
Monitoring Tools for Large Scale Systems

Ross Miller, Jason Hill, David A. Dillow, Raghul Gunasekaran, Galen Shipman, Don Maxwell

Oak Ridge Leadership Computing Facility, Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA,

{rgmiller,hilljj,dillowda,gunasekaranr,gshipman,maxwellde}@ornl.gov

Abstract

Operating computing systems, file systems, and associated networks at unprecedented scale offer unique challenges
for fault monitoring, performance monitoring and problem diagnosis. Conventional system monitoring tools are in-
sufficient to process the increasingly large and diverse volume of performance and status log data produced by the
world’s largest systems. In addition to the large data volume, the wide variety of systems employed by the largest com-
puting facilities present diverse information from multiple sources, further complicating analysis efforts. At leadership
scale, new tool development is required to acquire, condense, correlate, and present status and performance data to
systems staff for timely evaluation.
This paper details a set of system monitoring tools developed by the authors and utilized by systems staff at Oak Ridge
National Laboratory’s Leadership Computing Facility, which includes the Cray XT5 Jaguar. These tools include
utilities to correlate I/O performance and event data with specific systems, resources, and jobs. Where possible,
existing utilities are incorporated to reduce development effort and increase community participation. Future work
may include additional integration among tools and implementation of fault-prediction tools.

1 Introduction

The Spider filesystem at the Oak Ridge Leadership
Computing Facility is the largest single fileystem the
world.[6] It provides scratch space and short-term stor-
age for the users of the OLCF’s computing resources.

Spider is built around the Lustre parallel filesystem
and consists of 192 servers, 96 storage controllers, and
13,440 hard drives. It is capable of storing over 10
petabytes of data and can sustain 240 GB/s of I/O.
There are over 26,800 clients spread across most of the
OLCF’s supercomputers. Fig. 1 shows the overall Spi-
der architecture.

2 Challenges of Monitoring Systems at
Scale

There are several challenges associated with moni-
toring and maintaining a filesystem the size of Spider.
First, there is simply a lot of hardware to monitor. Look-
ing for problems in one syslog file might be acceptable,
but scanning 192 such files isn’t. We need tools that can
aggregate data from many sources and present it in an

understandable fashion.
Second, Spider is a shared resource. Users access

Spider from our supercomputers, our visualization sys-
tems and even remotely. One misbehaving or poorly op-
timized application can affect everyone else. We need
tools that can quickly diagnose performance problems
and trace them back to the application that is causing
them.

Finally, the sheer size of the filesystem can make cer-
tain routine maintenance tasks impractical. Tools that
don’t take advantage of the filesystem’s parallelism sim-
ply run too slowly to be useful. For example, search-
ing the entire filesystem with ’find’ can take 48 or more
hours. We’ve had to develop new tools that do take ad-
vantage of parallelism in order to accomplish our routine
maintenance tasks.

3 Tools Developed At ORNL

One of the challenges of deploying the largest filesys-
tem in the world is the fact that you run into problems
that no one has ever seen before. Of course, this means
that no tools exist to help solve these problems. As such,

1



192 Spider OSS
servers

7 RAID-6  (8+2) tiers per OSS

96 DDN 
S2A9900 couplets

192 4x DDR IB
connections

SION IB network

192 4x DDR IB
connections

Figure 1: Overall Spider architecture

we’ve had to develop a variety of tools ourselves in or-
der to meet the specific needs we have for monitoring
Spider.

3.1 MDSTrace

One of the largest challenges of Spider is tracking
down pathalogical I/O patterns generated by applica-
tions. This is especially true for metadata operations
that can cause perceptible pauses during interactive use.
Tracking down the source of these issues using the
server-side client statistic files quickly becomes a CPU
hog with 26,800 clients – each file would need to be
opened and read to establish a snapshot both before and
after the monitoring period. In the case of Spider, even
if we could afford the CPU usage, the server-side client
statistics had to be disabled due to the memory overhead
it required. To help overcome this blind spot, we devel-
oped MDSTrace.

