

Analyzing Multicore Characteristics for a Suite of Applications on an XT5 System

Courtenay T. Vaughan and Douglas W. Doerfler Sandia National Laboratories

> Cray User Group May 2010

Motivation

- Study applications on multicore multisocket machine
- Preparation for Cielo
- For details see the talk by Sudip Dosanjh (SNL) and John Morrison (LANL), "An Alliance for Computing at the Extreme Scale" on Thursday at 11:30

XT5 Details

- Cray XT5 with 160 compute nodes
- dual socket with 6 core AMD Istanbul processors
- 2.4 GHz processors
- 32 GB of 800 MHz DDR2 Memory per node
- 6 x 4 x 8 3D torus with SeaStar 2.2
- CNL 2.2.41
- PGI 9.0.2
- Panasas filesystem

Applications

- CTH shock hydrodynamics
- Charon semiconductor device modeling
- SAGE hydrodynamics with AMR
- xNOBEL hydrodynamics with adaption and high-explosive burn
- AMG 3D, deterministic, multigroup, photon transport code for unstructured meshes
- UMT parallel algebraic multigrid solver

Comparison with Red Storm

- Comparison with quad-core nodes of Red Storm
 - 2.2 GHz with 8 MB of 800 MHz DDR2 memory per node
 - Catamount (CNW 2.1.56.1)
 - SeaStar 2.2
 - PGI 10.0.0
- Comparison using CTH

CTH - Shaped Charge - Red Storm vs. XT5

CTH - 4 Cores/Socket - Red Storm vs. XT5

CTH - XT4/XT5 Performance on 128 Cores

- Ran codes on 128 cores while varying the number of cores per socket and number of sockets per node
- Used Cielo benchmark "figure of merit" for the codes
 - Converted to time
- Graphed performance relative to running on one core per node
- Used only MPI level parallelism

Applications on 128 Cores

Application Performance

AMG Performance

- Most sensitive of the applications to increasing core count
 - L1 cache hit 98.8%, with L2 rate of 11.9%
 - CTH L1 rate 98.9%, with L2 rate of 45.1%
 - reflects nature of memory access for multigrid
- MPI time dominated by MPI_ALLREDUCE
 - amount of time about 10% as number of cores used increases from one to six
 - Indicates optimization of MPI_ALLREDUCE on node
 - Percentage of time for MPI decreases from about 36% to about 15%

CTH - Shaped Charge on 128 cores

CTH MPI Time and Communication Simulation

Conclusions

- Scaling results for XT5 similar to Red Storm
 - As number of cores used increases, difference between single-socket and dual-socket increases
- On 128 cores, codes on average effectively used
 6.6 cores out of the available 12 when using all cores on a node
 - Most of the additional time is contention on a socket for memory
 - Most codes show 1% to 3% additional slowdown due to contention for the NIC when using both nodes on a socket
 - CTH also shows additional contention for MPI when using more cores on a socket

Future Work

- Use these results to model application behavior
- Use the model to predict behavior of future machines with a larger amount of node parallelism

