

Cray User Group 2010 Proceedings 1 of 5

Collecting Application-Level Job Completion Statistics

Matt Ezell, National Institute for Computational Sciences

ABSTRACT: Job failures can be difficult to troubleshoot on large high performance
computing systems. This is due to the massive quantity of log data and the difficulty in
mapping log messages to correctable system problems. By collecting and analyzing
information more effectively, system administrators can work to resolve the underlying
issues and prevent future failures. This paper describes a set of tools to log and analyze
applications in real-time as they run on the system.

KEYWORDS: Job failure, aprun, alps, apwrap

1. Introduction
Large high performance computing systems have the

capacity to run enormous quantities of jobs concurrently
and generate massive amounts of log data each day.
From a system administrator’s point of view, this is too
much raw data to analyze manually, and it can be difficult
to get a clear picture of the hardware and software issues
present on the system. On Cray XT systems, some error
messages are printed only to the users’ standard output
and standard error, and are absent from the system logs.
In addition, sometimes it is difficult to correlate the job
ID with the ALPS ID number because the mapping is
stored in a difficult-to-parse file present only on a single
node. Not all of the data necessary to understand failures
experienced on the system is easily accessible to the
system administrators.

At the National Institute for Computational Sciences
(NICS), a tool called apwrap was developed to provide a
mechanism to quantify the types and frequency of errors
experienced by users on our Cray XT systems.

2. Previous Work
Don Maxwell from Oak Ridge National Laboratory

(ORNL) submitted a paper entitled “Restoring the CPA to
CNL” [1] to CUG 2008. Maxwell developed several
tools to scan various log files and put relevant events into
a database. It looked at TORQUE, Moab, Alps, console
logs, and syslog to create a clear picture of the system at
any given time. It also included an aprun wrapper to

capture the job exit codes. This approach is very
thorough, but it is unable to log errors that do no appear in
the system logs.

Also at CUG 2008, Nick Cardo from the National
Energy Research Scientific Computing Center (NERSC)
presented on “Detecting System Problems With
Application Exit Codes” [2]. Cardo’s method involved a
TORQUE epilogue that scanned process accounting
records as well as job standard output and standard error.
One issue with this method is users are permitted to
redirect standard output and standard error to an arbitrary
location, making it impossible for the epilogue to examine
the contents. Another possible issue with this approach
surfaces when jobs output large volumes of standard
output or standard error: the epilogue can take an
extended time to run while processing all the data.

While both approaches are very useful, the author
believes that more data can be collected and analyzed by
using an alternative method to complement the existing
solutions.

3. Design
The apwrap tool was designed to be a wrapper to the

Cray-provided aprun binary. Users unknowingly execute
apwrap when they desire to run an application. The
apwrap tool executes Cray’s aprun and processes the
standard output and standard error. apwrap has several
features not present in Cray’s aprun that allow the system
administrators to enforce policy and collect information.

Cray User Group 2010 Proceedings 2 of 5

The current version of apwrap was written in perl.
An interpreted language was chosen to allow rapid
development and to decrease the maintenance burden.
Perl was an easy choice due to its powerful built-in
regular expression engine and setuid program designed to
allow processes to be run with different privileges.

3.1 Design Goals
The following goals were considered when

developing the apwrap tool:

1. Collect the error messages presented to the user

and store them in a central database
2. Provide an unmodified user experience, unless

alternative behavior is specifically desired
3. Fail gracefully

3.2 Prologues and Epilogues
With apwrap, arbitrary system-defined programs can

be run before and after the real aprun to collect
information and possibly prevent an application from
being launched. These programs can be any executable
code, including shell scripts, perl or python scripts, and
even compiled binary code.

The programs should be placed in the prologues or
epilogues directory, and they will be run in alphanumeric

order. It is recommended to prefix the filename with a
two-digit number if execution order is important. The
programs will be executed with the same command line
arguments provided to the original aprun command. All
of the wrapper’s internal variables are made available to
the prologues and epilogues as environment variables.

If the program detects no errors and exits normally, it
should exit with code zero. If there is a warning that
should be passed to the user, the program should write a
message to standard error and exit with code 1. If there is
a fatal error that should prevent the application from
being launched, the program should print a message to
standard error and exit with code 2.

Any output printed to standard error will be directed
to the user's standard error. Output to standard output
should be in key=value form, as it will be interpreted as
environment variables to set for further prologue and
epilogue phases. These environment variables will not be
propagated to the application.

At NICS, the prologue facility is used to integrate
with the Application Library Tracking Database (ALTD)
project to be presented at CUG 2010 [3]. Before an
application is launched, the binary is scanned for
information about the libraries it was linked with. This is
stored in a database for later processing. The prologue
facility could also be used to prevent known-troublesome
application from being launched.

