

Cray User Group 2010 Proceedings 1 of 1

Evaluation of Productivity and Performance Characteristics of
CCE CAF and UPC Compilers

Sadaf Alam, William Sawyer, Tim Stitt,
Neil Stringfellow and Adrian Tineo,

Swiss National Supercomputing Center (CSCS)

ABSTRACT: Coarray Fortran (CAF) and Unified Parallel C (UPC), representatives of
the Partitioned Global Address Space (PGAS) paradigm, have been introduced over a
decade ago. However, a widespread adoption by code developer communities has yet to
materialize due to a lack of general availability of supported systems and software.
Emerging Cray machines that include PGAS code development tools for x86 platforms and
a network infrastructure that is optimized for both message-passing MPI and PGAS
communication patterns, offer opportunities for code and performance portability across
Cray systems and other similar cluster platforms. Therefore, we explore if and how
scientific applications that are developed for a variety of platforms could target and
benefit from the PGAS paradigm on systems with commodity and custom hardware and
software components. Two Cray platforms, a Cray XT5 machine and a Cray X2 vector
system, have been targeted for performance and productivity evaluation of PGAS
compilers, which reveal that critical missing pieces of information such as remote memory
mapping restrict generation of efficient code, particularly on the XT5 machine, which is
composed of AMD Opteron multicore processors and a custom communication network.
Strategies adopted to reduce remote memory accesses for the targeted micro-benchmarks
and a representative kernel for stencil-based filter operations reduce runtimes on the XT
platforms but are found to be less effective on the X2 platform. We conclude that a multi-
platform CCE compiler would be essential for development and tuning of PGAS
applications for upcoming systems with commodity and custom components.

KEYWORDS: PGAS, CAF, UPC, Cray XT and X2 systems.

1. Introduction
The Partitioned Global Address Space (PGAS)

programming model offers programming flexibility of a
globally-shared memory programming model while
introducing the concept of data locality that is similar to a
distributed-memory model. In other words, globally
shared data structures and functions (collectives) that
access them, as well as data structures representing the
locality and distribution of data across multiple
processing elements are two important concepts of the
programming paradigm. Part of the global shared data
structure is available locally and a compiler or interpreter
could make use of this locality of reference to provide
improved performance. As a result, a user or code
developer typically does not need to manually optimize

and fine-tune the application to reduce accesses to remote
data structures, while the language constructs could aid in
the automatic optimization. Unlike message-passing
models, these remote accesses are performed without
explicit messaging i.e. they exploit one-sided
communication primitives. Unlike globally shared
programming model instances such as OpenMP, the
PGAS model and its instances allow code developers to
articulate locality of shared data types and offer
mechanisms to control data mapping and distribution.
Likewise, these restrictions permit the underlying
compiler and runtime systems to distribute and schedule
remote memory accesses in an optimal manner without
maintaining a global, uniform access view of memory on
a distributed memory system. Two instances of the
PGAS model; Coarray Fortran (CAF) and Unified

Cray User Group 2010 Proceedings 2 of 2

Parallel C (UPC), have been available to the user
communities for over a decade. However, there has been
a lack of adoption in user communities, which is largely
attributed to the availability of portable code development
environments for these languages and scalable systems
that showcase productivity and performance benefits for
these languages over message-passing and shared-
memory programming paradigms.

The current Cray Compiler Environment (CCE)
provides embedded compilers for CAF and UPC
languages alongside its MPI and OpenMP tools on the
Cray XT and vector series systems [1][2][3]. Coarray
Fortran (CAF), which is now integrated into the
FORTRAN 2008 standard proposal, extends the Fortran
language syntax with a construct called coarrays, which
are essentially data structures that are shared between
different images of a program [14]. Accesses to these co-
arrays result in remote memory accesses that are similar
to remote memory put and get operations. Similarly,
UPC is an extension to the C language offering benefits of
the PGAS model to programs written primarily in C [9].
In UPC, program instances are called threads and data is
divided up between shared and private spaces. In
addition, language qualifiers are provided which describe
whether data is shared and how arrays should be
distributed among available threads. The number of
threads can be specified at both compile and runtime.

