

CUG 2010 Proceedings 1 of 5

Analyzing Multicore Characteristics for a Suite of Applications
on an XT5 System

Courtenay T. Vaughan and Douglas W. Doerfler,
Sandia National Laboratories1

ABSTRACT: In this paper, we will explore the performance of applications important
to Sandia on an XT5 system with dual socket AMD 6 core Istanbul nodes. We will
explore scaling as a function of the number of cores used on each node and determine
the effective core utilization as core count increases. We will then analyze these results
using profiling to better understand resource contention within and between nodes.

KEYWORDS: XT5, application performance

1 This research was sponsored by Sandia National Laboratories, Albuquerque, New Mexico 87185, and Livermore,
California 94550. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

1. Introduction

The next capability computing machine being
acquired by the National Nuclear Security
Administration’s (NNSA) Advanced Scientific
Computing Program (ASC), code named Cielo, will be
based on Cray’s “Baker” architecture [1]. Baker will be a
dual-processor node, like the XT5, and the processor
(also referred to as a socket in this paper) will be AMD’s
recently announced 6100 series processor, and in
particular the 8-core model 6136, providing 16 cores per
node. Sandia’s current large machine, Red Storm, which
is a mixture of CRAY XT3 and XT4 boards, has a single
socket per node with a mixture of dual-core and quad-
core processors. In preparation for Cielo, it is desirable to
better understand the effects of higher numbers of cores
on application performance, Cielo will not become
available until later in 2010, but Sandia has recently
acquired a CRAY XT5 that does provide higher levels of
node parallelism than Red Storm and was used for this
early investigation into higher processor core counts. The
XT5 has 160 compute nodes. These nodes are dual-
socket with 6 core AMD Istanbul processors clocked at
2.4 GHz with 32 GB of 800 MHz DDR2 memory per
node. The XT5 is configured as a 6 x 4 x 8 3D torus and
uses SeaStar 2.2 for the interconnect. The XT5 is running
CNL 2.2.41 and the applications were compiled with PGI
version 9.0.2.

We will use a suite of applications to study the

effects of memory and high-speed network contention
due to the larger number of cores per socket. The
analysis will look at both the effect of a dual-socket vs

single-socket node and the effect of a larger number of
cores per socket.

2. Applications

In this paper, we have chosen to use the suite of ASC
applications that were chosen to benchmark Cielo
performance. These applications include CTH, Charon,
AMG2006, UMT2006, SAGE, and xNOBEL. The
descriptions of these codes follow. These applications are
representative of the Cielo workload and are composed of
applications from all three of ASC’s national laboratories,
Sandia, Los Alamos, and Lawrence Livermore.

A. CTH

CTH is an explicit, three-dimensional, multimaterial

shock hydrodynamics code which has been developed at
Sandia for serial and parallel computers. It is designed to
model a large variety of two- and three-dimensional
problems involving high-speed hydrodynamic flow and
the dynamic deformation of solid materials, and includes
several equations of state and material strength models
[2]. CTH is written mostly in FORTRAN 77 with a little
bit of C code.

The numerical algorithms used in CTH solve the

equations of mass, momentum, and energy in an Eulerian
finite difference formulation on a three-dimensional
Cartesian mesh. CTH can be used in either a flat mesh
mode where the faces of adjacent cells are coincident or
in a mode with Automatic Mesh Refinement (AMR)
where the mesh can be finer in areas of the problem

CUG 2010 Proceedings 2 of 5

where there is more activity. For this study we will be
using the code in a flat mesh mode and a shaped-charge
problem that scales with the number of processors.

B. Charon

Charon is a transport reaction code that was

developed to simulate the performance of stockpile
semiconductor devices under irradiation [3]. Finite
element discretization of the drift-diffusion equations
produces a large sparse, strongly coupled nonlinear
system which is solved via a fully-coupled Newton-
Krylov algorithm. The time to solution is strongly
dependent on how efficiently the potentially very large
linear systems can be solved. The particular model
investigated for this study involves the steady-state
solution of the drift-diffusion equations for a silicon NPN
bipolar junction transistor. Charon is written in mostly
C++, but uses a variety of libraries that are written in C,
C++, and FORTRAN.

C. xNOBEL

xNOBEL is a Continuous Adaptive Mesh

Refinement (CAMR) code that models hydrodynamics
with adaption and high-explosive burn modeling. This
code is based on the radiation hydrodynamics code
RAGE and on the HE burn code NOBEL [4]. This
benchmark is a 3D simulation of a 105 mm shaped charge
calculation. xNOBEL is written in a combination of
FORTRAN and C.

D. SAGE

SAGE is SAIC’s Adaptive Grid Eulerian hydrocode,

a multidimensional, multimaterial hydrodynamics code
with adaptive mesh refinement that uses second-order
accurate numerical methods [5]. We used a standard
problem called timing_c, which uses adaptation and heat
conduction, with 250000 cells per processor. SAGE is
mostly written in FORTRAN 90.

