
Optimisation of the I/O for Distributed Data Molecular
Dynamics Applications

CUG 2010
Simulation Comes of Age

Ian Bush, NAG Ltd. and Ilian Todorov and William
Smith, STFC Daresbury Laboratory

What Is MD?

CUG 2010
Simulation Comes of Age

The DL_POLY_3 MD Package

General purpose MD simulation package

Written by Ilian Todorov and Bill Smith at STFC
Daresbury Laboratory

CUG 2010
Simulation Comes of Age

Written in modularised free formatted Fortran
95 - FORCHECK and NAGWare verified

Generic parallelisation (for short-ranged
interactions) based on spatial domain
decomposition (DD) and linked cells (LC)

Domain Decomposition

Parallelisation

A BB

CUG 2010
Simulation Comes of Age

C D

How Well Does The

Compute Scale? (BG/L)

10000

12000

14000

16000

S
p

e
e

d
 G

a
in

 Perfect

 M D step to ta l

 L ink ce lls

 van der W aa ls

 Ew a ld rea l

 Ew a ld k-space

CUG 2010
Simulation Comes of Age

2000 4000 6000 8000 10000 12000 14000 16000

2000

4000

6000

8000

10000

14.6 m illion partic le G d
2
Zr

2
O

7
 system

S
p

e
e

d
 G

a
in

P rocessor count

So What’s The Problem?

For the 14,600,000 particle system on 16,384
processors of the the Jülich BG/L system it
takes ~0.5s for a MD timestep

� Fast enough to do science !

CUG 2010
Simulation Comes of Age

� Fast enough to do science !

~1800s to write the coordinates

� Not fast enough to do science !

Want to write the coordinates every ~100-1000
timesteps

So while the compute is fast enough the I/O
prohibits any useful science being done

It’s Not Just Blue Gene

14.6 million system on 2048 processors of
HECToR Phase 1

�MD time per timestep ~0.7 seconds on
Cray XT4

CUG 2010
Simulation Comes of Age

Cray XT4

�Configuration read ~100 seconds (once
during the simulation)

�Configuration write ~600 seconds

So What Do We Have To Write?

pyrochlore

2 3 3773000 50 0.00003125 0.00156250

378.0382791976 0.0000000000 0.0000000000

0.0000000000 378.0382791976 0.0000000000

0.0000000000 0.0000000000 378.0382791976

GD 3

-186.2697242 -188.9656799 -186.3793036

CUG 2010
Simulation Comes of Age

-186.2697242 -188.9656799 -186.3793036

0.2315100734 -1.673201463 0.9363383539

13210.65286 -235052.7542 44828.56133

GD 4

-188.9764926 -186.3753017 -186.3328710

-0.2949178501 0.9443083034 2.428692460

-254542.5135 49396.61430 67986.12075

GD 5

-189.0096634 -183.5772665 -183.4873639

1.344516913 0.3640837776E-01 -1.250456823

-21153.56476 1492.614280 949.9063469

GD 6

-186.2854413 -180.8116309 -183.7179432

-0.3272091542 -0.3909127980 -2.407327182

-5003.623307 -288.9791458 5327.259472

And What’s the Problem?

The atoms move!

An atom can migrate from one processor to
another, so the original ordering of atoms is not
preserved.

CUG 2010
Simulation Comes of Age

preserved.

But users' analysis programs (e.g. for
visualization) often assume that the ordering is
preserved.

So have to rearrange data so that it can be
written out in the form the users require.

Also files need to be portable

First Tries

The first writing methods used Fortran Direct
Access Files

� If you know the index of the atom you know
which record to write to

CUG 2010
Simulation Comes of Age

which record to write to

� So just write to that record

SWRITE AND PWRITE

Two Methods tried

�SWRITE

�In turn gather each processors data to core 0

�And the core 0 does the writing

CUG 2010
Simulation Comes of Age

�And the core 0 does the writing

�Serial and poor performance

�PWRITE

�Each core just writes each atom to its correct place

�Better but still not good enough performance

�NOT PORTABLE

�Behaviour not defined by Fortran

MWRITE

However can easily use MPI-I/O to “simulate”
Fortran direct access file

�Create a MPI derived type the length of the
record

CUG 2010
Simulation Comes of Age

�Use that as the etype for the fileview

�Now all offsets are almost the same as for
Fortran direct access

�Except indexed from zero

�Thanks to David Tanqueray for this idea

�Leads to MWRITE – released in DL_POLY 3.09

MWRITE – The Innards

Integer, Parameter :: recsz = 73

Character(Len = recsz) :: record

...

Call MPI_TYPE_CONTIGUOUS(recsz, MPI_CHARACTER, rec_type, ierr)

Call MPI_TYPE_COMMIT(rec_type, ierr)

CUG 2010
Simulation Comes of Age

Call MPI_TYPE_COMMIT(rec_type, ierr)

Call MPI_FILE_OPEN(comm, file_name, flags, MPI_INFO_NULL, file_handle, ierr)

Call MPI_FILE_SET_VIEW(file_handle, 0_MPI_OFFSET_KIND, rec_type, rec_type, &

datarep, MPI_INFO_NULL, ierr)

...