Although the CAF and UPC specifications do not
address the issue of interoperability with other
programming paradigms, such as MPI, some compiler
instances, for example CCE, do not prevent combination
of the two models. While it is efficient for an
evolutionary code development approach, some issues
remain, which are identified in this paper.

The primary motivation for evaluating the
productivity of the PGAS compilers is to assess their
benefits in terms of usability, execution and potential for
significantly higher performance on the next-generation
Cray interconnect. It is for this reason, even though we
do not evaluate performance on the SeaStar network
interface on the XT platforms and the network API called
Portals [10], we attempt to gain an insight into compiler
transformations that are likely to impact performance on
both current and also future generation scalable systems
that are expected to have Cray XT design characteristics,
i.e. a processing node based on commodity
microprocessor technology and a custom network
interface. Therefore, we attempt to evaluate and analyse
performance of a subset of test cases on the Cray X2
vector platform where both the processor and interconnect
technology are proprietary and identify the factors that
influence efficient code generation on XT and X2

platforms1. On the next-generation Cray systems an
optimized communication API for PGAS languages is
expected to be available, which could potentially be
exploited in an optimal manner by the CCE compilers.

Our experiments with a set of micro-benchmarks and
a stencil-filter operation that has been implemented in
MPI, OpenMP, CAF and UPC reveal that there is a lack
of information flow between different levels of the
compiler and runtime system on the XT platform that
prevents loop-level transformations for PGAS
applications. On the X2 platform however, processor-
level optimization such as vectorization are retained for
serial and PGAS versions. To gain further insight into
code generation and most importantly to explore code
portability of PGAS code development using CCE
compilers with other multi-platform compilers, we
compare and contrast performance on multi-platform
PGAS compilers such as the GCC Intrepid [5] and an
alpha release of the Rice CAF compiler [7]. For small
test cases with simple PGAS constructs, there is
portability between CCE and other compilers while for
complex structures, such as the team level
synchronization operation in CAF and certain memory
allocation operations, the users have to modify the code
for different compilers. Hence, we argue for the
availability of CCE PGAS compilers for other x86-based
cluster platforms that would facilitate code development
for applications by a community of developers and
targeted for a wide range of x86 systems.

The layout for this paper is as follows: in section 2,
we introduce our target systems and test cases. Results
and performance analysis of the test cases are presented in
section 3. In section 4 we discuss productivity aspects of
the code development environment and related tools.
Summary of our findings, conclusions and future plans
are outlined in section 5.

2. Test Cases and Target Systems

In addition to micro-benchmarks such as the

memory-bandwidth STREAM benchmark [13] and a two-
dimensional matrix-multiply code that are included in
CAF and UPC test suites [7][8], we implemented a two-
dimensional stencil-filter benchmark in CAF, UPC, MPI
and OpenMP. Many applications using the Swiss National
Supercomputing Centre computing facilities operate on
regular grids and perform a local filtering operation, in
which a given field value is updated with a weighted
average of neighbourhood values. This is commonly
referred to as a stencil operation. In this benchmark, a

1 On XT series platforms, the GASNet API, which is available for wide
ranging systems, provides the PGAS communication interface for the
CCE compilers [11]

Cray User Group 2010 Proceedings 3 of 3

point-centred square stencil with configurable size (with
radius n=1, 2, 3 etc.) is applied to all points in a two-
dimensional field i.e. every field value is updated by a
weighted average of 9, 25, 49 etc. point values.

In the parallel implementation, the two-dimensional
field is decomposed into a two-dimensional grid of
rectangular blocks (see Figure 1). In the typical
implementation the local “computational” domains are
extended by a halo region, a padding of points whose
values must be updated from domains of neighboring
images in a halo update. For the filter update, the local
domain can be broken down into three distinct subsets2:

1. The exclusive region "E" which is more than N

layers from the computational region boundary.
The update for this region requires only point
values local to the image, and can thus be
performed without communication.