E. UMT2006

UMT is a 3D, deterministic, multigroup, photon

transport code for unstructured meshes. The transport
code solves the first-order form of the steady-state
neutral-particle Boltzmann transport equation. The
benchmark for Cielo is written in a combination of
Python and C++, but for this study we are using the C++
version of the code. The code also is capable of using
both MPI and OpenMP based parallelism, but for this
study, we use only the MPI based parallelism.

F. AMG2006

AMG is a parallel algebraic multigrid solver for

linear systems arising from problems on unstructured
grids [6]. The simulation is the solution of the Laplace
equations on the unit cube. It is discretized with standard
finite differences to yielding 7 point stencils in 3D. It is
written in C using MPI for parallelization. It also has the
option to use OpenMP directives, but we will not be using
those for this study. AMG is written in C.

3. Results for Red Storm and XT5

Figure 1 shows a comparison of CTH running on the
quad-core nodes of Red Storm and on the XT5, with both
utilizing all of the cores available on a socket. The quad-
core processors on Red Storm are 2.2 GHz AMD
Budapest processors with 800 MHz DDR2 memory and
the nodes are connected by a SeaStar 2.2 interconnect.
Red Storm is running Catamount CNW 2.1.56.1. Note
that the performance for Red Storm and the XT5 using
one socket per node is very close despite the XT5 running
on two-thirds the number of nodes. We do see a
difference in the performance on the XT5 when using one
socket per node versus two sockets per node, which
seems to get larger as the number of cores used gets
larger and gets to about 7% at 512 cores. When most of
the communication is on-node or between a few nodes,
the difference is small but gets larger as the
communication moves off node.

CTH - Shaped Charge - Red Storm vs. XT5

9

10

11

12

13

14

15

16

4 8 16 32 64 128 256 512 1024

Number of cores

T
Im

e
 p

e
r

T
im

es
te

p

Red Storm - quad-core

XT5 - 1 soc/node, 6 core/soc
XT5 - 2 soc/node, 6 core/soc

Figure 1. CTH on Red Storm and XT5

Figure 2 shows a comparison of CTH running on
Red Storm and the XT5 while using only 4 cores per
socket on the XT5. The Red Storm and XT5 single-
socket results have a similar shape to their curves with the
difference between the results being fairly consistent with
Red Storm being about 18% slower than the XT5. Since
the XT5 processor is clocked 9% faster than those on Red
Storm, it appears other improvements to the processors
were made which may explain the difference in
performance. We again see a difference in the XT5

CUG 2010 Proceedings 3 of 5

single-socket versus dual-socket results that starts small,
but then seems to be fairly constant as scale increases.

CTH - 4 Cores/Socket - Red Storm vs. XT5

8

9

10

11

12

13

14

4 8 16 32 64 128 256 512 1024

Number of cores

T
Im

e
p

er
 T

im
e

st
e

p

Red Storm
XT5 - 1 soc/node

XT5 - 2 soc/node

Figure 2. CTH on Red Storm and XT5 using 4 cores/socket

In Figure 3, we compare the two machines running

CTH on 128 cores and varying the number of cores per
socket used. In this case, we find that the difference
between Red Storm and the XT5 while running with one
core per node is about 8%, which is fairly close to the
difference in clock speeds between the two machines. As
the number of cores per socket used increases, the
difference in run time between the two machines also
increases, getting to about 16% when running with 4
cores per socket and using only one socket per node on
the XT5. Since the communication network is the same
on both machines, this seems to indicate that the Istanbul
processors in the XT5 are better than the Budapest
processors in Red Storm at pulling data from main
memory when several cores are contending for access to
memory. The performance difference between single-
socket and dual-socket XT5 performance grows from
about 2% at one core per socket to 6.5% at six cores per
socket.

CTH - XT4/XT5 Performance on 128 Cores

8

9

10

11

12

13

14

15

1 2 3 4 5 6

Number of Cores per Socket

T
im

e
p

er
 T

im
es

te
p

Red Storm - Quad
XT5 - 1 Soc/Node

XT5 - 2 Soc/Node

Figure 3. CTH on 128 cores of Red Storm and XT5

4. Application Results on XT5

We ran all six of the codes on 128 cores of the XT5
and varied the number of cores used per socket and the
number of sockets per node. The results are shown in
Figure 4.

