
CUG 2010 Proceedings 1 of 12

 Franklin Job Completion Analysis

Hwa-Chun Wendy Lin, Yun (Helen) He, Woo-Sun Yang
National Energy Research Scientific Computing Center

(NERSC)

ABSTRACT: The NERSC Cray XT4 machine Franklin has been in production for
3000+ users since October 2007, where about 1800 jobs run each day. There has been an
on-going effort to better understand how well these jobs run, whether failed jobs are due
to application errors or system issues, and to further reduce system related job failures. In
this paper, we talk about the progress we made in tracking job completion status, in
identifying job failure root cause, and in expediting resolution of job failures, such as
hung jobs, that are caused by system issues. In addition, we present some Cray software
design enhancements we requested to help us track application progress and identify
errors.

KEYWORDS: XT4, aprun, aprundat, aprunrpt, apsched, NHC, syslog, SMW logs,
SEC, CMS, Torque, job failure analysis

1. Introduction

The NERSC Cray XT4 machine Franklin has been in
production for more than 3000 users since October 2007,
almost a year after the XT4 was released in November
2006. In the early days of Franklin, we experienced a
good share of system wide outages (SWOs). The good
news is that after the 2.1 upgrade in December 2008 [J.
Craw et al 2009, Y. He 2009]and a large scale I/O
upgrade in March 2009, Franklin has become very stable,
with system wide disruptions being mostly link inactives,
some of which were attributed to environmental issues
during the introduction of new systems.

SWOs are obviously disruptive to running jobs. It’s easy
to identify jobs that were lost to SWOs, but challenging to
explain why other jobs failed. From the time a user
reports a job failure until the problem is identified, there
are usually several iterations of acquiring information
from the user, checking system logs for hints, combining
problem reports to find commonality, and searching the
bug database for existing, similar bugs. This process
involves users, consultants, system administrators, Cray
support personnel, both on-site and remote, and
sometimes developers.

Early on, gathering problem descriptions was tedious and
challenging. There was not much users could tell us
except their jobs got terminated—typically, there were no
error messages shown on the output. Initially, we had to
copy various system logs, including syslog and console
logs, to hosts where consultants could access them.

Consultants thus took on the responsibility of providing
initial problem descriptions. They noticed that one of the
frequently seen messages was out of memory (OOM), and
asked that this type of message be written to user output.
Over time, more and more error messages were written to
user output files, and timestamps and identifiers were also
added to error messages. The user output now is a useful
information source in understanding how jobs run.

Understanding and reporting to DOE how Franklin jobs
completed is a task that did not appear to be practical
initially. In 2008, N. Cardo at NERSC started a systematic
study of job completions, by enhancing the batch epilogue
to search for known error message patterns in user output
and to report aprun exit codes from the process
accounting logs. The study was presented at CUG 2008
[N. Cardo 2008] In this paper, we describe a job
completion reporting system that is similar, but with
refined pattern searching and exit code processing. In
addition, it makes use of system logs to further
disambiguate job exit status.

In April 2009, NERSC formed a project team to study
Franklin job completions. There are two goals for the
team. One is to come up with a reporting system that has
definite answers to whether a job ran successfully or
failed, and if it failed, why. It may be a rather ambitious
goal, as for some jobs, we may not be able to provide
such answers without diligent studies. The second goal is
to identify system issues that cause user jobs to fail, with
the primary focus on hung jobs, and to work with Cray to
fix them.

CUG 2010 Proceedings 2 of 12

The team has compiled a list of possible system issues
that cause user jobs to fail. (More in Section 4). In
summary, user jobs can fail due to hardware failures in
SeaStar links (an SWO), MOM (the batch job execution
host) nodes, Lustre service nodes, including Data
Virtualization Service (DVS), or compute nodes. User
jobs can also fail due to system or system environment
problems, such as out of memory (OOM), over use of
/tmp (which is effectively memory), kernel bugs, portals
bugs, over subscription of batch spool filesystem, or user
authentication difficulty. In addition, user jobs can just
hang, i.e. they don’t appear making progress executing
code, for some mysterious reasons that we are trying to
identify.

In this paper, we first discuss the reporting system, then
discuss in depth the two dominant system issues,
including hung jobs.

2. Understanding Job Completion Status

At NERSC, we manage batch jobs using the combination
of Torque and Moab. When a batch job exits, the Torque
server generates an E (Exit) record in its accounting log.
On the record, there is “Exit_status”. The field name
suggests it’s the exit status of the job, when it is really the
return code of the last command the batch script ran.
Technically, it’s the exit code of the script interpreter, and
most interpreters exit with the status of the last command
they ran.

XT batch jobs mostly launch applications to compute
nodes via the aprun command. To understand how XT
jobs complete is much more than looking at the batch job
exit code—a successful simple ls command after an aprun
could mask off the fact the application failed. We need to
look in other places to find out how the applications
actually completed. The sources for additional
information we’ve identified are user output, aprun exit
codes, and system logs.

2.1. System/software error messages on user output

We mentioned in the Introduction that with more and
more system and application execution error messages
written to it, the user standard error file (stderr) has
become a good source to find out what happened to
applications. These messages are typically intermixed
with the user’s own output lines at the beginning and in
the end. How do we identify them? Short of applying data
mining (log analysis) principles, the best we can do is
build a known patterns list, and check each output line
against this list for a match.