2. The computational region "C" which
encompasses the points which are computed on
the grid by a given image. The region C-E (the
'non-exclusive' part of the computational
domain) can only be filtered after the halo has
been updated; it can be further broken up into
eight sub-regions, conditional on the
dependences of the eight neighboring images.

3. The total domain "T" consisting of all points
allocated on the image. This will generally
include a halo consisting of N layers beyond the
computational domain boundary. The values at
these points are kept consistent with the
corresponding points in neighboring domains
with the halo update. They are not filtered
locally.

Figure 1: Domains for the stencil filter benchmarks

The fundamental filter algorithm is the following:

i. Initiate the non-blocking update of the halo
regions

ii. Perform the filter on the exclusive domain on
each image

iii. Complete the update of the halo regions

2 Terminology taken from the Earth System Modeling Framework [4]

iv. Perform the filter on the remainder of the
computational domain.

The explicit separation of the algorithm into a

communication-only (halo exchange) and
communication-free (filter) part was motivated by the
experiences of [6], which illustrated that current CAF
compilers have difficulty in aggregating communication
for coarrays within loops, even for very simple
constructs. On the other hand [15] illustrated that
excellent CAF performance, in comparison to MPI, can
be obtained for halo exchanges, if the underlying
communication network offers a hardware-supported
global address space, such as on the Cray X1 or X2. We
consider two different synchronization concepts involving
steps iii) and iv):

a. Wait until all images synchronize, indicating that

all halo regions have been successfully updated,
and then proceed to the filtering of C-E. This
variant is well suited to architectures with an
efficient global synchronization.

b. On a given image, synchronize with individual
neighbors, and update the corresponding
periphery sub-region as soon as the halo has
consistent information. There could be an
advantage to such local synchronization if global
synchronization operations are expensive.

With these concepts in mind, we have implemented

three MPI code variants:

1. MPI "Trivial": The total region corresponds to

the computational region of the image's domain,
but a halo-ed temporary array is used for the
actual filter operation, using the four steps
mentioned previously. Eight non-blocking sends
and eight receives are posted in step (i), the
exclusive region is filtered, and step (iii) consists
of an MPI_WAITALL operation. After the C-E
region is filtered in step (iv), the computational
region of the temporary array is copied back to
the image domain.

2. MPI "SendRecv": Again the image's total region
corresponds to the computational region of the
image's domain but in this case send-receive
communication pairs are scheduled (e.g., the
north-west / south-east images exchange halo
information) and are executed with
MPI_SendRecv. After the exclusive region is
filtered, the MPI_SendRecv pairs are performed,
and after each pair the corresponding portion of
exclusive region is filtered. In this case the

Cray User Group 2010 Proceedings 4 of 4

communication is synchronous, so step (i) is not
performed.

3. MPI "Halo": In this variant the local domain
already contains the halo region (T-C), but is
otherwise much like the "Trivial" version. The
disadvantage of this version is that the halo
region is visible in the filter interface, even if the
caller does not have to perform the halo
exchange in advance.

Similarly, there are three CAF code variants:

1. CAF "Trivial": Much like MPI "Trivial", the

computation region is put into a coarray and
immediately thereafter all images are
synchronized, thus coalescing steps (i) and (iii).