Applications on 128 Cores

1

1.5

2

2.5

3

1 2 3 4 5 6

Number of Cores per Socket

T
im

e
 R

e
la

ti
ve

 t
o

 1
 C

o
re

 p
e

r
N

o
d

e

CTH - 1 soc/node
CTH - 2 soc/node
UMT - 1 soc/node
UMT - 2 soc/node

SAGE - 1 soc/node
SAGE - 2 soc/node
xNOBEL - 1 soc/node

xNOBEL - 2 soc/node
AMG - 1 soc/node
AMG - 2 soc/node
Charon - 1 soc/node

Charon - 2 soc/node

Figure 4. Applications onXT5

The times for all of the applications in Figure 4 were

normalized by dividing by the application time using one
core per node. Most of the codes show a modest increase
in run time as more cores are used per socket. The
average for the six applications running on all of the cores
on a node is a runtime of 1.83 times the runtime of using
one core per node. This represents an effective use of
about 6.6 cores per node. Most of this time is a result of
increased contention for memory access on the sockets.
As each additional core is added per socket, the time
differential grows nonlinearly. This would indicate that
contention increases as core count increases.

AMG performance is the most sensitive to increasing

core count. We profiled the code using CrayPat and the
amount of computation time goes up by a factor of three
while the MPI time decreases slightly as the number of
cores used per socket goes from 1 to 6. While the L1
cache hit rate (98.8%) is similar to CTH (98.9%), the L2
cache hit rate is 11.9% while for CTH it is 45.1%. This
seems to reflect the nature of an algorithm like multigrid
using memory in a more unpredictable fashion and
requiring more main memory accesses and creating more
contention for the processor’s main memory controller.

The time difference for each application when using

one socket per core and two sockets per core represents
the overhead from having both sockets competing for the
NIC. For most codes, the difference remains fairly steady
as a percentage of the application time. The two
exceptions for this are AMG and CTH. In the case of
AMG, the time difference between running one socket

CUG 2010 Proceedings 4 of 5

per node and two sockets per node decreases as the
number of cores increases to the point where the time for
running on 6 cores per socket using both sockets per node
is slightly less than that while using only one socket per
node. We ran AMG using CrayPat to profile the code
and found that the vast majority of the MPI time is in
synchronization for MPI_ALLREDUCE operations. This
is consistent with the code developers’ observation that
on a large number of processors, more than 90% of the
time can be spent in these operations. Except for running
with one core per socket, the time is less when running
with two sockets per node than running with one socket
per node and the time decreases as the number of cores
used per socket increases. This would indicate that the
system is performing MPI_ALLREDUCE operations
more efficiently on node than between nodes. The
amount of time for MPI decreases from about 36% for
one core per socket to about 15% for six cores per socket.

We also profiled CTH running the shaped charge

problem on 128 cores with CrayPat and the results are
shown in Figure 5. We have run CTH with another
problem which is more load balanced and the overall
results are similar.

CTH - Shaped Charge on 128 cores

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

Number of Cores per Socket

T
im

e

1 s/n - Total Time
1 s/n - P 0 - Compute
1 s/n - P 0 - MPI
1 s/n - P 42 - Compute

1 s/n - P 42 - MPI
2 s/n - Total Time
2 s/n - P 0 - Compute
2 s/n - P 0 - MPI

2 s/n - P 42 - Compute
2 s/n - P 42 - MPI

Figure 5. Profile of CTH on 128 cores

In this figure, we plotted the times for the
computational portion of CTH and the time spent in MPI
for two different ranks within the calculation, while
running on a varying number of cores per socket and both
one and two sockets per node. We chose rank 0, which
has the computational hotspot for this calculation but is
on the spatial edge of the calculation and gets updates
from three of its neighbors, and rank 42, which is an
internal rank in the calculation and thus gets updates from
six of its neighbors. The total problem time agreed for
rank 0 and rank 42 and is thus plotted as simply total
time. Notice that the computational time for both ranks
does not vary with the number of sockets used per node.
This validates our earlier observation that the difference

between the line for one socket per node and two sockets
per node is due to the difference in the MPI time.

The computational time goes up by 23% for rank 0

while going up by 40% for rank 42. This is explained by
the fact that rank 0 is the computational hotspot and is
sharing a socket with ranks which have a lower
computational load. Therefore, as the number of cores
per socket goes up, it can use some of the memory
bandwidth that the ranks that it shares the node with are
not using. Rank 42, on the other hand, is sharing a socket
with ranks that have a similar memory bandwidth need
and has a bit more of a slowdown as a result.