3.3 Standard Output and Standard Error Processing
The tool will "read" standard output and standard

error from the application, looking for information that
may be not be logged anywhere else. The rule set is
defined as an array of hashes containing error descriptions
and regular expressions. Typically, the tool can find
errors such as failed nodes or segmentation faults, the exit
code of the application, and the ALPS ID of the
application. This information can be logged to a central
server for processing later. The list of failure patterns is
customizable by the administrator, so site-specific errors
can be tracked.

Figure 2: apwrap Integration Diagram

stdout

stderr

System
Aprun

stdin stdin

stdout

stderr

Aprun
Wrapper

Compute NodesApwrap DatabaseJob Script

Torque

rules => [{
name => 'NODEFAIL',
pattern => '^\[NID (\d+)\] \d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2} Apid \d+ killed. Received node

failed or halted event for nid \d+',
message => 'A compute node had a hardware failure. Please resubmit your job.'
},{
name => 'SEGFAULT',
pattern => '^_pmii_daemon\(SIGCHLD\): PE \d+ exit signal Segmentation fault',
message => 'A node experienced a segmentation fault. This happens when the code attempts to access a

memory location that it is not allowed to.'
}]

Figure 1: Sample Rule Definitions

Cray User Group 2010 Proceedings 3 of 5

3.4 Instantaneous Feedback to Users when Errors
Occur

Some of the error messages returned by the Cray
binaries and daemons can be difficult to understand,
especially for new users. This tool gives administrators
the ability to add information to the job's standard output
or standard error to explain what happened. It could
provide advice to resubmit the job or give instructions to
submit a trouble ticket for assistance.

3.5 Standard Error Archiving
The aprun wrapper keeps a configurable-length ring

buffer of lines of standard error. In the case of a non-zero
exit code, the wrapper can dump the error buffer to a file.
This allows the administrator to go back and review the
job errors. If necessary, new rules could be implemented
to catch the specific error in the future. It is also possible
to go back and edit existing entries to more appropriately
reflect the problem experienced.

3.6 Supported Databases
The wrapper uses the perl DBI subsystem, so

theoretically any database that has a DBD adapter should
work. In practice, the SQL is slightly different for each
server type, so only a small subset is actually supported.
NICS runs the tool in production with PostgreSQL, but
MySQL has been tested also. For single batch node
testing, we have used SQLite. In theory, this should work
across multiple nodes as long as the database were stored
in an NFS target, but further testing should be done to
determine if this is actually feasible for production.

4. Security
Security is always a paramount concern when

developing new tools. The difficult issue present here
concerns allowing user-level tools to insert information
into a database while protecting the database credentials.
It is undesirable to allow end users to insert arbitrary data
into the database.

The easiest and most obvious solution involves
obfuscating the password stored in a configuration file.
Although this is enough to thwart the curious user from
accessing the database directly, it is not really safe. If the
aprun wrapper can “decode” the password, the end user
could also.

Another possible solution involves converting the
wrapper program into a compiled language so the
obfuscated password and method of deobfuscating it are
not clearly visible to the end user. This would thwart
even more users from obtaining the password, but it is
still just “security through obscurity.” A determined end-
user would still be able to determine the database
credentials.

The security method chosen for this implementation
requires the creation of a new, non-privileged user. That
user is set as the owner of the database configuration file.
Permissions on the database configuration file are locked
down so that only the owner can read it. The wrapper
script is then made setuid as that user. Perl’s suidperl
program launches the script as the non-privileged user, so
it is able to read in the database credentials. Before the
“real” aprun is executed, the wrapper script “drops
privileges” so it is running as the end user. That way, the
end user owns all files created by the application. This
method effectively makes it impossible for the end user to
access the database directly, and mitigates the risk in case
a security problem exists in the wrapper.

5. Results
The apwrap tool has been running in production at

the NICS on Athena, a 48 cabinet, 166 TF Cray XT4
system. Athena has been running in a semi-dedicated
mode that has a very restricted user base. The results
provided in this paper cover the one-month period from
April 1, 2010 to April 30, 2010.