It’s quite a challenge to come up with such a list. We first
tried to locate published message catalogues and software
error tags (prefixes). Unfortunately, we found only a
couple, one for Cray Compilation Environment (CCE)
runtime errors, the other PathScale runtime errors. The
bulk of the patterns came from consultants’ visual

inspection of user output files, either when they received
problem reports or when they ran out of more interesting
things to do. We also defined “catch-all” patterns to
match “suspicious” messages. We studied these messages
for a while before deciding whether to ignore the
messages or add new patterns to the list. This is an
ongoing process, and the list grows over time. The catch-
all patterns approach works because Cray has started to
tag error messages. The most rewarding catch-all patterns
so far are:

aprun: Apid
[NID <nid>]

There are often multiple patterns describing the same type
of errors, such as out of memory (OOM). We make up
labels (or categories) for error groups, not individual
patterns. See Appendix A for the current list of known
patterns and their labels. Here is a summary of the labels:

Compiler
runtime

CCERUNTIME, PATHRUNTIME,
SHAREDLIB

Message
passing

MPIENV, MPIABORT, MPIFATAL

I/O MPIIO, PGFIO, FILEIO
Jobs JOBWALLTIME, JOBCOPY
Applications APRESOURCE, APEXIT, APWRAP,

NIDTERM, APNOENT, APEXEC,
APDVS, APCONNECT

Signals SIGTERM, SIGSEGV, SIGOTHERS
Portals PTLSYS, PTLUSER
Miscellaneous OOM, DISKQUOTA, IDENTRM,

NOBARRIER, NODEFAIL, PERMISSION

One of the problems with using error messages is that
they are not always available. Some users redirect their
stderr files to private locations. We did a quick study and
found about 15 percent of aprun stderr files were
redirected. Moreover, the output for interactive jobs goes
to the terminal, and there is no stderr file per se. We had
opened a design bug with Cray for providing a way for
aprun to save the content of stderr. But we stopped
pushing the issue once we realized the volume of possible
messages for large node count jobs and the possibility of
scrambling the ordering of messages for aprun commands
that merge stderr in with standard output (stdout).

Typically, we find multiple known patterns for a failed
job. How do we decide which one to use to categorize the
job? There is a hierarchy to the patterns in terms of the
real cause for the fault. For instance, the “initiated
application termination” message (label NIDTERM) is
usually accompanying PGFIO or MPIFATAL, among
others. As a result, this label is low on the totem pole.
The current hierarchy was established through studying
several days’ worth of collected outputs. We believe
we’ve come up with a reasonable hierarchy, but it is still
subjective, based on knowledge and experience. We
started an effort to quantify the process, but don’t have
anything conclusive yet.

CUG 2010 Proceedings 3 of 12

On the other hand, even if we are able to derive a perfect
hierarchy, there is still a problem. Patterns are grouped in
such a way that the ones in the same group, such as
APEXEC and MPIIO, don’t show up for the same aprun.
However, a lot of jobs launch aprun multiple times. One
aprun may complete successfully, one terminate with
APEXEC, and yet another with MPIIO. Which category
should this job be assigned to? One possibility is that we
get down to the application level and report
success/failure ratio in terms of nodehours, i.e. how many
nodehours are consumed by applications that ran
successfully or that failed.

2.2. Application exit codes

The running of XT applications is controlled by the aprun
command. One of this paper’s authors, H. Lin, developed
a tool called aprundat to collect jobs’ aprun information
as logged in the ALPS apsched log. This tool was
described in a paper presented at CUG 2009 [H. Lin 2009
]. She further expanded the data collection to include
command line and exit code. Fetching the command line
from syslog for an aprun is straightforward—all it takes is
to find the syslog aprun record with the same aprun id
(apid). On the other hand, it’s more involved to find its
exit code. After locating the aprun process id (pid) as
stored in syslog, one has to look up in the process
accounting log of the job’s MOM.

The exit code of an aprun reflects that of the application,
most of the time. As documented in the aprun man page:
If all application processes exit normally, aprun exits with zero.
If there is an internal aprun error or a fatal message is received
from ALPS on a compute node, aprun exits with 1. Otherwise,
the aprun exit code is 128 plus the termination signal number of
an application process that was abnormally terminated, or the
aprun exit code is the exit code of an application process that
exited abnormally.

Aprun’s overriding of application exit codes is a serious
problem when application exit codes are not available
anywhere else. We opened a design bug with Cray asking
that aprun syslogs its internal error and avoid exit code 1,
as 1 is a popular exit code. The solution Cray has agreed
to includes adding up to four application exit codes and/or
signals to the aprun exit record (apsys), as well as logging
aprun internal errors to syslog. Until this solution is
implemented, we will still use aprun exit codes in the job
categorization process, fully aware of its implications.

