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ABSTRACT: In this paper, we will explore the performance of applications important 
to Sandia on an XT5 system with dual socket AMD 6 core Istanbul nodes.  We will 
explore scaling as a function of the number of cores used on each node and determine 
the effective core utilization as core count increases.  We will then analyze these results 
using profiling to better understand resource contention within and between nodes. 
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1. Introduction 

The next capability computing machine being 
acquired by the National Nuclear Security 
Administration’s (NNSA) Advanced Scientific 
Computing Program (ASC), code named Cielo, will be 
based on Cray’s “Baker” architecture [1].  Baker will be a 
dual-processor node, like the XT5, and the processor 
(also referred to as a socket in this paper) will be AMD’s 
recently announced 6100 series processor, and in 
particular the 8-core model 6136, providing 16 cores per 
node.  Sandia’s current large machine, Red Storm, which 
is a mixture of CRAY XT3 and XT4 boards, has a single 
socket per node with a mixture of dual-core and quad-
core processors.  In preparation for Cielo, it is desirable to 
better understand the effects of higher numbers of cores 
on application performance, Cielo will not become 
available until later in 2010, but Sandia has recently 
acquired a CRAY XT5 that does provide higher levels of 
node parallelism than Red Storm and was used for this 
early investigation into higher processor core counts.  The 
XT5 has 160 compute nodes.  These nodes are dual-
socket with 6 core AMD Istanbul processors clocked at 
2.4 GHz with 32 GB of 800 MHz DDR2 memory per 
node.  The XT5 is configured as a 6 x 4 x 8 3D torus and 
uses SeaStar 2.2 for the interconnect.  The XT5 is running 
CNL 2.2.41 and the applications were compiled with PGI 
version 9.0.2. 

  
We will use a suite of applications to study the 

effects of memory and high-speed network contention 
due to the larger number of cores per socket.  The 
analysis will look at both the effect of a dual-socket vs 

single-socket node and the effect of a larger number of 
cores per socket. 

2. Applications 

In this paper, we have chosen to use the suite of ASC 
applications that were chosen to benchmark Cielo 
performance.  These applications include CTH, Charon, 
AMG2006, UMT2006, SAGE, and xNOBEL.  The 
descriptions of these codes follow.  These applications are 
representative of the Cielo workload and are composed of 
applications from all three of ASC’s national laboratories, 
Sandia, Los Alamos, and Lawrence Livermore. 

   

A. CTH 
 
CTH is an explicit, three-dimensional, multimaterial 

shock hydrodynamics code which has been developed at 
Sandia for serial and parallel computers.  It is designed to 
model a large variety of two- and three-dimensional 
problems involving high-speed hydrodynamic flow and 
the dynamic deformation of solid materials, and includes 
several equations of state and material strength models 
[2].  CTH is written mostly in FORTRAN 77 with a little 
bit of C code. 

 
The numerical algorithms used in CTH solve the 

equations of mass, momentum, and energy in an Eulerian 
finite difference formulation on a three-dimensional 
Cartesian mesh.  CTH can be used in either a flat mesh 
mode where the faces of adjacent cells are coincident or 
in a mode with Automatic Mesh Refinement (AMR) 
where the mesh can be finer in areas of the problem 
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where there is more activity.  For this study we will be 
using the code in a flat mesh mode and a shaped-charge 
problem that scales with the number of processors.  

 

B. Charon 
 
Charon is a transport reaction code that was 

developed to simulate the performance of stockpile 
semiconductor devices under irradiation [3].  Finite 
element discretization of the drift-diffusion equations 
produces a large sparse, strongly coupled nonlinear 
system which is solved via a fully-coupled Newton-
Krylov algorithm.  The time to solution is strongly 
dependent on how efficiently the potentially very large 
linear systems can be solved.  The particular model 
investigated for this study involves the steady-state 
solution of the drift-diffusion equations for a silicon NPN 
bipolar junction transistor.  Charon is written in mostly 
C++, but uses a variety of libraries that are written in C, 
C++, and FORTRAN. 