V(1:m,1:n) = dom(1:m,1:n) !internal region
V(1-halo:0,1:n)[EE,myQ] = dom(m-halo+1:m,1:n)
!to East
V(m+1:m+halo, 1:n)[WW,myQ] = dom(1:halo,1:n)
!to West
V(1:m,1-halo:0)[myP,NN] = dom(1:m,n-halo+1:n) !
to North
V(1:m,n+1:n+halo)[myP,SS] = dom(1:m,1:halo) !
to South
V(1-halo:0,1-halo:0)[EE,NN] = dom(m-halo+1:m,n-
halo+1:n) ! to North-East
V(m+1:m+halo,1-halo:0)[WW,NN] = dom(1:halo,n-
halo+1:n) ! to North-West
V(1-halo:0,n+1:n+halo)[EE,SS] = dom(m-
halo+1:m,1:halo) ! to South-East
V(m+1:m+halo,n+1:n+halo)[WW,SS] =
dom(1:halo,1:halo) ! to South-West
sync all

Thereafter the entire computational region is filtered, thus
coalescing steps (ii) and (iv):

2. CAF "Get": emulates a one-way communication

"get" operation to perform the halo exchange, in
essence the reverse of the communication in (1)
above:

dom(1-halo:0, 1:n) = Z(m-halo+1:m,1:n)[WW,myQ]
! from West
dom(m+1:m+halo, 1:n) = Z(1:halo,1:n)[EE,myQ]
! from East
dom(1:m,1-halo:0) = Z(1:m,nhalo+1:n)[myP,SS]
! from South
dom(1:m,n+1:n+halo) = Z(1:m,1:halo)[myP,NN]
! from North
dom(1-halo:0,1-halo:0) = Z(m-halo+1:m,n-
halo+1:n)[WW,SS] ! from South-West
dom(m+1:m+halo,1-halo:0) = Z(1:halo,n-
halo+1:n)[EE,SS] ! from South-East
dom(1-halo:0,n+1:n+halo) = Z(m-
halo+1:m,1:halo)[WW,NN] ! from North-West
dom(m+1:m+halo,n+1:n+halo) =
Z(1:halo,1:halo)[EE,NN] ! from North-East

The array dom is used subsequently on the right-hand side
of the filter, in which the coarray Z is updated.

3. CAF "Put": pushes the data to the remote image's

coarray, as done in 'Trivial', but synchronizes
with an immediate neighbor before updating the
portion of C-E which requires that neighbor's
halo data. We thereby gain experience with local
synchronization points, as opposed the global
synchronization imposed by the sync all
operation.

 sync images((myQ-1)*p+WW) ! West
 do j=1+halo,n-halo
 do i=1,halo
 sum = 0.
 do l=-halo,halo
 do k=-halo,halo
 sum = sum+stencil(k,l)*V(i+k,j+l)
 enddo
 enddo
 dom(i,j) = sum
 enddo
 enddo

UPC and OpenMP variants of the stencil benchmark
only implement the trivial filter. MPI, CAF and UPC
experiments are run on both target systems, a Cray XT5
and a Cray X2 platform. OpenMP results are considered
as outside the scope of this study since OpenMP cannot
scale beyond a single node and therefore are not discussed
here.

Our target Cray XT5 machine is located at CSCS
while the Cray X2 access was kindly provided by the
Edinburgh Parallel Computing Center (EPCC). Cray XT
series and X2 systems can coexist as a single system but
have distinctive processing, networking and programming
characteristics (compute nodes are shown in Figure 2).

For instance, the Cray XT5 system is composed of
2.4 GHz dual-socket, hex-core AMD Opteron processors
while the X2 processing node is a 4-way SMP node
sharing a global address space (the CPU is a 1.4 GHz
vector processors with 8 vector pipes). The memory
bandwidth of the X2 system is considerably higher. On
the XT5 system, the aggregate memory bandwidth is 25.6
GB/s while on the X2 system there are four 28.5 GB/s
channels with two levels of cache. The XT5 processor
has three cache levels and access to memory is not
uniform unlike the X2 node. The network interface is
also different on the two systems. The Cray XT5 system
has a Cray proprietary SeaStarII network interface card
and the nodes are connected in a three-dimensional mesh
topology. The X2 system on the other hand has Cray
proprietary YARC router chip connecting nodes in a fat
tree topology.