2.3. System logs

In addition to knowing whether jobs ran successfully or
failed, we also want to know, for failed jobs, whether the
failures were results of system problems. The primary use
of system logs is to differentiate system caused errors
from user caused errors. For example, a job that got time
limited (label JOBWALLTIME) could be a result of
SWO, when effectively the job was still accumulating
wall clock time. We’ve observed, on Franklin, when the
batch system restarted after an unfortunate event such as

SWO, all previously active jobs were first requeued, then
got purged when MOMs came up. Thus we created a
label called JOBREQUEUE for such jobs to document
jobs lost to SWO. Without it, most of these jobs would
fall into the JOBWALLTIME category.

At the present time, the only information we harvest from
the Torque server logs is job requeues. Another piece of
information that may be useful is job deletion records, for
they tell us whether user or root deleted these jobs. In the
MOM log, we plan to look at copy failure related
messages to decide whether the failure was due to some
filesystem issue, which caused difficulty in creating spool
file, or just a case of specified, nonexistent path. We also
plan to search for “no such user” messages, as an
indication of LDAP look-up failures.

As mentioned in the Introduction, jobs die when their
MOM nodes crash. We don’t really know how to identify
these jobs yet, but we plan to find an answer for it.

Among all system logs, the most interesting ones are
those available on the System Management Workstation
(SMW): console log, netwatch log, and consumer log.
However, those logs contain numerous types of messages
in different formats about nodes, Lustre, HSN, portals,
etc., it’s challenging and time-consuming to analyze and
interpret them.

J. Becklehimer and C. Willis of Cray and Oak Ridge
National Laboratory staff developed a set of Simple Event
Correlator (SEC) rules to track primarily hardware
failures by correlating and interpreting these messages.
This work was presented at CUG 2007 [J. Becklehimer
2007], while Jim Brown’s online documentation is
helpful in understand and working with SEC [J. Brown
2003].

Cray recognized the usefulness of SEC, and released a
field notice (FN #5495) recommending it. NERSC Cray
support personnel put together SEC rules to monitor
additional failures including Bugs (Cray bugs) and
LBUGs (Lustre bugs) on external Lustre servers.

At the moment, we receive e-mail notifications about
various events detected by SEC and other Cray
monitoring scripts. The challenge is how to incorporate
the information into the job completion report framework.

3. Implementation Phases

Due to the complexity of this report generation system,
the implementation was done in phases. Below is a flow
chart that shows how all the pieces fit together, and which
phase each piece belongs to. The green boxes (the top
three rows) describe the first phase implementation; pink
(the middle three), second; and orange (the bottom part),
third. The daily report generation keeps evolving and
becomes more complicated as we progress in phases, with
additional types of data to process.

CUG 2010 Proceedings 4 of 12

3.1. Phase I implementation

The epilogue processing is done after a job script has
completed and before the job leaves the batch system.
What goes in the epilogue is very site specific. At
NERSC, after writing job statistics to stdout, we copy job
files: the script file, stdout, and stderr, to a scratch area.
Job files accumulate in this scratch area during the day.
Early the following day, the jobfsctl Perl script copies all
job files to a semi-permanent place, then sometime later,

the script is invoked again, but with a different option, to
create abridged files. Small files are copied verbatim, but
large files are elided in the middle.

What’s the purpose of creating abridged data? We run a
script to check job output file size periodically and delete
jobs with huge output (> 100 MB). But out of control
applications still manage to generate GB files. Output
files are useful for both systems personnel and consultants
to debug job issues, so we try to save them for as long as
possible. Unfortunately, huge files eat up limited storage

CUG 2010 Proceedings 5 of 12

quickly. We theorize that important error messages
typically show up at the beginning and in the end on batch
output, so we don’t really need to save files in their
entireties. We are currently studying this hypothesis

The mkjobsum Perl script post processes the output files
to find all known patterns for jobs run on the reporting
day. The script gets the job list from the batch accounting
log, where it also extracts exit statuses found in jobs’ E
(exit) records. For each job, the summary line has job
sequence number, followed by exit status, followed by all
known patterns found. For each unmatched line, genjcrpt
runs it through predefined catch-all patterns, if a match to
one of the catch-all patterns is found, the script notifies
project team members, who then decide whether to add
new patterns. All patterns are defined in a Perl “include”
file. The patterns list is constantly changing, but the
genjcrpt script stays static.

There were no other information sources available during
phase I, so the report generation script genjcrpt relied
solely on the job summary information provided by
mkjobsum to assess job completion statuses. Because of
this, we didn’t categorize jobs that we couldn’t find fault
for as success, we used NOKNOWNERR instead. The
decision making process for this phase is fairly simple-
minded, and shown below.

The pre-defined labels are NOKNOWNERR for job exit
status 0, JOBSTART (MOM could not start the job.) for
“-2”, JOBPROLOG (The prologue script returned error.)
for “-1”, SIGTERM for 143 and 271, SIGSEGV for 137
and 265.

There are three parts in the daily report. The first part is a
summary of job completion statuses. It shows all nonzero
categories, and for each category, how many jobs and the

calculated percentage. The “Cause” column reflects how
we view the cause: user (“U”), system (“S”), or either
(“US”). We realize sometimes some temporary system
situation could cause applications to fail. The cause
assignment doesn’t reflect this indeterminism.

The following is a sample output. This report is selected
to show a variety of errors, it doesn’t describe a typical
day. We don’t normally have APDVS, or STALENFS, or
so many APNOENT failures.

