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Brief overview of Spider

● 10 PB storage to users
● 244 GB/s demonstrated bandwidth
● Currently serves 26,887 clients
● Based on Lustre 1.6.5 plus Cray and Oracle 

patches
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Spider Hardware

● 13,696 1 TB SATA Drives
● 13,440 used for object storage
● 256 used for metadata and management

● 48 DDN 9900 Couplets (IB)
● 1 Engenio 7900 Storage Server (FC)
● 192 Dell PowerEdge 1950 Object servers
● 3 Dell R900 Metadata servers
● Other various management servers
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Monitoring Aggregate Performance

● What does day to day usage look like?
● What is the duty cycle?
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Monitoring Aggregate Performance

● Vendor tools insufficient for gathering this data
● Serialized polling
● No data history
● Limited data selection

● DDNTool
● Polls all controllers in parallel
● Allows clients to collect history
● Rich assortment of data collected
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Monitoring Aggregate Performance
● Data is stored in in-memory MySQL tables

– Transient storage, overwritten with each 
polling period

– Clients can pull to more permanment storage
● Multiple clients can retrieve same data without 

overloading the DDNs
● Clients use standard SQL to get to data

– Well known API
– Multiple language bindings

● Clients only need know about the subset of data 
they care about

– Performance client retrieves bandwidth and 
IOPS history every two seconds

– Environmental client retrieves temperature 
sensor data every minute

– Configuration client checks zoning once an 
hour
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Monitoring Metadata Performance

● Is the metadata server under water?
● If so, who is causing this?
● Useful to know, to correct application IO patterns

– and to avoid tar and feathers!
● Basic tools like “routerstats” can give LNET loading, 

but do not indicate queue times or correlate to 
applications
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MDSTrace

● Analyzes a nominal 60 second RPC trace
– can be less if debug logs overflow
– can analyze longer periods if you can get the data and 

don't mind waiting
● Aggregates RPC data and associates it with 

running applications
● We run it every 10 minutes

– general health check
– can miss “bursty” performance issues

● Not a turn-key tool – much interpretation needed!
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MDSTrace Legend

● Lustre terms
● LDLM_ENQUEUE is an open() or stat() call
● LDLM_CANCEL is a lock release
● MDS_REINT is usually mkdir() or mknod()
● MDS_READPAGE is readdir()

● Abbreviations for request times
● pmin/pavg/pmax is Processing Time
● tmin/tavg/tmax is Total Time
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Sample MDSTrace Output

 
Begin 1274308813.824492 (Wed May 19 18:40:13 EDT 2010)
End 1274308861.475305 (Wed May 19 18:41:01 EDT 2010)
Elapsed time ~ 48 seconds

Minimum ENQUEUE/REINT/STATFS observable latency: 48us
Average ENQUEUE/REINT/STATFS observable latency: 4943us
Maximum ENQUEUE/REINT/STATFS observable latency: 1802519us

Total:  50401 RPCs  ~1050 per sec
            25169 LDLM_ENQUEUE RPCs    ~524 per sec
                    pmin 33us pavg 5130us pmax 1802494us
                    tmin 48us tavg 5286us tmax 1802519us
            16299 MDS_CLOSE RPCs    ~339 per sec
                    pmin 38us pavg 17333us pmax 989077us
                    tmin 64us tavg 17507us tmax 990601us
            7240 MDS_REINT RPCs    ~150 per sec
                    pmin 49us pavg 3693us pmax 188734us
                    tmin 77us tavg 3777us tmax 188879us
            1456 LDLM_CANCEL RPCs    ~30 per sec
                    pmin 21us pavg 148us pmax 2591us
                    tmin 43us tavg 302us tmax 27380us
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Sample MDSTrace Output

 
XT5 Application 2011794 ('application A', user A, res 2526)
        5133 RPCs from 1015 of 1024 nodes
          ~106 per sec
            4649 MDS_CLOSE RPCs    ~96 per sec
                    pmin 51us pavg 60501us pmax 989077us
            314 LDLM_CANCEL RPCs    ~6 per sec
                    pmin 42us pavg 487us pmax 2591us
            170 LDLM_ENQUEUE RPCs    ~3 per sec
                    pmin 57us pavg 22227us pmax 1308450us
            Overall times
                    pmin 42us pavg 55562us pmax 1308450us

XT4 Application 3587244 ('application A', user A, res 1584)
        668 RPCs from 1 of 257 nodes
          ~13 per sec
            338 MDS_CLOSE RPCs    ~7 per sec
                    pmin 46us pavg 79us pmax 1120us
            330 LDLM_ENQUEUE RPCs    ~6 per sec
                    pmin 63us pavg 1323us pmax 135118us
            Overall times
                    pmin 46us pavg 694us pmax 135118us
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Sample MDSTrace Output

 
Service node 'XT4 login12' sent 13849 RPCs  ~288 per sec
            8340 LDLM_ENQUEUE RPCs    ~173 per sec
                    pmin 33us pavg 1029us pmax 1648279us
            5319 MDS_CLOSE RPCs    ~110 per sec
                    pmin 38us pavg 70us pmax 6151us
            69 MDS_REINT RPCs
                    pmin 122us pavg 275us pmax 563us
            67 LDLM_CANCEL RPCs
                    pmin 24us pavg 43us pmax 84us
            54 MDS_READPAGE RPCs
                    pmin 192us pavg 1295us pmax 41438us
            Overall times
                    pmin 24us pavg 653us pmax 1648279us
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Sweeping the System

● Spider is a scratch filesystem
– If it is important, copy it elsewhere

● Not using quotas, so need a way to keep space 
usage under control
– Periodic sweeps to remove file older than policy allows

● ne2scan/genhit/purge trio helps immensely
– approx two days to generate file list w/ 280 million files
– file list reused to generate “hit” list for purges

● 14 hours to generate 133.4M candidates
● 14+ days to delete those 133.4M files
● Normal purge runs are much faster (12 to 24 hrs / 4 to 5 M files)
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Monitoring the System Health

● System administrators need to sleep sometimes
● Nagios monitors the system health for us

– watches for hardware faults
– especially useful for alarming on sustained high load 

averages
● potential signal of a pathalogical I/O pattern

● Simple Event Correlator watchs log messages
– simple rules: watch for string indicating a reboot
– complex rules: only alarm if prior event happened

● Working on analysis tools to chew through large 
logs and help automate isolation of failures
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WIP: Who's using my space?

● LustreDU gives a sideband “du”
– du is terribly slow on a file system of this size
– a parallel du exists, but can easily swamp the system

● We can reuse the ne2scan file list to quickly 
generate usage reports
– Just need a bit more information from the OSSes, which 

we can get out-of-band
● Can only give usage at time ne2scan was run

– That's often all that is needed
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Questions?

● Contact info:

David Dillow

865-241-6602

dillowda@ornl.gov
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