MDSTrace captures a nominal sixty second slice of
RPC traffic to the metadata server, and generates a report
about what the server was doing, on behalf of which ap-
plications, and how long it took to perform each action.
As a first step, MDSTrace initiates collection of the RPC

trace log and the application node mapping in parallel.
After the collection period, it then aggregates the RPC
data by application, generating various statistics:

• Number of operations performed, by type

• Number of distinct nodes performing operations

• Minimum, maximum, and average processing
times

• Minimum, maximum, and average queue times

These statistics are also rolled up per machine, and for
the entire center. Using these statistics, it is possible
to pinpoint the application(s) potentially causing perfor-
mance to suffer, and to work with the project liasons to
improve their I/O patterns to both improve their runtimes
as well as lessen the impact on the metadata server.

MDSTrace is not without limitation. Under periods
of heavy loading, the snapshot period is shorter than the
nominal sixty seconds, due to memory exhaustion of the
Lustre debug log. MDSTrace is currently run once every
ten minutes, which can cause short, bursty, performance
issues to go unreported. These issues will be addressed
in future work.

3.2 DDNTool

The Spider filesystem is built around storage con-
trollers from Data Direct Networks. These controllers
have an API that allows performance and fault infor-
mation to be queried over the network. Since there are
96 separate controllers in the filesystem, querying each
one individually is impractical. Some means of regu-
larly polling the controllers and aggregating the results
is required.

The utility which does this is called DDNTool. It
manages the connections with the DDN storage con-
trollers, polls each one for various pieces of information
at regular rates and stores this information in a MySQL
database.

It should be noted that the database isn’t being used to
accumulate any kind of history: new data is constantly
overwriting the old data. Rather, the database is being
used for the other features it provides: simultaneous ac-
cess from multiple clients, a well known API for query-
ing the data and language bindings for just about every
popular programming language. One other benefit of
this architecture is that the DDN hardware only has to
support a single connection. Since the client programs
all connect to the MySQL server, multiple users can be
monitoring the system without the risk of overloading
the DDN hardware and slowing their performance.

2



Merely storing the data in a database isn’t sufficient,
of course. Several clients have been written so far to
query the database for specific information and display
it in an understandable format. A good example is a sim-
ple Python script that queries all the temperature sensors
(14 sensors per DDN, 1344 in total) and displays only
those who’s temperature is above a specified value. Be-
cause the data is already in a database, this client only
requires a single SQL query and less than 50 lines of
Python code. Several other clients have been written to
query other data and even the standard ’mysql’ client is
useful for simple queries.

Another example use of the DDNTool is for captur-
ing historical performance information. Using this tool
a number of metrics are captured such as storage sys-
tem bandwidth usage and aggregate I/O operations per
second (IOPs). Figure 2 illustrates the max hourly data
rates delivered by 1/2 of the total storage controllers over
the month of March. IOPs over the same period are il-
lustrated in Figure 3. This and other performance re-
lated data has been collected using the DDNTool and
archived into our performance analysis database for over
6 months as of this writing.

Figure 2: Max Data Rates (hourly) on 1/2 of the storage con-
trollers

3.3 Long Term Monitoring of DDNTool Data

Current work in this area pulls performance and fault
data from the DDNTool database and uses that informa-
tion to generate web pages that show read/write peaks
on a per minute basis, generates graphs showing the de-
lay in committing a SCSI transaction to disks and also
updates the total amount stored on disk daily.

Figure 3: Max IOPs (hourly) on 1/2 of the storage controllers

4 Open Source Tools

The open source community has created a variety
of tools and utilities that we use. Some are designed
for general-purpose server administration and some are
Lustre-specific.

4.1 Nagios

The health of the filesystem can be closely tied to the
health of the underlying hardware and software that runs
the filesystem. We monitor the health of the hardware
and software by using Nagios[1] to query several items
via SNMP. Nagios can query via SNMP or can be set
up in a server/agent configuration. It can also be ex-
tended by using various popular scripting languages and
querying custom SNMP OID’s. We use this approach
for several of our queries.