------------ ----- ------- -----
Exit Status Count Percent Cause
------------ ----- ------- -----
APDVS 1 0.0 S
APEXEC 2 0.1 U
APNOENT 36 1.7 U
APRESOURCE 12 0.6 U
CCERUNTIME 1 0.0 U
JOBEXIT 122 5.9 U
JOBPROLOG 4 0.2 US
JOBSTART 3 0.1 S
JOBWALLTIME 240 11.5 US
MPIABORT 3 0.1 U
MPIENV 4 0.2 U
MPIFATAL 7 0.3 U
NIDTERM 128 6.1 U
NOCMD 20 1.0 U
NODEFAIL 1 0.0 S
NOENT 48 2.3 U
NOKNOWNERR 1287 61.8 N/A
OOM 11 0.5 U
PATHRUNTIME 1 0.0 U
PERMISSION 1 0.0 U
PGFIO 41 2.0 U
SHAREDLIB 1 0.0 U
SIGSEGV 25 1.2 U
SIGTERM 57 2.7 U
STALENFS 27 1.3 S
XBIGOUT 1 0.0 U
------------ ----- ------- -----
Total 2084

The second part shows statistics for causes.

Job Failure Statistics

Type Count Percent
---- ----- -------
No known err 1287 61.8
System 32 1.5
User/system 244 11.7
User 521 25.0

The third part provides a list of users who appear to be
having problems running jobs. This was added when we
noticed an extremely high count (> 250) of PGFIO jobs,
and got alarmed. It turned out to be a user issue.

CUG 2010 Proceedings 6 of 12

High Counts for Category+User

Category User Count
-------- ---- -----
APNOENT userabc 10
APRESOURCE userb 9
JOBEXIT usercd 55
JOBWALLTIME userdef 31
JOBWALLTIME useref 19
NIDTERM userfg 18
NIDTERM userg 61
NOCMD userhi 9
NOCMD userjkl 8
NOENT userklm 11
OOM usermno 6
PGFIO usernop 14
SIGSEGV usero 8
SIGTERM userp 5
…

The genjcrpt script also saves daily summary information
to a file to facilitate job completion trend analysis.

3.2 Phase II implementation

The real work for phase II was to enhance the aprundat
script to include application command line and aprun exit
code. As mentioned in section 2.2, the aprun exit code for
an application is in its execution host’s process
accounting log, which means we have to find the aprun
execution host and pid first. Process ids get recycled
rapidly, each pid is only unique for a limited time period,
so we need to also match up on the process end time.

The execution host and pid can be found in the aprun
record in the syslog, while its end time is in the
corresponding apsys record. Pairing aprun and apsys is
nontrivial, because an aprun could span multiple days.
Further, we discovered matching up the two end times,
one in syslog, the other in process accounting, is also
challenging. We had anticipated slight end time difference
between the two, and put in a fudge factor to
accommodate it, but were surprised to see that the
difference could be several minutes. We took notes about
this peculiarity, but do not have an explanation yet.

The original aprundat as reported by its report generation
counterpart aprunrpt looked like this, with irrelevant
fields skipped:
Job ID … User Command/node list
6467851 … abcdef hostname/9031-9046

while the enhanced aprundat looks like this:
Job ID … User exitcode Command/node list
6467851 … abcdef 0x0000 "aprun -n 64 hostname "/9031-9046

The decision making process in genjcrpt for category
assignment, with additional aprun exit code information,
is shown next.

The pre-defined labels for special exit codes are
SUCCESS for 0, APRUNERR for exit code 1, SIGSEGV
for 0x8b00, SIGTERM for 0x8f00.

The phase II daily report is very similar to that of phase I,
but with more derived categories. The most important
difference is that we retired the label NOKNOWNERR,
and replaced it with SUCCESS.

3.3 Phase III implementation

The third phase implementation is still in progress. The
only additional system log in use is the Torque server log,
where we look for job requeue entries. The workflow is
very similar to that of phase II, with an additional level
shown in the box framed by dashed lines.

CUG 2010 Proceedings 7 of 12

 4. System Issues

As we mentioned in the Introduction, one of the job
completion team’s goal is to identify system issues that
caused user jobs to fail, and to work with Cray to fix
them. In general, failed jobs waste system resources. For
system induced job failures, we also have to refund users.
Even with the refund, jobs resubmitted go to the bottom
of the queue, thus impact user productivity.

System related job failures we have observed usually fall
into the following categories (no specific order of
occurrences):

• System wide outages. The causes of such incidents
could be Lustre nodes crashes, link failures, High
Speed Network (HSN) congestion, and power
issues, etc. Almost all jobs during a SWO would
fail. Some jobs may survive during link
inactives.

• Batch execution nodes (MOM nodes) crash. A
MOM node could die due to hardware issues or
when running out-of-memory. For example,
some users running memory intensive
applications (such as IDL, htar), combined with
other’s incorrect usage of running program
executables without aprun, could cause a MOM
node to run out of memory. All batch jobs
executed from a failed MOM node would fail. In
the early days, a MOM node fail would also
cause a SWO due to the need to reboot the
system. Being able to warm boot service nodes
helped tremendously in reducing the number of
failed jobs. NERSC also worked on the
separation of login nodes from MOM nodes, so
that out-of-memory login nodes would not affect
running batch jobs.

