
Using Quality of Service
for Scheduling on Cray

XT Systems

Troy Baer

HPC System Administrator

National Institute for
Computational Sciences,
University of Tennessee

Outline

• Introduction

• Scheduling Cray XT systems with TORQUE and
Moab
– Scheduling algorithm
– Queue structure
– Job Prioritization
– Quality of service levels

• Case studies
– Normal operation on Kraken
– Nightly weather forecasting on Kraken
– User-managed scheduling on Athena

• Conclusions

Introduction

• NICS operates two Cray XT systems for the U.S.
National Science Foundation:
– Kraken, 88 cabinet XT5.
– Athena, 48 cabinet XT4.

• The two systems are allocated differently:
– Kraken is allocated through the Teragrid Resource

Allocation Committee.
– Athena is dedicated to one or two projects at a time on

a roughly quarterly basis.

• On both systems, there are occasionally needs
to give special scheduling consideration to
individual projects or users.

System Details
System Kraken Athena

Cabinets 88 48

Compute Nodes 8,256 4,512

Processor AMD Opteron
2.6 GHz hex-

core

AMD Opteron
2.3 GHz quad-

core

Total Cores 99,072 18,048

Peak Performance
 (TFLOP/s)

1,030.3 165.9

Memory (TB) 129 17.6

Disk (TB) 2,400 85

Disk Bandwidth
(GB/s)

30 12

Scheduling Cray XT Systems with
TORQUE and Moab
• Like many large XT systems, Kraken and Athena use

TORQUE and Moab for resource management.
–TORQUE is an open source batch system from

Adaptive Computing (nee Cluster Resources).
•Derived from PBS.
•Works on everything from a laptop to JaguarPF.

–Moab is a closed source scheduler from Adaptive
Computing that works with many batch systems,
including TORQUE.
•Highly flexible priority system.
•Advance reservations.
•Quality of service (QOS) mechanisms.
•Modular design allows integration with external
services (e.g. ALPS on Cray XTs).

Scheduling Algorithm

The basic Moab scheduling algorithm has seven steps:

• Update status information from resource manager(s). *

• Refresh reservations.

• Start jobs with reservations (if possible). *

• Start jobs with highest priority (if possible). *

• Backfill jobs. *

• Update statistics.

• Handle client requests.

* Requires interaction with ALPS on Cray XTs

Queue Structure
Queue Max.

Walltime
Max. Cores

(Athena)
Max. Cores

(Kraken)

small 24 hours 512 512

longsmall 60 hours 512 256

medium 24 hours 2,048 8,192

large 24 hours 8,192 49,536

capability 24 hours 18,048 99,072

dmover 24 hours 0 0

hpss 24 hours 0 0

Job Prioritization

In addition to having similar queue structures,
Kraken and Athena use the same set of priority
weights, which prioritize jobs based on:

• Size.

• Queue time.

• Expansion factor (though this was recently
removed).

Quality of Service Levels

• A quality of service (QOS) level is an object in Moab
enabling a job to request special scheduling
considerations.
–Can be applied automatically to a job by Moab or

explicitly requested (e.g. -l qos=foo in TORQUE).
–Access to a QOS can be assigned to any Moab

credential (user, group, account, queue/class).
–Can have a number of effects:

•Modify priority.
•Modify throttling policies.
•Change reservation behavior.
•Change backfill behavior.
•Enable preemption.

Quality of Service Levels (con't.)

Kraken and Athena originally had two non-default
QOS levels available:

•sizezero
– Applied automatically by Moab to any job requesting
size=0 (typically data transfer jobs).

– Uses RUNNOW flag to cause size=0 jobs to run in a
timely manner despite their low priority.

•negbal
– Applied by the TORQUE submit filter to jobs charging

against projects whose balances have gone negative.
– Large, negative priority modifier.

Case Studies

• Three cases
– Normal operation on Kraken.
– Normal operation on Kraken with reservations in

support of nightly weather forecasts.
– Dedicated operation of Athena for a single group.

• In all cases, we'll look at how different QOSes
affect the queue times of jobs, as users tend to
look at shorter queue times as proof of better
service.

• The Moab settings used to accomplish all of the
work described here are in the paper's appendix.

Normal Operation on Kraken

• Baseline.

• Time frame: 5 Oct 2009 to 31 Mar 2010.

• System utilization: 65.62% (not compensated for
downtime).

Normal Operation on Kraken (con't.)

QOS Jobs CPU
Hours

Min
Queue
Time

Max
Queue
Time

Mean
Queue
Time

default 220,197 241.7M 00:00:03 858:59:59 03:59:26

negbal 13,137 39.5M 00:00:04 398:04:00 08:51:31

sizezero 2,231 0.0M 00:00:05 262:51:39 04:11:42

Normal Operation on Kraken (con't.)