Cray User Group 2010 Proceedings 5 of 5

Figure 2: Cray XT5 node (left). Cray X2 node (right)

The programming environments also have distinct
features, for example, the Cray XT5 system runs Cray
Linux Environment (CLE), while the X2 system has a
different variant of Linux. Although the Cray Compiler
Environment (CCE) is used on both platforms, on the
XT5 system version 7.2.x was available while on the X2
system version 6.0.0.x of C and Fortran compilers were
available.

3. Performance Evaluation and Analysis of
Generated Code

The 2D stencil-filter CAF and UPC implementations
were run on both the Cray XT5 and X2 using a 3x3
stencil and various domain sizes. On the Cray XT5, the
code was compiled with "-O3 -h cpu=istanbul" flags. All
algorithmic variants executed and passed consistency
checks. On the X2, all MPI variants and the CAF
"Trivial" variant ran successfully, but CAF variants "Put"
and "Get" hang.

Figure 3: Runtime for the filter benchmark on the XT platform

The results on 72 cores (6 nodes) of the XT5 are
shown in Figure 3 and the X2 results are shown in Figure
4. The local domain on each core was a square with edge
size varying from 64 to 8192. The MPI 'Trivial' version,
in which only the intermediate buffers contain the halo,
performs the poorest for larger problem sizes. The
"SendRecv" variant, which implements pair-wise
communication, is somewhat better than "trivial" for
larger domain sizes. The best performing MPI variant is
always the "halo" version, in which the domain contains
the halo region from the onset. Up to a local edge size
2048, all MPI variants perform better than any of the CAF
variants. However, at edge size 4096, the CAF "Trivial"
version starts to outperform MPI "Trivial", after 5000, it
outperforms also MPI "SendRecv", and at 7000 it seems
to be approaching the MPI "Halo" performance.
Unfortunately, larger problem sizes would not run on the
XT5. The CAF "Get" and "Put" variants consistently
performed less well than the "Trivial" version.

Figure 4: Runtime for the filter benchmark on the X2 platform

!"

!#$"

%"

%#$"

&"

&#$"

'"

!" &!!!" (!!!")!!!" *!!!"

!
"#

$
%&
'(
)%

*+,-.$%/01-/%20#-"3%$24$%'"5$%

*6$31"/%78%03%9!:%;7<=%>0.$%?."2%

+,-.-/0"12345" 6789:7;."12345" </0="12345"

+,-.-/0"1>?@5" 3AB"1>?@5" C7B"1>?@5"

!"

!#!$"

!#%"

!#%$"

!" &!!" (!!")!!"

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#($"

!#(%"

!#(&"

!#('"

!" $!!!" %!!!" &!!!" '!!!" (!!!!"

!
"#

$
%&
'(
)%

*+,-.$%/01-/%20#-"3%$24$%'"5$%

*6$31"/%78%03%97%:;7%<0.$%=."2%

)*+,+-."/0123" 4567859,"/0123" :-.;"/0123")*+,+-."/<=>3"

!"

!#!!$"

!#!!%"

!" $!!" %!!" &!!"

Cray User Group 2010 Proceedings 6 of 6

 Copy Scale Add Triad

c(1:n)=a(1:n) b(1:n) =
scalar*c(1:n)

c(1:n) = a(1:n) +
b(1:n)

a(1:n) = b(1:n) +
scalar*c(1:n)

Pattern-matched Vectorized and
unrolled x4

Vectorized and
unrolled x4

Vectorized and
unrolled x4

Local array
(a, b, and c are
regular Fortran
arrays)

8524.85 MB/s 8450.93 MB/s 8792.65 MB/s 8716.84 MB/s
c(1:n)=a(1:n)
b(1:n) =
scalar*c(1:n)

b(1:n) =
scalar*c(1:n)

c(1:n) = a(1:n) +
b(1:n)

a(1:n) = b(1:n) +
scalar*c(1:n)

Pattern-matched Unrolled x8 Unrolled x8 Unrolled x8

Local coarray (a, b,
and c are coarrays)