• LDAP related user authentication failures. See
more details in Section 4.1.

• One or more nodes used by an application have
hardware failures.

• “Sick” nodes left by previous jobs. The subsequent
jobs would fail if some of the nodes were in
“unhealthy” state. Some jobs would fail due to
out-of-memory errors, and some jobs would
hang.

• Hang jobs/applications. See more details in Section
4.2.

• Aprun awaiting barriers. Many of these errors are
caused by user issues, such as serial jobs running
out of walltime, or when concurrent apruns
running in the background without a “wait” at
the end. But there may also be system related
issues we don’t understand yet.

• /tmp filled. /tmp used by a previous application is
not cleared, causing the subsequent applications
after that to fail due to out-of-memory. NERSC
has set the maximum /tmp size to 512 MB, and
are looking into options for cleaning /tmp before

a new application launches.
• /var filled. Applications fail when writing

stderr/stdout into spooled directories. We run a
periodic check on user output files, and terminate
jobs if they’ve produced 100 MB of data.

• Program environment related issues. One example
was loading xtpe-quadcore explicitly caused
subsequent “module list” to fail. This problem
has been fixed.

• Portals bugs related issues. One of the examples in
this category was jobs getting “MPICh
PtlEQPoll event->ni_fail_type error (OTHER
EQ handle): This is likely due to an unresponsive
node on the system” error. Jobs normally exited
after 5 min. Initially identifying these nodes via
console log “beer” messages of “cpu xxx has
been unresponsive for 240 seconds” and setting
them to “admindown” helps to not schedule
these nodes to future jobs. This problem has been
fixed with a portals patch.

• Portals related system issues. Jobs get
“ P T L _ N A L _ F A I L E D ” o r
“PTL_PT_NO_ENTRY” error messages.

• Lustre IO related problems. Accessing an existing
file/directory sometimes generates “input/ouput
error”.

• DVS server failures. This affects jobs running from
file systems that are projected to the compute
nodes via DVS.

The two dominant system issues we have studied in depth
are LDAP lookup failures, and hung applications. The
good news is the magnitude of these problems has
dramatically decreased.

4.1 LDAP lookup failures

LDAP stands for Lightweight Directory Access Protocol.
NERSC has a center-wide LDAP server where Franklin
gets user and group information. The first lookup problem
we noticed was that the local Name Service Cache
Daemon (nscd), an LDAP client, died of SIGABRT
regularly. As a result, users complained that they could
not log in. We opened a Bug for the problem, but in the
meantime, we put in a periodic check and restart nscd
when necessary.

The second encounter we had was when users started
making inquiries about “Identifier removed” error
messages. The error was seen when users were trying to
access files, issuing cd/ls/cp, also when applications were
trying to open files. This message is the perror() text for
errno 43 (EIDRM), which Lustre can return for file meta
data operations when the secondary group upcall done by
l_getgroups fails. The error can happen at any stage in
running jobs, as well as in interactive sessions.

One instance of these errors was traced to timeouts
contacting the site LDAP server (Bug 742050). A more
common situation was when l_getgroups failed to look up
a valid UID, before doing a search for secondary group

CUG 2010 Proceedings 8 of 12

membership. Bug 751388 was submitted on the failure to
look up valid UIDs, which was associated with
"l_getgroups: no such user xxx" messages in syslog.

In the process of debugging the EIDRM problem, it was
realized that l_getgroups bypasses nscd in looking up
multiple group membership, which can cause
unanticipated overhead at a site with thousands of groups.
Bug 751387 was submitted requesting that l_getgroups be
modified to make use of nscd group caching.

Local research on the UID lookup failure bug scenario
was conducted to determine if the failures were on the
XT/nscd side or on the LDAP server side. The NERSC
LDAP support personnel helped determine that the errors
were not occurring on the LDAP server. Rather, it
appeared that nscd threw away information received from
LDAP after a cache timeout.

The nscd daemon and associated libraries were upgraded
to newer versions (FN #5615) to attempt to address the
issue, but that did not appear to make difference in terms
of EIDRM errors.

Eventually Cray changed the nscd configuration to set the
shared attribute for user and group lookups, which allows
nscd clients to search the nscd database directly without
having to build a socket connection each time. This
appears to have substantially reduced the number of
EIDRM errors, although some "no such user" errors are
still recorded in syslog.

Further updates to nss_ldap and nscd have been provided
by Cray and will be tested to see if they improve the
user/group lookup situation.

The label we assigned to describe the “Identifier
removed” error message is IDENTRM. The JOBCOPY
(“Unable to copy”) error can happen for the same reason,
if MOM can not create a spool file, even before starting
the job script. This is different from the copy error that
happens at the job end, when MOM has trouble copying a
spool file back to user directory. In the latter case, spool
files are available for retrieval at a later time.

LDAP lookup failures can also happen at batch job
starting time, because MOM needs to authenticate users
before running the batch script. The batch Exit_status for
such jobs is –2, and we put them in the JOBSTART
category. At NERSC, failures are seen occasionally in the
prologue, where the script checks to make sure users still
have allocations left. The account information is fetched
from the NERSC accounting system via LDAP. An error
exit can be a result of a failed LDAP lookup, or of an
account’s running out of allocation. Jobs failed due to a
prologue issue have the Exit_status of -1, and we label
them JOBPROLOG.