Each time the aprun binary was called, an entry was
placed in the database. As the job progresses and more
information becomes available, the database entry is
updated to reflect the current state of the job. An example
entry, taken from the database, is shown below (edited for
clarity):

id | 189
username | user1
system | athena
pbsserver | nid00004
batchid | 68122.nid00004
batchidnum | 68122
apid | 1290954
batch_node | aprun3
pwd | /lustre/scratch/user1
arguments | -n 4096 -N 1 -d 4 binary
pes | 4096
pes_per_node | 1
depth | 4
user_binary | /lustre/scratch/user1/binary
mpmd | f
pid | 18367
start_time | 1270358965
exit_time | 1270366985
duration | 8020
exit_code | 1
error_name | NODEFAIL
error_string | [NID 15050] 2010-04-04 03:42:45

 Apid 1290954 killed. Received node
 failed or halted event for nid 15051

Cray User Group 2010 Proceedings 4 of 5

Table 1: Summary of Results
Total Entries 37925
Entries per day 1264.17
Exited with code 0 32902
Exited non-zero 4991
Exit status was NULL 32
Unique Jobs 13874
Average apps per job 2.73
Max apps per job 86
Unique Users 12

Table 1 shows a summary of the applications run

during the one-month reporting period. The most
important statistic involves the number of successful
versus unsuccessful application invocations. That
breakdown is graphically shown in Figure 3.

Although the percentage of non-successful

applications is slightly higher than one might like, further
investigation shows the reasons for this number. Since
these users were new to Athena, there was some startup
time-cost associated with porting their code and scripts to
this machine.

Table 2 shows a breakdown of the different error
types along with their relative frequency. By far the most
common failure reason was due to MPI_ABORT. In
these jobs, the code chose to call the MPI_Abort()
function. Many reasons exist for this, including memory
allocation problems, numerical instability, or failed sanity
checks. The next most common failure reason was
because the job was killed. This could be attributed to
either a user calling qdel on their own job or the batch
system aborting it due to exceeded walltime limits.
Applications also exit non-zero and print out the message
“initiated application termination”. It is not immediately
clear why these programs abort. During the month of
April 2010, Athena experienced four node failures that
caused applications to abort. All the other errors appear
to be caused by the user or their code.

Table 2: Failure Reason Breakdown
APRUN_ARGS 13
EXCEEDS_ALLOC 29
EXE_NOTFOUND 333
FLOAT_EXCEPTION 33
KILLED 803
MPI_ABORT 3050
NID_UNKNOWN 505
NODEFAIL 4
OOM 87
SEGFAULT 112

6. Future Work
The most important work in developing the apwrap

tool involves examining the standard error dumps that
correspond to unknown error messages and exit codes to
develop new rules to catch these situations. In the near
future this tool will be deployed on Kraken, the 88 cabinet
petaflop Cray XT5.

Future versions of the Cray Linux Environment
promise to make these user-level error messages available
to the system administrators in the Cray Management
Services (CMS) database. According to an ALPS
developer:

“Additional logging has been implemented to put
more information into CMS. For instance, all ALPS
warning and fatal messages received by aprun from
an apshepherd on a compute node are now written to
CMS. Aprun claim information including the exit
codes and signals are now written to CMS. Batch
reservation information is written by apsched to
CMS. This type of information was only previously
available within the batch job output files or through
accounting records or ALPS logfiles.” [4]

Hopefully these new features will allow future work to
focus on building tools to analyze and report the errors
instead of collecting them.

7. Conclusions
Large high performance computing systems are

guaranteed to have occasional problems, and jobs will fail
as a result of these problems. In order to perform root
cause analysis on the types of errors experienced by users,
tools must be developed that transparently observe the
user experience. Armed with this data, system
administrators can begin improving the user experience
by addressing the problems. The apwrap tool has already
proven useful in production by helping track down job
problems.

Figure 3: Application Completion Rate

Completed	

Successfully	

87%	

Exited	
 Non-­‐Zero	

13%	

Cray User Group 2010 Proceedings 5 of 5

References
[1] Maxwell, Don, et al. “Restoring the CPA to

CNL”, CUG 2008 Proceedings, Helsinki, May 2008.
[2] Cardo, Nicholas. “Detecting System Problems

With Application Exit Codes”, CUG 2008 Proceedings,
Helsinki, May 2008.

[3] Fahey, Mark, Nicholas Jones, and Bilel Hadri.
“The Automatic Library Tracking Database”, CUG 2010
Proceedings, May 2010.

[4] Kohnke, Marlys. Comment #5, Cray BugZilla
#752527. February 10, 2010.

Acknowledgments
The author would like to thank Don Maxwell and

Nick Cardo for their excellent work in this area. The
author would also like to thank his colleagues at the
National Institute for Computational Sciences for their
advice and assistance in developing this software.

About the Author
Matt Ezell is a HPC Systems Administrator at the

National Institute for Computational Sciences at the
University of Tennessee. He is the lead system
administrator for the Athena project. He can be reached
via e-mail at ezell@nics.utk.edu.

