MPI ranks running on two
different nodes, two ranks per node. The ar-
rows represent data being sent from one rank
to another.
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Figure 3. Support for the collective opera-
tions within the Open MPI code base.



The SBGP framework includes components that define
subgrouping rules. Any type of subgrouping rule may be
defined, but typically these will include rules relating to
communication capabilities. We support rules for finding
ranks that share sockets, ranks on the same host, and ranks
that can communicate using MPI’s point-to-point communi-
cation capabilities. One may also implement rules for form-
ing subgroups based on the ability to utilize certain network
capabilities, network topology, and the like.

The BCOL framework supports basic collective opera-
tions and needs to implement a full set of MPI collective
operations. These includes support for mpi-like operations,
such as barrier, and others, e.g. fan-in or fan-out. BCOL
components are implemented to support specific commu-
nication capabilities. We support components that are op-
timized for shared memory communication, as well as a
component that utilizes MPI-level point-to-point commu-
nications.

SBGP and BCOL modules are used in pairs to define a
group of MPI ranks and the set of basic collective routines
these will use when they participate in a give MPI-level col-
lective operation. These pairing are flexible, and are de-
termined at communicator construction time, based on run-
time input parameters. In the four rank MPI barrier rou-
tine describe above, on-host subgroups will be determined
by the discovery of the ranks that share a given host, and
the inter-host group is determined by the ability to commu-
nicate using MPI-level point-to-point operations. Off host
communication will take place using the MPI-level point-
to-point communications, however on-host communication
can take place either via optimized MPI-level shared mem-
ory collective operations, or using the MPI–level point-to-
point communications.

This newly developed support will be used to study the
performance of on-host barrier operations, as the first set of
tests using these new capabilities.

4 Benchmark Results

In this section we describe early results using the new
hierarchy aware collective communication capabilities. At
this stage we only report results for on-host barrier al-
gorithms. These take into account hierarchies within the
shared memory node. Specifically they take into account
cores that share the same socket. Future papers will present
a much broader set of results.

4.1 Experimental Setup

The shared-memory collective routines are implemented
within the trunk of the Open MPI code base. To measure
MPI-level barrier performance we wrap the MPI Barrier()

calls in a tight loop, executing this loop for 10,000 itera-
tions. We report the results based on the average time it
took rank zero to complete the barrier call.

We ran numerical experiments on Jaguar, a Cray XT5
system, and Smoky, an AMD Opteron cluster, both housed
at Oak Ridge National Laboratory. Jaguar is the world’s
fastest supercomputer available for open science. It has
18,688 compute nodes and in addition has nodes dedicated
for providing login and other services. Each compute node
contains two 2.6 GHz AMD Opteron (Istanbul) processors,
16 GB of memory, and a SeaStar 2+ router. The routers
are connected in a 3D torus topology, which provides the
interconnects with high bandwidth, low latency, and scal-
ability. Each AMD Opteron processor has six computing
cores and three levels of cache memory – 128 KB of L1
cache and 512 KB of L2 cache per core, and 6 MB of L3
cache that is shared among the cores. The compute nodes
run Compute Node Linux micro-kernel, and service nodes
run full-featured version of Linux.

Smoky is an 80 node test and development cluster at
the Oak Ridge National Laboratory’s National Center for
Computational Science (NCCS). Each node contains four
2.0 GHz AMD Opteron processors, 32 GB of memory, an
Intel gigabit Ethernet NIC, and a Mellanox Infinihost III Lx
DDR HCA. Each AMD Opteron processor has four pro-
cessing cores, and three levels of cache memory – 128 KB
of L1 cache and 512 KB of L2 cache per core, and 8 MB
of L3 cache that is shared among the cores. The compute
nodes run Scientific Linux SL release 5.0, a full Linux op-
erating system based on the popular Red Hat Linux distri-
bution. This system is of interest, as it has a larger number
of sockets than Jaguar does, and also has more total number
of cores.

4.2 Results

Figure 4 displays the results for measuring the barrier
performance as a function of the number of cores used in the
calculation on Jaguar. This data was obtained using a two
level hierarchy, taking into account how cores are mapped
onto sockets. One measurement, labeled Shared Memory,
was run using the shared memory optimized BCOL mod-
ule, and the other, labeled pt-2-pt, was run using Open
MPI’s point-to-point communication system, which uses
shared memory communications in this case. At 2 ranks, the
shared memory barrier takes only 0.30 micro-seconds, and
the point-to-point barrier takes 1.46 micro-seconds. At 12
ranks, the shared memory barrier takes 1.57 micro-seconds,
and the point-to-point barrier takes 8.18 micro-seconds.