4.2 Hung jobs/applications

We use the term “hung jobs,” as well as “hung
applications,” to describe jobs that are not making visible
progress on output. A job can hang because an

application it runs is hung in the middle of execution, or it
can hang from the beginning. A hung job is terminated
by the batch system when it exceeds time limit, or by the
user when they sense something is wrong

User code can cause a job to hang because of a deadlock
in MPI communication, an infinite loop, or a perpetual
wait for job input. This type of job typically has generated
some amount of data in output, and rerunning them with a
higher debug aprun option “-D” usually helps detect the
coding problem.

On the other hand, job hangs caused by system issues are
not reproducible, and we usually receive user reports
about “previously running applications now hung”. This
type of hung job normally has nothing on output at all,
and the “-D” also doesn’t generate more information. The
analysis of hung jobs appeared to sometimes implicate
hardware, but we believed the primary causes were
software, due to portals issues, Lustre issues, or dirty
nodes left by previous applications.

The hung jobs situation is much improved since the 2.1
upgrade, when Cray introduced the node health checker
(NHC) utility. [CrayDocs S-0014-22 & S-2425-22] The
node cleanup utility is launched to the compute nodes, if
an application exited “unorderly”, i.e. aprun did not
receive exit information from all the compute nodes
assigned to the application. When the utility finds a “sick”
node, it sets it to “admindown” so that the node will not
be used by subsequent jobs. The definition of “sick”
evolves as more and more checks are added.

In addition to providing a node health checking utility,
Cray has also responded to our portals/Lustre bug reports
and supplied fixes for them. With the upgrade of 2.2,
fixes for important bugs are in. Even though we don’t
receive too many user complaints about hung jobs now,
we still see a fair number of jobs that terminated for
walltime limit (JOBWALLTIME). Until we know more,
we cannot be certain the JOBWALLTIME is now entirely
a user issue.

Several bursts of user application hangs were reported last
year. Error messages associated with one such burst
looked like: “aprun: Caught signal terminated awaiting
barrier, sending to apid xxxx” (label NOBARRIER)
followed by walltime exceeded. Lustre error messages
found in console logs were something like this:
“[c5-4c1s0n2]Lustre Error 31373:0:
mdc_locks.c:586:mdc_enqueue())ldlm_cli_enqueue: -4”.

Setting affected nodes admindown helped alleviate the
hung job situation. Further, Cray was able to trace this
problem to a portals issue related to “transmit credit
accounting.” A patch was installed on Franklin last
September, and the official fix went in with the CLE 2.2
UP02 upgrade.

However, after the patch went in, we still saw the
NOBARRIER error, even for serial programs, and were
puzzled. This barrier is a startup synchronization barrier

CUG 2010 Proceedings 9 of 12

that aprun expects to receive. Because only applications
that make use of the Process Management Interface
(PMI), such as MPI, shmen, UPC, or CAF, can supply
such information, all non-PMI applications, when they are
terminated due to the wall time limit, will always get this
message. Cray proposed to drop the “awaiting barrier”
from the NOBARRIER message, to eliminate the
confusion. But we figured that if aprun could set an alarm
to time out the barrier wait for only PMI applications, we
could actually detect hung applications this way. The
problem is now how to differentiate PMI versus non-PMI,
which is even harder now with the shared libraries
support. Cray offers to implement the alarm, but an
application has to pass in the desired alarm time via an
environment variable. A site can develop a wrapper to set
it on behalf of applications, or users can set it. (Bug
755008)

Another burst of application hangs appeared to be
associated with the console message “The mds_connect
operation failed with -16” (bug 756028). Compute nodes
with this error lost connection to the Lustre file system
(the access to /scratch hangs) and their apinit process was
hung. Cray investigation indicated the attempt to connect
to MDS failed due to EBUSY, when the MDS node hit an
LBUG. Rebooting these nodes recovered access to Lustre.
A change to the Lustre “group_acquire_expire” setting for
MDS from 15 to 60, then to 240 seconds seemed to be
able to avoid this problem, which was related to
intermittent failures by the MDS node when talking to
LDAP.

The introduction of the node health checker is a big step
toward enhancing the XT productivity by increasing the
rate of successful jobs. However, more node abnormality
checks are needed. For example, one of the contributing
factors to sick nodes is memory related. The /tmp on the
compute nodes is a tmpfs filesystem, i.e. it’s effectively
memory. If it doesn’t get cleaned up after an application,
it can cause the next memory bound application to fail for
insufficient memory. Even worse, it can trigger the Linux
out of memory (OOM) killer to start killing processes.
Important daemons, such as apinit, unless they are
protected, can get killed and cause communication
breakdown and result in a hang situation. Other
unwelcome memory consumers include runaway
processes, and unreleased slab memory. In general, the
node health checker should admindown a node that
doesn’t have documented available memory.

Detecting and handling hung applications is very high on
our priority list. Besides the barrier re-implementation and
additional checks in the NHC, we also explore the
possibility of having MPT initialization routines print a
completion message, and of running a short system health
check program before starting applications. These are
longer term tasks that require more thorough analysis and
planning. We hope the new barrier implementation and
expansion of NHC functionality will be sufficient.