8390.11 MB/s 5766.99 MB/s 6225.04 MB/s 6191.07 MB/s
c(1:n)=a(1:n)[2] b(1:n) =

scalar*c(1:n)[2]
c(1:n) = a(1:n)[2] +
b(1:n)[2]

a(1:n) = b(1:n)[2] +
scalar*c(1:n)[2]

Pattern-matched Unrolled x8 Unrolled x8 Unrolled x8

Remote coarray,
same node

3372.67 MB/s 1.42 MB/s 1.50 MB/s 1.50 MB/s
c(1:n)=a(1:n)[2] b(1:n) =

scalar*c(1:n)[2]
c(1:n) = a(1:n)[2] +
b(1:n)[2]

a(1:n) = b(1:n)[2] +
scalar*c(1:n)[2]

Pattern-matched Unrolled x8 Unrolled x8 Unrolled x8

Remote coarray,
different node

2673.65 MB/s 5.10 MB/s 4.03 MB/s 4.03 MB/s
Table 1: Language construct, optimization applied, and operation throughput for the 4 basic operations used in the STREAM benchmark, over 4
different access patterns

In view of the fact that GASNet calls are being
invoked for the communication, the positive CAF results
were a relative surprise. When the code is run on the X2,
with hardware support for the global address space, the
CAF "Trivial" version performs as well as the MPI "halo"
version for larger problem sizes, and 5-20% better than
the MPI "Trivial" version.

To investigate the performance characteristics of the
compiler-generated code and impact of remote
communication operations, we select the CAF version of
the STREAM benchmark to understand if and how
remote memory accesses are scheduled, overlapped and
synchronized by the compiler and the runtime systems.
The STREAM benchmark gives the data throughput for a
set of 4 basic operations on large coarrays (larger than
cache size), on the same image and across different
images. Table 1 offers some results collected for these
operations against 4 different access patterns: local array
(as a baseline measure of the operation cost), local
coarray (as a baseline measure of the PGAS construct),
remote coarray in the same node, and remote coarray in a
different node. For each case, three pieces of information
are displayed: (i) the language construct, (ii) the
optimization applied by the compiler, and (iii) the
operation throughput in MB/s. All tests were performed
on the Cray XT5 available at CSCS.

In every case, the copy operation is pattern-matched,
and replaced by an optimized library call, offering good
performance overall. We could take the performance
degradation that occurs when accessing another image
(around 60% for a coarray in the same node and nearly

70% if it is in a different node) as the baseline cost of a
remote versus a local access.

More interesting though is the disabling of
vectorization for any construct that contains a coarray,
even if it is only referenced locally (i.e. no brackets in the
expression). This causes unnecessary performance
degradation (~30%) for the local access with respect to
the vectorized version. In the absence of vectorization, the
compiler opts for loop unrolling for all operations that do
not match a predefined pattern. Even so, the performance
of scale, add or triad operation is about 1000 times slower
when accessing a different image, which goes well
beyond the baseline degradation exhibited by the library
calls used for the copy operation.

We checked the code generated for these operations
for potential problems. We were able to identify the
networking API calls performed by the runtime, which
are based on the GASNet conduit for Portals [10][12].
These include 2 ways of retrieving data: (i) blocking gets,
and (ii) non-blocking gets, which are later synched. Even
when unrolling the loop the ‘gets’ are issued either in a
blocking fashion or synched early on. This means that the
possibility of hiding remote access latency, by issuing
non-blocking gets as early as possible and then synching
to them as late as possible, is neglected. To get some
insight into the effect of this statement reordering, we
conducted a simple test. An alternate version of the
benchmark was created, where the loop for the scaling
operation was manually unrolled and the operations
ordered so that all data needed in the unrolled body is
fetched at the beginning, in a non-blocking fashion. Then,
data is synchronized for completion of the data transfers.