 

C. xNOBEL 
 
xNOBEL is a Continuous Adaptive Mesh 

Refinement (CAMR) code that models hydrodynamics 
with adaption and high-explosive burn modeling.  This 
code is based on the radiation hydrodynamics code 
RAGE and on the HE burn code NOBEL [4].  This 
benchmark is a 3D simulation of a 105 mm shaped charge 
calculation.  xNOBEL is written in a combination of 
FORTRAN and C. 

 

D. SAGE 
 
SAGE is SAIC’s Adaptive Grid Eulerian hydrocode, 

a multidimensional, multimaterial hydrodynamics code 
with adaptive mesh refinement that uses second-order 
accurate numerical methods [5].  We used a standard 
problem called timing_c, which uses adaptation and heat 
conduction, with 250000 cells per processor.  SAGE is 
mostly written in FORTRAN 90. 

 

E. UMT2006 
 
UMT is a 3D, deterministic, multigroup, photon 

transport code for unstructured meshes.  The transport 
code solves the first-order form of the steady-state 
neutral-particle Boltzmann transport equation.  The 
benchmark for Cielo is written in a combination of 
Python and C++, but for this study we are using the C++ 
version of the code.  The code also is capable of using 
both MPI and OpenMP based parallelism, but for this 
study, we use only the MPI based parallelism. 

 

F. AMG2006 
 
AMG is a parallel algebraic multigrid solver for 

linear systems arising from problems on unstructured 
grids [6].  The simulation is the solution of the Laplace 
equations on the unit cube.  It is discretized with standard 
finite differences to yielding 7 point stencils in 3D.  It is 
written in C using MPI for parallelization.  It also has the 
option to use OpenMP directives, but we will not be using 
those for this study.  AMG is written in C. 

3. Results for Red Storm and XT5 

Figure 1 shows a comparison of CTH running on the 
quad-core nodes of Red Storm and on the XT5, with both 
utilizing all of the cores available on a socket.  The quad-
core processors on Red Storm are 2.2 GHz AMD 
Budapest processors with 800 MHz DDR2 memory and 
the nodes are connected by a SeaStar 2.2 interconnect.  
Red Storm is running Catamount CNW 2.1.56.1.  Note 
that the performance for Red Storm and the XT5 using 
one socket per node is very close despite the XT5 running 
on two-thirds the number of nodes.  We do see a 
difference in the performance on the XT5 when using one 
socket per node versus two sockets per node, which 
seems to get larger as the number of cores used gets 
larger and gets to about 7% at 512 cores.  When most of 
the communication is on-node or between a few nodes, 
the difference is small but gets larger as the 
communication moves off node. 

CTH - Shaped Charge - Red Storm vs. XT5
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Figure 1.  CTH on Red Storm and XT5 
 

Figure 2 shows a comparison of CTH running on 
Red Storm and the XT5 while using only 4 cores per 
socket on the XT5.  The Red Storm and XT5 single-
socket results have a similar shape to their curves with the 
difference between the results being fairly consistent with 
Red Storm being about 18% slower than the XT5.  Since 
the XT5 processor is clocked 9% faster than those on Red 
Storm, it appears other improvements to the processors 
were made which may explain the difference in 
performance.  We again see a difference in the XT5 
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single-socket versus dual-socket results that starts small, 
but then seems to be fairly constant as scale increases. 