Figure 5 displays the results for measuring the barrier
performance as a function of the number of cores used in the
calculation on Smoky. This data was obtained using a two
level hierarchy, taking into account how cores are mapped
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Figure 4. MPI Barrier() performance on a sin-
gle node of Jaguar using a two level hierar-
chy. Shared memory optimized collectives
are used, as well as point-to-point based col-
lective algorithms. The data is reported in
units of micro-seconds.

onto sockets. One measurement, labeled Shared Memory,
was run using the shared memory optimized BCOL mod-
ule, and the other, labeled pt-2-pt, was run using Open
MPI’s point-to-point communication system, which uses
shared memory communications in this case. At 2 ranks, the
shared memory barrier takes only 0.42 micro-seconds, and
the point-to-point barrier takes 1.89 micro-seconds. At 16
ranks, the shared memory barrier takes 2.14 micro-seconds,
and the point-to-point barrier takes 11.89 micro-seconds.

Figure 6 displays the results for measuring the barrier
performance as a function of core layout with respect to
sockets on Smoky. We see that in the two rank case, if
both cores share a socket, the barrier time is 0.42 microsec-
onds, and if they are on different sockets the barrier time
is 0.51 microseconds. In the four rank case, the values are
0.79 micro-seconds and 0.90 micro-seconds, respectively.
Figure 7 displays the data for a four rank barrier when the
ranks are all on one socket, or spread out over four sockets.
We see When they all share the same socket we see that the
barrier time is 0.90 micro-seconds, but if they are spread out
across four sockets, the barrier time is 1.33 micro-seconds.

4.3 Discussion

As the results indicate, taking advantage of the opti-
mization opportunities to use shared memory to communi-
cate directly between ranks in the MPI Barrier() algorithm,
rather than use the MPI point-to-point communication sys-
tem greatly improves performance, both on Jaguar and on
Smoky. On Jaguar the performance at two ranks is almost
five times faster using the shared memory optimization, and
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Figure 5. MPI Barrier() performance on a sin-
gle node of Smoky using a two level hierar-
chy. Shared memory optimized collectives
are used, as well as point-to-point based col-
lective algorithms. The data is reported in
units of micro-seconds.

at twelve ranks is also about five time faster. On Smoky
the speed up at two ranks is about 4.5 times faster, and at
sixteen ranks it is 5.5 times faster. This is not too surpris-
ing, as with the shared memory optimized collectives, the
barrier amounts to setting local flags indicating what stage
a given rank is in the communications, and reading those
same values for the partner-ranks in the recursive doubling
algorithm, with a similar approach used to manage the fan-
in and fan-out algorithm. In addition, in the hierarchical
algorithm we use the same set of control buffers for all
shared memory phases of the MPI collective operation. In
the point-to-point approach, the full MPI stack must be tra-
versed to communicate with other ranks on the same host.

The performance data also shows that taking advantage
of shared caches improves performance, and really comes
as no surprise. We see that at on Smoky, when two ranks
share a socket, the barrier performance is about 20% bet-
ter then when they do not share a socket. For four ranks,
the performance improvement is about 14% when the ranks
share a single core, as compared to when then are dis-
tributed over two sockets, and 68% compared to spreading
them out over four sockets.

To summarize, taking into account shared memory hi-
erarchies does improve collective operation performance.
In addition, bypassing the full MPI point-to-point matching
logic leads to big performance gains.

5 Conclusions

This paper presents very early results from work to cre-
ate a framework that supports hierarchical collective opera-
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Figure 6. MPI Barrier() performance as a
function of process layout, using one and
two sockets. The data is reported in units of
micro-seconds, for two and four rank barri-
ers.

tions. This work has focused on on-node hierarchies, and
initial results show the approach to be promising. Work
continue to expand the support for cross-host communica-
tions, as well as for developing highly optimized support for
specific network capabilities, such as the collective offload
capabilities provided by new InfiniBand hardware. In addi-
tion to providing this support for blocking MPI collectives,
support for nonblocking collectives, which has been voted
into the MPI-3 draft standard, is being developed.
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[6] P. Sanders and J. L. Träff. The hierarchical factor algo-
rithm for all-to-all communication. In Euro-Par 2002 Par-
allel Processing, pages 799 – 803, 2002.
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