Write(record, Fmt='(3g20.10,a12,a1)') xxx(i),yyy(i),zzz(i),Repeat(' ',12),lf

rec_mpi_io=6_MPI_OFFSET_KIND+Int(index(i),MPI_OFFSET_KIND)*4_MPI_OFFSET_KIND

Call MPI_FILE_WRITE_AT(file_handle, rec_mpi_io, record, 1, rec_type, status, ierr)

Measuring Performance

Throughout the rest of the talk I shall use two
different physical systems to measure the
performance of the I/O methods:

�216,000 ions of Sodium Chloride. Run for 1000

CUG 2010
Simulation Comes of Age

�216,000 ions of Sodium Chloride. Run for 1000
timesteps and then write the configuration

�As before but 1728000 ions of NaCl

I shall use one computational system

�HECToR Phase2a – Cray XT4 + Lustre

All default settings used throughout

MWRITE – The Performance

for 216000 Ions of NaCl

CUG 2010
Simulation Comes of Age

What’s The Problem?

All the processors are writing

�So possible contention at the disk

CUG 2010
Simulation Comes of Age

Only 1 atom’s data is being written at one time

�Very short I/O transactions (292 Bytes)

A Solution?

Gather the data onto a subset of the processors

�The I/O Processors

�Do in batches so as to avoid memory overhead

CUG 2010
Simulation Comes of Age

�Do in batches so as to avoid memory overhead

Then sort in parallel across the I/O processors

Finally use MWRITE but can now write many atoms
at once

Call this MWRITE_SORTED

�Released in version 3.10 of code

Performance for 216000 Ions

of NaCl

CUG 2010
Simulation Comes of Age

Performance for 216000 Ions

of NaCl

3.09 3.10 3.09 3.10

Cores I/O Procs Time/s Time/s Mbyte/s Mbyte/s

32 32 143.30 1.27 0.44 49.78

CUG 2010
Simulation Comes of Age

64 64 48.99 0.49 1.29 128.46

128 128 39.59 0.53 1.59 118.11

256 128 68.08 0.43 0.93 147.71

512 256 113.97 1.33 0.55 47.60

1024 256 112.79 1.20 0.56 52.47

2048 512 135.97 0.95 0.46 66.39

Performance For 1728000

Ions of NaCl

CUG 2010
Simulation Comes of Age

Maximum performance is 810 Mbyte/s

Parallel Reading

Though not nearly as important as writing,
reading can be an issue for large systems

In next release will be a parallel reading
method

CUG 2010
Simulation Comes of Age

method

�Currently serial

Parallel method is

� A subset of the processors read in a batch

�Each scatters the atoms to the correct
processors

�Repeat

Parallel Reading For 216000

Ions of NaCl

3.10 New 3.10 New

Cores I/O Procs Time/s Time/s Mbyte/s Mbyte/s

32 16 3.71 0.29 17.01 219.76

CUG 2010
Simulation Comes of Age

32 16 3.71 0.29 17.01 219.76

64 16 3.65 0.30 17.28 211.65

128 32 3.56 0.22 17.74 290.65

256 32 3.71 0.30 16.98 213.08

512 64 3.60 0.48 17.53 130.31

1024 64 3.64 0.71 17.32 88.96

2048 128 3.75 1.28 16.84 49.31

NetCDF

Also there is a initial NetCDF implementation

�Files can get very big – 100s Gbytes

�“Binary” but portable

CUG 2010
Simulation Comes of Age

�“Binary” but portable

�NetCDF files roughly 1/3 size of the formatted
files

�Current performance very poor

�Needs more investigation

�Suggestions welcome!

NetCDF Performance –

Writing 21600 Ions

3.10 3.10 NetCDF NetCDF

Cores I/O Procs Time/s Mbyte/s Time/s Mbyte/s

32 32 1.27 49.78 4.77 13.22

64 64 0.49 128.46 8.63 7.31

CUG 2010
Simulation Comes of Age

64 64 0.49 128.46 8.63 7.31

128 128 0.53 118.11 13.81 4.57

256 128 0.43 147.71 27.24 2.32

512 256 1.33 47.60 40.57 1.55

1024 256 1.20 52.47 67.55 0.93

2048 512 0.95 66.39 147.47 0.43

Overall Performance

The most important measure of the performance
of the whole code is:

�Is it fast enough for the scientist to do science?

CUG 2010
Simulation Comes of Age

Is It Fast Enough

CUG 2010
Simulation Comes of Age

YES!

Conclusion

Extensive reorganization of the data may be
required to get the best out of the I/O
subsystem

This may well be beneficial because I/O is so

CUG 2010
Simulation Comes of Age

This may well be beneficial because I/O is so
slow compared to compute or communication

But most importantly: Optimisation of the I/O
now allows the scientist to perform real science
more quickly on many more processors