CTH - 4 Cores/Socket - Red Storm vs. XT5
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Figure 2.  CTH on Red Storm and XT5 using 4 cores/socket 
 
In Figure 3, we compare the two machines running 

CTH on 128 cores and varying the number of cores per 
socket used.  In this case, we find that the difference 
between Red Storm and the XT5 while running with one 
core per node is about 8%, which is fairly close to the 
difference in clock speeds between the two machines.  As 
the number of cores per socket used increases, the 
difference in run time between the two machines also 
increases, getting to about 16% when running with 4 
cores per socket and using only one socket per node on 
the XT5.  Since the communication network is the same 
on both machines, this seems to indicate that the Istanbul 
processors in the XT5 are better than the Budapest 
processors in Red Storm at pulling data from main 
memory when several cores are contending for access to 
memory.  The performance difference between single-
socket and dual-socket XT5 performance grows from 
about 2% at one core per socket to 6.5% at six cores per 
socket. 

 

CTH - XT4/XT5 Performance on 128 Cores
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Figure 3.  CTH on 128 cores of Red Storm and XT5 

4. Application Results on XT5 

We ran all six of the codes on 128 cores of the XT5 
and varied the number of cores used per socket and the 
number of sockets per node.  The results are shown in 
Figure 4. 
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Figure 4.  Applications onXT5 
 
The times for all of the applications in Figure 4 were 

normalized by dividing by the application time using one 
core per node.  Most of the codes show a modest increase 
in run time as more cores are used per socket.  The 
average for the six applications running on all of the cores 
on a node is a runtime of 1.83 times the runtime of using 
one core per node.  This represents an effective use of 
about 6.6 cores per node.  Most of this time is a result of 
increased contention for memory access on the sockets.  
As each additional core is added per socket, the time 
differential grows nonlinearly.  This would indicate that 
contention increases as core count increases. 

  
AMG performance is the most sensitive to increasing 

core count.  We profiled the code using CrayPat and the 
amount of computation time goes up by a factor of three 
while the MPI time decreases slightly as the number of 
cores used per socket goes from 1 to 6.  While the L1 
cache hit rate (98.8%) is similar to CTH (98.9%), the L2 
cache hit rate is 11.9% while for CTH it is 45.1%.  This 
seems to reflect the nature of an algorithm like multigrid 
using memory in a more unpredictable fashion and 
requiring more main memory accesses and creating more 
contention for the processor’s main memory controller. 

 
The time difference for each application when using 

one socket per core and two sockets per core represents 
the overhead from having both sockets competing for the 
NIC.  For most codes, the difference remains fairly steady 
as a percentage of the application time.  The two 
exceptions for this are AMG and CTH.  In the case of 
AMG, the time difference between running one socket 
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per node and two sockets per node decreases as the 
number of cores increases to the point where the time for 
running on 6 cores per socket using both sockets per node 
is slightly less than that while using only one socket per 
node.  We ran AMG using CrayPat to profile the code 
and found that the vast majority of the MPI time is in 
synchronization for MPI_ALLREDUCE operations.  This 
is consistent with the code developers’ observation that 
on a large number of processors, more than 90% of the 
time can be spent in these operations.  Except for running 
with one core per socket, the time is less when running 
with two sockets per node than running with one socket 
per node and the time decreases as the number of cores 
used per socket increases.  This would indicate that the 
system is performing MPI_ALLREDUCE operations 
more efficiently on node than between nodes.  The 
amount of time for MPI decreases from about 36% for 
one core per socket to about 15% for six cores per socket. 

 
We also profiled CTH running the shaped charge 

problem on 128 cores with CrayPat and the results are 
shown in Figure 5.  We have run CTH with another 
problem which is more load balanced and the overall 
results are similar. 

 

CTH - Shaped Charge on 128 cores
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Figure 5.  Profile of CTH on 128 cores 
 

In this figure, we plotted the times for the 
computational portion of CTH and the time spent in MPI 
for two different ranks within the calculation, while 
running on a varying number of cores per socket and both 
one and two sockets per node.  We chose rank 0, which 
has the computational hotspot for this calculation but is 
on the spatial edge of the calculation and gets updates 
from three of its neighbors, and rank 42, which is an 
internal rank in the calculation and thus gets updates from 
six of its neighbors.  The total problem time agreed for 
rank 0 and rank 42 and is thus plotted as simply total 
time.  Notice that the computational time for both ranks 
does not vary with the number of sockets used per node.  
This validates our earlier observation that the difference 

between the line for one socket per node and two sockets 
per node is due to the difference in the MPI time. 