5. Beyond Reporting

The primary motivation for providing an elaborate job
completion analysis tool is to fulfill one of our contractual
requirements to DOE. Not too surprisingly, though, the
job information, either raw or summarized, turned out to
be useful other ways.

The raw data, i.e. job files, are being used to spot system
wide issues. For example, one user reported these error
messages after a Torque upgrade:
Cannot connect to default server host ‘<host>’ - check
pbs_server daemon.
qsub: cannot connect to server <host> (errno=111)
Connection refused

Grepping saved output uncovered more of the same,
except there were various host names, none of which was
the “real” PBS host. We found an issue with the new
Torque!

The third table in the report labeled “High Counts for
Category+User” is being used to promote proactive user
services. As a rather drastic case in point, a consultant
noticed that one user registered over 2000 failures in the
JOBEXIT category and investigated. The problem turned
out to be a mistake in removing a directory without
specifying the “-r” option. We were able to contact the
user in a timely basis.

The daily summary data are being used to analyze the
error trend. Below is a plot for all the data we have, with
four categories we are interested in: JOBWALLTIME,
APDVS, APNOENT, and STALENFS.

Notice that the JOBWALLTIME is plotted at a different
scale—its numbers are much larger, relative to the others.
Since we are only curious about the trend, it doesn’t really
matter. The interesting part shown in this graph is that
STALENFS appears to contribute to the high APNOENT,
which makes sense.

CUG 2010 Proceedings 10 of 12

We expect more use of the job information when we start
generating more summary data, about job size and
compute resource use, etc.

6. Conclusion

The Cray systems hardware and software have improved
a great deal over the three years we have had Franklin.
Not only is Franklin more stable, but now have error
messages available to the user to summarize how jobs ran.
This information is a great source for debugging
problematic jobs, either by users or consultants. In
addition, we are able to leverage the information, and use
it as a building block, to further understand and analyze
Franklin jobs as a whole.

Cardo’s work in job completion analysis as presented at
CUG 2008 [N. Cardo 2008] paved the way for the work
described in this paper. One important difference between
the two is that the analysis and category assignment is no
longer performed in the epilogue script, at the end of each
job run. The epilogue now only saves job files to a pre-
defined location, where the files accumulate during the
day and are post-processed later. Because the processing
is done in bulk once a day, it can be as elaborate as
needed, and it can be repeated when new patterns are
identified and added in.

We’ve already built a good collection of known patterns
which cover a wide range of errors, including compiler
runtime, file I/O, portals, etc., but we still manage to find
new ones. Thanks to Cray for tagging their messages,
which permit us to implement the idea of catch-all
patterns. Hopefully, Cray will eventually tag all the
messages they have control over, to maximize the
likelihood of unseen messages being caught. In fact, it’d
be perfect if Cray could make available messages
catalogues for Cray specific system components, such as
ALPS and portals. Furthermore, we’d also like to see
similar messages be consolidated, to keep the patterns
table from growing out of hand.

7. Future Work

We are currently in the early stage of the third report
generation implementation phase. We plan to look in
various system logs for information to use to
disambiguate the “US” (caused by either system or user)
errors. The largest US category has always been wall time
exceeded (JOBWALLTIME). We know some users
checkpoint their applications or launch an application
multiple times, and their jobs are designed to run into wall
time limit. But there are others that hit time limit
unexpectedly, due to a bug in the code, or an issue with
some aspects of the system: nodes, HSN, Lustre, etc. How
do we tell them apart? We suspect system logs can shed
some light.

In addition to finding ways to distinguish the problem
source for hung applications, we continue the effort of
eliminating hang sources. On the system side, we’ve been
talking with Cray about incorporating some sort of node
health check in aprun before starting applications, as well
as installing an alarm when setting up the initial barrier in
aprun for MPT applications. We’ve also been looking
into helping users debug hung applications. We heard
about Abnormal Termination Processing (ATP) and
friends a few months ago, and are looking forward to the
Cray Debugging Support Tools (DST) tutorial at CUG
2010. [B. Moench 2010]

We expect to make changes to some existing data
collection methods. The report generation framework is
well structured, built on independent data collection
modules. The framework was designed to accommodate
additional data collection modules easily.

But we realize that a couple near future Cray system
changes are likely to affect how we collect data. One
change is the availability of the Cray Management System
(CMS). CMS, a successor to Mazama, according to J.
Schildt in his CUG 2009 paper, is “a framework that
integrates hardware state information and software
environment to provide monitoring and administration
functionality for Cray XT system.” [J. Schildt 2009]
Progress has been made and Schildt will chair a BOF
session on CMS HOWTO at CUG 2010. We may want to
take advantage of the CMS, but don’t yet know the
magnitude of changes as a result.

The other change to an existing job completion data
collection module is to happen when apsys starts to syslog
up to four application exit codes and signals. We should
then be able to bypass process accounting logs and get
application exit codes directly from apsys records in
syslog.

We mentioned that we are studying to see whether
abridged data are as good as the originals, hoping that we
don’t lose error messages by saving only the beginning
and ending lines. We have come to appreciate the ample
information found in user output and would like to keep it
for as long as we have room. The smaller the files are, the
more they can be kept. If the result of the study doesn’t
support our hypothesis, we may decide to manually trim
these huge files.