Cray User Group 2010 Proceedings 7 of 7

upc_forall iteration statement using an integer as
affinity expression

upc_forall iteration statement using a shared
pointer as affinity expression

shared int arr[N];
[...]
upc_forall(i=0; i<N ;i++; i)
 arr[i] = get_value(i);

shared int arr[N];
[...]
upc_forall(i=0; i<N ;i++; &arr[i])
 arr[i] = get_value(i);

Table 2: Two equivalent alternatives to distribute the iterations for array arr between threads according to data locality

This offered a two-folds improvement over the

automatically unrolled version, which shows the potential
for hiding network latency by reordering the definitions
and uses of shared variables, even for such a simple case.
This test could not be performed for the other operations
though, as the compiler would synch for the non-blocking
gets even with the statements reordered.

Whatever the case, it is clear that the significant
performance degradation observed for the operations that
could not be replaced by an optimized library call cannot
be solely attributed to the inability to hide network
latency by reordering statements. It is unclear what the
underlying reason is for such a gap in performance, be it
runtime overheads, networking shortcomings, or some
other issue.

On a secondary note, it can be observed that an
improved throughput occurs for access to an image in a
different node, than an image in the same node, between
2.5 and 3.5 times faster. At this stage, the reason for this
counter-intuitive result is unclear. Since the compiler’s
inability to retain the microprocessor-level optimization,
such as SSE vector, is a serious limitation, we ran similar
set of experiments on the Cray X2 vector platform to find
if these limitations exist on a vector system. Potentially,
benefits of PGAS communication optimization could be
offset by un-optimized code generated for the
microprocessor. The X2 CAF compiler however retains
the vector instruction optimization as shown below and
the runtime data presented in Table 3 also confirms our
findings.

On X2 system
791. 1 Vr------< DO j = 1,n
792. 1 Vr b(j) = scalar*c(j)[2]
793. 1 Vr------> end DO

 Single image Two images
Copy 81.25 37.57
Scale 85.63 37.48
Add 57.54 34.95
Triad 60.37 34.95

Table 3: CAF STREAM results (GB/s) on X2

We therefore conclude that there is a limitation in the

CCE x86 CAF compiler or some compiler dependency
checks that fail on an x86 system preventing the compiler

from vectorizing or retaining microprocessor-level
optimization. If unresolved, this issue is likely to severely
limit performance on a GEMINI based system where an
x86 commodity multi-core processor will constitute a
processing node.

For UPC, we considered a synthetic micro-
benchmark to analyze the compiler's ability to apply
optimizations automatically. For that we tested some
variants of the upc_forall construct over statically defined
shared arrays. A upc_forall loop is an iteration statement
where the iteration space is subdivided between the
threads running the program [9]. For this purpose, besides
the typical initialization, condition, and update terms of a
C for loop, there is a fourth term, known as the affinity
expression, which defines which thread should execute
which iteration. The affinity expression can be chosen so
that each thread operates on the maximum amount of
local shared data and the minimum amount of remote
shared data, to deliver performance. This expression can
be either an integer, which defines the loop indices to
execute for each thread through a simple module
operation, or it can be a shared pointer, in which case the
iteration is performed by the thread whose pointed data is
local. These two alternatives are shown for a simple array
in Table 2.

Analyzing the generated code, we realize that, just as
happened with the Fortran compiler, the loop cannot be
vectorized even when accessing only local data. This
causes the unoptimized version to perform ~60 times
slower than a vectorized version operating on a private
array of the same size. In addition, loop unrolling can
only be performed for upc_forall loops with an integer
affinity expression. In the case of a shared pointer affinity
expression, the compiler is confused by a runtime
function call to translate the pointer, which disables loop
optimizations altogether, resulting in the unrolled version
running twice as fast as the un-optimized version. Even
when using different blocking factors, including the
default round-robin shared array distribution, the compiler
is still unable to recognize the contiguous chunk in a
thread's shared space, to apply some sort of optimization.