 
The computational time goes up by 23% for rank 0 

while going up by 40% for rank 42.  This is explained by 
the fact that rank 0 is the computational hotspot and is 
sharing a socket with ranks which have a lower 
computational load.  Therefore, as the number of cores 
per socket goes up, it can use some of the memory 
bandwidth that the ranks that it shares the node with are 
not using.  Rank 42, on the other hand, is sharing a socket 
with ranks that have a similar memory bandwidth need 
and has a bit more of a slowdown as a result. 

 
For this problem on 128 cores, CTH sends large 

(about 5 MB) messages several times per iteration (from 
54 to 108 depending on rank).  If we compare the MPI 
times for rank 0 and rank 42, the largest difference that 
we find is that the time for operations such as 
MPI_RECV and MPI_WAIT are much higher for rank 42 
than for rank 0.  This time is in excess of the time 
expected since these operations were called more often on 
rank 42 since it does more communication than rank 0.  In 
CTH, these operations have a synchronizing effect on the 
ranks, since a rank sends and receives from its neighbors 
and can not continue calculations until it has finished the 
communications.  The MPI times on rank 0 go up by a 
factor of 2.7 when running on one socket per node and by 
a factor of 3 when running on two sockets per core.  
These factors in MPI time on rank 0 represent contention 
for the NIC and for the memory on the socket.  If we look 
at the MPI time for a given number of cores on node, we 
find that the time is longer if we look at the case where 
those nodes share a socket.  For example, we can run with 
6 cores on a node either by running with 3 cores per 
socket and using both sockets or by running with 6 cores 
on one socket.  In the latter case, the MPI time is 51% 
larger than for the former case.  On the other hand, on 
rank 42, the MPI time goes up by a factor of 1.29 while 
running on one socket per node and by a factor of 1.42 
while running on two cores per node. 

 
In order to study the communication time for CTH, 

we have a program that closely simulates the 
communication pattern of CTH for this problem 
CTH_Comm.  The comparison of the MPI time from rank 
0 and CTH_Comm is shown in Figure 6. 
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CTH MPI Time and Communication Simulation 
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Figure 6.  CTH MPI time and communication simulation 
 
The simulator uses the same communication pattern 

CTH uses with similar message sizes.  This figure shows 
that we have captured the overall effect of the 
communication in CTH with the simulator.  The time per 
timestep is a little smaller for the simulator than for the 
code, which seems to indicate that there is more of an 
interaction with the code for CTH than we capture in the 
simulator.  However, the trends are similar to those that 
occur with the code.  The simulator time is not as smooth 
when running on two sockets per node.  Part of that 
seems to occur with the time for using four cores per 
socket being smaller than expected, which would 
correspond with communications in some directions 
being contained on a node and not having to go out onto 
the network.  The results for the communications 
simulator also seem to indicate that some of the MPI time 
above for rank 42 would be waiting for operations to 
complete. 

5. Conclusions and Future Work 

We ran a suite of applications on a Cray XT5 and 
Red Storm and examined their performance.  We have 
found that performance of CTH on the XT5 is similar to 
that on Red Storm.  On average on 128 cores, the suite of 
applications effectively used about 6.6 cores out of the 12 
available per node on the XT5.  Most of the slowdown is 
a result of contention on a socket for memory and access 
to the communications network.  Most of the codes 
showed a 1% to 3% additional slowdown on 128 cores 
due to the network contention when using both of the 
sockets on an XT5 node. 

 
Building on this work, we plan to model the behavior 

of these applications in order to predict the behavior of 
the applications on machines with higher levels of node 
parallelism, include Cielo. 
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