• negbal jobs generally wait longer than jobs with
other QOSes.

• sizezero jobs wait slightly longer than jobs in
the default QOS.
– This is because the RUNNOW flag was added to the
sizezero QOS after some time after the start of the
period in question in response to long queue times for
those jobs.

Nightly Weather Forecasting on
Kraken
• The Center for the Analysis and Prediction of

Storms (CAPS) at Oklahoma University received a
Teragrid allocation on Kraken for their 2009 Spring
Experiment:
– WRF-based weather forecasts and associated post-

processing five nights a week, 10:30pm to 6:30am.
– Standing reservations held resources (~10k cores)

available.
– Access to reservations controlled by capsforecast and
capspostproc QOSes, which also gave priority bumps.

• Time frame: 16 Apr 2009 to 12 June 2009.

• System utilization: 66.02% (not compensated for
downtime).

Nightly Weather Forecasting on
Kraken (con't.)

QOS Jobs CPU
Hours

Min
Queue
Time

Max
Queue
Time

Mean
Queue
Time

default 35,257 55.6M 00:00:02 466:24:39 03:51:50

negbal 2,692 3.0M 00:00:04 146:53:14 02:15:37

sizezero 611 0.0M 00:00:03 132:26:36 01:04:35

caps
forecast

68 3.0M 00:00:05 42:01:04 01:48:31

caps
postproc

2,155 0.1M 00:00:03 26:42:12 00:02:49

Nightly Weather Forecasting on
Kraken (con't.)
• CAPS jobs generally received excellent service.

– The largest queue time component for forecast jobs was the fact that
they were generally submitted around 9PM with a flag that prevented
them from being eligible to run before 10:30PM.

• However, this caused significant impact on other users.
– The mean queue time of longsmall jobs (~0.4% of the workload)

went from ~52 hours to ~96.5 hours.
– capability jobs (~8.6% of the workload at the time, but typically

more like 15-20%) could not run longer than 16 hours during the
week.
•The caps* QOSes also caused capability jobs to lose
reservations, resulting in “near-miss” behavior and several user
complaints.

•Kraken is the only Teragrid resource where jobs this large can run.
•The capability queue was subsequently assigned a bigjob QOS
with its own reservation pool.

User-Managed Scheduling on Athena

• The first group given dedicated access to Athena was a
climate modeling project from the Center for Ocean-
Land-Atmosphere Studies (COLA) at the Institute of
Global Environment and Society (IGES).
–Two codes:

•IFS from ECMWF.
•NICAM from University of Tokyo (previously run only
on the Earth Simulator).

–Two QOSes added to allow COLA users to manage
their own scheduling:
•bypass (has NTR “next-to-run” flag).
•bottomfeeder (no backfill or reservations).

• Time frame: 1 Oct 2009 to 31 Mar 2010.

• System utilization: 90.51% (not compensated for
downtime).

User-Managed Scheduling on
Athena (con't.)

QOS Jobs CPU
Hours

Min
Queue
Time

Max
Queue
Time

Mean
Queue
Time

default 11,851 37.4M 00:00:02 138:33:50 01:12:50

negbal 57 0.5M 00:00:02 06:19:08 00:37:19

sizezero 4,822 0.0M 00:00:01 148:22:35 01:31:55

bypass 1,540 32.2M 00:00:02 43:32:33 01:01:22

bottom
feeder

85 1.3M 00:00:03 137:09:04 22:27:44

User-Managed Scheduling on Athena
(con't.)
• Jobs with bypass QOS waited slightly less than

default and sizezero jobs.

• Jobs with bottomfeeder QOS waited much,
much longer than others.
– Users initially complained that Moab scheduled
bottomfeeder jobs too aggressively.

– It turned out that the complaining users had a
simulation job that submitted a size=0 data transfer
job that in turn submitted another simulation job,
resulting in many situations where only size=0 and
bottomfeeder jobs were eligible to run.

– After the users restructured their jobs to have their
simulation jobs submit both data transfer and
subsequent simulation jobs, things behaved as
expected.

Conclusions

• The use of QOS levels has become integral to
scheduling on Kraken and Athena:
– Pushing through data transfer jobs.
– Deprioritizing jobs from projects with negative

balances.
– Scheduling policy modifications and exceptions for

individual users, groups, and projects.
– In the extreme, allowing users of a dedicated system

to manage their own scheduling.

• Usage has evolved over time:
– New QOSes as required.
– Addition of RUNNOW flag to sizezero QOS.
– Addition of bigjob QOS and associated reservation

pool for capability jobs after CAPS experience.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