As for the report itself, we plan to also report compute
resource usage by node-hours, and statistics based on job
size. The additional information will be added to the
daily summary file to allow more in-depth job data
analysis.

Acknowledgments

This work was supported by the Director, Office of
Science, Division of Mathematical, Information, and

CUG 2010 Proceedings 11 of 12

Computational Sciences of the U.S. Department of
Energy under contract number DE-AC02-05CH11231.

This research used resources of the National Energy
Research Scientific Computing Center, which is
supported by the Office of Science of the U.S.
Department of Energy.

The authors would like to thank two Cray employees:
Steve Luzmoor and Rita Wu. They responded quickly to
our queries and helped us gain better understanding of
issues. Luzmoor further assisted with problem analysis,
and also authored and tracked many Cray Bugs.

The authors would also like to thank Tina Declerck of
NERSC for her work in hung job investigations.

References

Jeff Becklehimer, Cathy Willis, Don Maxwell, Josh
Lothian, David Vasil, “Real Time Health Monitoring of
the Cray XT3/XT4 Series Using the Simpe Event
Correlator (SEC),” Cray User Group Conference
Proceedings, 2007.

Jim Brown, “Working with SEC—the Simple Event
C o r r e l a t o r , ” http://sixshooter.v6.thrupoint.net/SEC-
examples/article.html , 2003.

Nicholas P. Cardo, “Detecting System Problems with
Application Exit Codes,” Cray User Group Conference
Proceedings, 2008.

Jim Craw, Nicholas Cardo, Yun (Helen) He, Janet
Lebens, “Post Mortem of the NERSC Franklin XT4

Upgrade to CLE 2.1,” Cray User Group Conference
Proceedings, 2009.

Yun (Helen) He, “User and Performance Impacts by
Franklin Upgrades,” Cray User Group Conference
Proceedings, 2009.

Hwa-Chun Wendy Lin, “Understand Aprun Use
Patterns,” Cray User Group Conference Proceedings,
2009.

Jason Schildt, “System Administration Data under CLE
2.2 and SMW 4.0,” Cray User Group Conference
Proceedings, 2009.

CrayDoc S-0014-22, “Application Cleanup by ALPS and
Node Health Monitoring,” <docs.cray.com> 2009

CrayDoc S-2425-22, “Cray XT System Software 2.2
Release Overview,” Section 2.8 <docs.cray.com> 2009

FN #5495 - XT System monitoring utility

FN #5615 – SLES10 glibc and nscd update 2009

About the Authors

Wendy Lin is a Systems Analyst at NERSC, and the
system lead for the Franklin job completion project. E-
mail: hclin@lbl.gov .

Helen He is a High Performance Computing Consultant at
NERSC, and the User Services Group point of contact for
Franklin. Email: yhe@lbl.gov .

Woo-Sun Yang is a High Performance Computing
Consultant at NERSC. E-mail: wyang@lbl.gov.

CUG 2010 Proceedings 12 of 12

Appendix A: Patterns and Labels

Pattern Label
[NID <nid>].*Connection timed out APCONNECT
Apid <apid>: DVS server failure detected: killing process APDVS
Apid <apid>: cannot execute: exit(<exit code>) APEXEC
Application <apid> exit codes: APEXIT
aprun: file.*not found APNOENT
Claim exceeds reservation's APRESOURCE
exceeds confirmed width APRESOURCE
aprunwrapper: APWRAP
lib-#### CCERUNTIME
Disk quota exceeded DISKQUOTA
Cannot send after transport endpoint shutdown FILEIO
Input/output error FILEIO
Identifier removed IDENTRM
Unable to copy file JOBCOPY
PBS: job killed: walltime.*exceeded limit JOBWALLTIME
application called MPI_Abort MPIABORT
MPICH.*out of unexpected buffer space MPIENV
MPI_MSGS_PER_PROC is not sufficient MPIENV
PTL_EQ_DROPPED MPIENV
Fatal error in MPI MPIFATAL
ROMIO-IO level error: MPIIO
MPI-IO level error: MPIIO
initiated application termination NIDTERM
aprun:.*awaiting barrier NOBARRIER
Received node failed or halted event NODEFAIL
Machine Check error NODEFAIL
ALLOCATE.*not enough memory OOM
OOM killer terminated this process OOM
Process ran out of memory OOM
unable to acquire enough huge memory OOM
Fortran runtime error: PATHRUNTIME
PGFIO-F PGFIO
PTL_NAL_FAILED PTLSYS
PTL_PT_NO_ENTRY PTLSYS
PTL_NO_SPACE PTLUSER
PTL_.*VAL_FAILED PTLUSER
PTL_.*SEGV PTLUSER
error while loading shared libraries SHAREDLIB
LIBSMA ERROR:.*PtlGetAddRegion SHMEMATOMIC
exit signal.*Segmentation fault SIGSEGV
aprun:.*Caught signal Terminated SIGTERM
Stale NFS file handle STALENFS
fixout: Extra huge output trimmed XBIGOUT
No such file or directory NOENT
Permission denied PERMISSION
Command not found NOCMD