OSS health is monitored by querying a variety of pa-
rameters. First, we query the Dell OpenManage stack
for chassis health (CPU temperature, power supply volt-
age and on-line status and fan speed). Next, we wrote
custom Nagios extensions that monitor the health of the
Infiniband connections to the back-end storage as well as
the health of the Infiniband connection to the center wide
Scalable I/O Network (SION). Additionally, we wrote a
custom extension for monitoring the multipath status for
the connections to our back-end storage. We also moni-
tor the ssh daemon and ping the host to be sure that the
Ethernet management network is healthy. Finally, the
system load average is polled and graphed so we can
attempt to correlate high system load on specific OSS
nodes to application behavior.

3



4.2 Simple Event Correlator + Syslog

The Simple Event Correlator [2] combined with the
Lustre server syslogs allows the administration staff to
generally parse error messages from the Lustre software
stack and from processes running on the Lustre servers
and to gain more knowledge about the health and sta-
tus of the filesystem. Rules are written to alert adminis-
trators of certain conditions, as well as combinations of
conditions. For example, one of the SEC rules looks for
syslog messages that are printed at boot time and gen-
erates an alert indicating that that particular server has
rebooted. Additional work is being undertaken to corre-
late these logs to other events within the compute envi-
ronment to gain a complete picture of the I/O impact of
scientific applications.

4.3 Ne2scan + Genhit + Purge + Fsfind

Since Spider is primarily used as scratch storage
for the supercomputers, out of date files are subject to
being purged after two weeks. To perform this task,
we use a combination of tools developed or modified
at at Lawrence Berkley National Laboratory’s National
Energy Research Supercomputing Center (NERSC):
ne2scan[4], genhit, purge, and fsfind[3]. The combina-
tion of ne2scan, genhit and purge allow us to remove the
out of date files with minimal impact to the users. Fsfind
is a related tool that allows reasonably fast file queries.

4.3.1 Ne2scan

Ne2scan is a modification of the e2scan utility that
comes from e2fsprogs. These modifications were done
by staff at NERSC. Lustre ships a modified e2scan that
is aware of Lustre attributes and this work extends those
modifications. Ne2scan scans the metadata from Lustre
and outputs it as plain text that can be further processed
with the other utilities discussed in this section. The act
of scanning the metadata is not intrusive to applications
and user interactive sessions because it does not modify
anything and it does not use the Lustre POSIX layer to
read the metadata. The metadata is instead read directly
from the block device. In our current configuration, the
working set of file metadata fits in memory on the Meta-
data Server (MDS), so any disk reads are almost invis-
ible to the filesystem users. This could change in the
future, but it is highly unlikely that user performance
would ever be significantly impacted by the invocation
of ne2scan.

4.3.2 GenHit

The genhit utility allows the administration staff to spec-
ify a date range and filter the results from ne2scan. We
use this utility to generate the listing of files to delete
based on the OLCF’s Data Retention/Sweep policy. This
utility requires access to the output of ne2scan and suf-
ficient storage to write its own output file. It does not,
however, have to run on the metadata server.

4.3.3 Purge

The purge utility will use the output of genhit and delete
files from the filesystem. If first performs a stat on each
candidate file using the Lustre client POSIX layer. It
verifies that the mtime, ctime, and atime meet all the
requirements for deletion. If they are all met, then the
utility calls unlink on the path and moves to the next
candidate file.

All candidate files should meet these requirements or
they would not have been included in the genhit out-
put. However, it is possible that a file may have been
accessed between the time ne2scan was run and purge
finally attempts to delete the file. In such a case, the file
will not be deleted.

The whole process - Ne2scan + Genhit + Purge -
usually takes 48-72 hours to complete. The exact time
required mainly depends on the number of files in the
filesystem.