For this problem on 128 cores, CTH sends large

(about 5 MB) messages several times per iteration (from
54 to 108 depending on rank). If we compare the MPI
times for rank 0 and rank 42, the largest difference that
we find is that the time for operations such as
MPI_RECV and MPI_WAIT are much higher for rank 42
than for rank 0. This time is in excess of the time
expected since these operations were called more often on
rank 42 since it does more communication than rank 0. In
CTH, these operations have a synchronizing effect on the
ranks, since a rank sends and receives from its neighbors
and can not continue calculations until it has finished the
communications. The MPI times on rank 0 go up by a
factor of 2.7 when running on one socket per node and by
a factor of 3 when running on two sockets per core.
These factors in MPI time on rank 0 represent contention
for the NIC and for the memory on the socket. If we look
at the MPI time for a given number of cores on node, we
find that the time is longer if we look at the case where
those nodes share a socket. For example, we can run with
6 cores on a node either by running with 3 cores per
socket and using both sockets or by running with 6 cores
on one socket. In the latter case, the MPI time is 51%
larger than for the former case. On the other hand, on
rank 42, the MPI time goes up by a factor of 1.29 while
running on one socket per node and by a factor of 1.42
while running on two cores per node.

In order to study the communication time for CTH,

we have a program that closely simulates the
communication pattern of CTH for this problem
CTH_Comm. The comparison of the MPI time from rank
0 and CTH_Comm is shown in Figure 6.

CUG 2010 Proceedings 5 of 5

CTH MPI Time and Communication Simulation

0

1

2

3

4

5

6

1 2 3 4 5 6

Number of Cores per Socket

T
im

e

1 s/n - P 0 - MPI

2 s/n - P 0 - MPI
1 s/n - CTH_Comm
2 s/n - CTH_Comm

Figure 6. CTH MPI time and communication simulation

The simulator uses the same communication pattern

CTH uses with similar message sizes. This figure shows
that we have captured the overall effect of the
communication in CTH with the simulator. The time per
timestep is a little smaller for the simulator than for the
code, which seems to indicate that there is more of an
interaction with the code for CTH than we capture in the
simulator. However, the trends are similar to those that
occur with the code. The simulator time is not as smooth
when running on two sockets per node. Part of that
seems to occur with the time for using four cores per
socket being smaller than expected, which would
correspond with communications in some directions
being contained on a node and not having to go out onto
the network. The results for the communications
simulator also seem to indicate that some of the MPI time
above for rank 42 would be waiting for operations to
complete.

5. Conclusions and Future Work

We ran a suite of applications on a Cray XT5 and
Red Storm and examined their performance. We have
found that performance of CTH on the XT5 is similar to
that on Red Storm. On average on 128 cores, the suite of
applications effectively used about 6.6 cores out of the 12
available per node on the XT5. Most of the slowdown is
a result of contention on a socket for memory and access
to the communications network. Most of the codes
showed a 1% to 3% additional slowdown on 128 cores
due to the network contention when using both of the
sockets on an XT5 node.

Building on this work, we plan to model the behavior

of these applications in order to predict the behavior of
the applications on machines with higher levels of node
parallelism, include Cielo.

About the Authors

Courtenay Vaughan is a Senior Member of Technical
Staff at Sandia National Laboratories. He can be reached
at Sandia National Laboratories, P. O. Box 5800, MS
1319, Albuquerque, New Mexico 87185, E-Mail:
ctvaugh@sandia.gov.

Douglas Doerfler is a Principle Member of Technical

Staff at Sandia National Laboratories. He can be reached
at Sandia National Laboratories, P. O. Box 5800, MS
1319, Albuquerque, New Mexico 87185, E-Mail:
dwdoerf@sandia.gov.

References
1. Sudip Dosanjh and John Morrison, “An Alliance

for Computing at the Extreme Scale”, Cray Users
Group Conference, May 2010.

2. E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V.

Farnsworth, G. I. Kerley, J. M. McGlaun, S. V.
Petney, S. A. Silling, P. A. Taylor, L. Yarrington,
“CTH: A Software Family for Multi-Dimensional
Shock Physics Analysis,” Proceedings, 19th
International Symposium on Shock Waves 1,
274ff (Université de Provence, Provence, France)
(1993).

3. P. Lin, J. Shadid, M. Sala, R. Tuminaro, G.

Hennigan, and R. Hoekstra, “Performance of a
Parallel Algebraic Multilevel Preconditioner for
Stabilized Finite Element Semiconductor Device
Modeling,” to be published by the Journal of
Computational Physics. Available online at
http://dx.doi.org/10.1016/j.jcp.2009.05.024

4. Gittings, M. L., Weaver, R. P., et. al., “The

RAGE radiation-hydrodynamic Code”, in
Computational Science and Discovery, Vol. 1,
(2008)

5. D. J. Kerbyson, H. J. Alme, A. Hoise, F. Petrini,

H. J. Wasserman, and M. Gittings, “Predictive
Performance and Scalability Modeling of a
Large-Scale Application”, in Proceedings of the
ACM/IEEE International Conference on High-
Performance Compution and Networking (SC
2001), November 2001.

6. Van Emden Henson and Ulrike Meier Yang,

“BoomerAMG: A Parallel Algebraic Multigrid
Solver and Preconditioner”, Appl. Num. Math. 41
(2002), pp. 155-177.