4.3.4 Fsfind

The fsfind utility also makes use of the ne2scan output.
This utility is used to generate information that is useful
for profiling the data stored in the filesystem. The Spi-
der administrators can query for users that have files on
specific Lustre Object Storage Targets (OST) or for all
files on a particular OST. Administrators can also query
for files with certain striping patterns (groups of OST’s).
Additionally, they can query for all files with specific
user or group permissions or for files that are setuid or
setgid. Because it only reads the ne2scan output it also
does not need to run on the MDS and queries only take
a few minutes instead of several hours.

5 Future Deployment

There are a number of other tools that we haven’t de-
ployed yet, but are either considering or have plans to
deploy.

4



5.1 LMT

The Lustre Monitoring Tool [5], provides another
visual representation of filesystem activity and perfor-
mance. This tool was successfully deployed on past
filesystems, and work is underway to include the Lus-
tre server side agent as the OLCF returns from the next
available site-wide filesystem outage.

5.2 Infiniband Fabric Monitor

The deployment of an Infiniband Fabric Monitoring
solution would help us to find under performing or dead
links in the fabric. It could also help us to better visual-
ize the network, and help to pinpoint bottle-necks in our
inter-switch linking.

5.3 Lustre Server-side Client Statistics

Lustre server-side client statistics were abandoned in
the current production version of Spider because of the
way that memory was allocated on the Lustre server. At
our high client count (26,800), memory utilization for
server-side client stats was over 11GB. Each server only
has 16GB and our diskless deployment of the base op-
erating system consumed 1GB. With the client statistics
and OS in memory we were experiencing kernel panics
and out of memory (OOM) conditions fairly regularly.
We worked with the filesystem engineers at Sun/Oracle
to disable this feature, and helped them to reduce the im-
pact of this feature in future releases. We will add back
this feature when we deploy a Lustre 1.8.X filesystem in
the near future.

5.4 Lustre DU Replacement

One of the things the admin staff would like to know
about the filesystem is which users and projects are us-
ing the most space. The standard ’du’ command could
report this, but would take days to run.

As a replacement for ’du’, we wrote another utility
that reads the output of ne2scan. This utility records
the user and group ownership of each directory as well
as the size of all files stored under that directory and
stores that information in a MySQL database. For space
reasons, the size and ownership of individual files is not
stored.

Obtaining the size of files is a little bit tricky since
size data is not stored on the metadata server. The size
of a file is computed from the size of all of its component
objects and that information is stored on the OSS’s. We

could obtain the size by going through the lustre client
layer, but that would take too long. (That’s exactly how
the standard ’du’ works, after all.)

Instead of going through the POSIX layer, we wrote a
small daemon process that runs on each OSS. This pro-
cess reads the block devices directly and can look up an
object’s size from its object id. The main process reads
the pathname and user and group ownership information
from ne2scan output and then requests sizes of each ob-
ject from the daemons.

By storing the resulting size, name and ownership in-
formation in a database, du-like queries can be run in
real-time. Note that although the queries return very
quickly, the data is only as current as the most recent
run of ne2scan.

This utility has been written and undergone prelimi-
nary testing but is not in production yet.

6 Conclusions

As we continue to deploy tools and help improve the
I/O performance of scientific applications, it becomes
more clear that the ability to identify which applications
are causing specific I/O patterns is crucial to our suc-
cess. Also, our efforts in real-time monitoring of the
back-end hardware and analysis of that data will lead to
better fault detection and fault prediction. Finally, the
use of open-source tools that required only minor mod-
ifications allowed us to focus more closely on the more
challenging and demanding problems specific to deploy-
ments at this scale.

References

[1] Nagios. http://www.nagios.org.
[2] Simple Event Correlator. http://simple-evcorr.

sourceforge.net/.
[3] N. P. Cardo. Reaping the benefits of metadata. In Lustre

User Group, 2010.
[4] N. P. Cardo and C. Whitney. Reaping the benefits of meta-

data. In Lustre User Group, 2010.
[5] J. Garlick. Lustre Monitoring Tool (lmt). http://code.

google.com/p/lmt.
[6] G. M. Shipman, D. A. Dillow, S. Oral, and F. Wang. The

spider center wide file system; from concept to reality. In
Proceedings of the Cray User Group Conference, 2009.

5