Cray User Group 2010 Proceedings 8 of 8

Original matrix multiply Alternative matrix multiply
shared [N*P/THREADS] int a[N][P],c[N][M];
shared [M/THREADS] int b[P][M];
[…]
upc_forall (i=0; i<N; i++; &c[i][0]) {
 for (j=0; j<M; j++) {
 c[i][j]=0;
 for (l=0; l<P; l++)
 c[i][j]+=a[i][l]*b[l][j];
 }
}

shared [N*P/THREADS] int a[N][P],c[N][M];
shared [M/THREADS] int b[P][M];
[…]
for(j=0;j<M;j++){
 for(l=0;l<P;l++){
 b_val = b[l][j];
 upc_forall(i=0;i<N;i++;&c[i][0])
 c[i][j]+=a[i][l]*b_val;
 }
}

Table 4: Two versions of a dense matrix multiply in UPC. The b_val variable must be manually hoisted to benefit from reduced communication, as
the compiler is unable to perform this operation automatically

Since we observed different optimization patterns on

the X2 platform as compared to the XT platform for the
CAF code, we experimented using the canonical UPC
matrix-multiply example on the X2 platforms with the
UPC compiler. The compiler listings for the UPC code
are shown below and correspond to our findings for the
CCE CAF compiler. On the X2 platform, the compiler
retains the vectorization and unrolling optimization while
on the XT5 system only the loops were interchanged.
Note that the serial version of the matrix-multiply code is
vectorized by the Cray C compiler on the XT5 platform.

On X2
1------< upc_forall (i=0; i<N; i++; &c[i][0])
{
1 V----< for (j=0; j<M; j++) {
1 V c[i][j]=0;
1 V r--< for (l=0; l<P; l++)
1 V r--> c[i][j]+=a[i][l]*b[l][j];
1 V----> }

On XT5
1------< upc_forall (i=0; i<N; i++; &c[i][0]) {
1 i----< for (j=0; j<M; j++) {
1 i c[i][j]=0;
1 i 3--< for (l=0; l<P; l++)
1 i 3--> c[i][j]+=a[i][l]*b[l][j];
1 i----> }
1------> }

To sum up, on the XT5 platform, the C compiler

suffers the same limitations for UPC that were observed
for the Fortran compiler with coarrays (including failure
to adequately schedule network operations), plus new
limitations related to unrecognized UPC runtime calls that
disable loop level optimization completely.

To further test the performance with a more stringent
communication pattern, we tested MatrixMult, a
straightforward implementation of a typical dense matrix
product, AxB=C. Matrixes are represented as statically
defined shared arrays, and blocking factors are chosen so
that each thread accesses only the local portion of matrix
A and C, but all of the B matrix. The data decomposition
is depicted in Figure 5.

Figure 5: Data decomposition of the matrix multiplication in UPC

We have implemented 2 variations of this product,

detailed in Table 4. The original version loops first on
index i (upc_forall), then j, then l. In that case, each
thread must access (M-M/TH)*P*N/TH remote elements,
i.e., the whole of the B matrix that is not local, N/TH
times. The alternative version loops first on the j, then on
l, finally on i (upc_forall). This distributes the iterations
of the inner loop rather than those from the outer loop,
increasing the loop overhead but reducing the remote
accesses per thread by N/TH, i.e., (M-M/TH)*P.

Figure 6 presents the speedup collected for both the
original and the alternative version. The original version
presents consistent slowdowns, whereas the alternative
version scales to about half the linear speedup for a
sufficiently large matrix (N=1000).

Figure 6: Speedups, with respect to the 1-threaded version,
measured for the original and alternative matrix multiplication code
in UPC, with square matrixes of 500x500 and 1000x1000

Two observations can be derived from this

experiment. First, given the large increment in accessing
remote data in another node, it is advisable to check the

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

!" '" #!" #'" $!"

!
"
#
#
$
%
"
&

'%()#*&+,&-.*#/$0&

,-!.'/"012345"

,-!.'/"06785"

,-#/"012345"

,-#/"06785"

Cray User Group 2010 Proceedings 9 of 9

algorithm to communicate as less as possible, even
incurring the extra runtime overheads. This situation can
only be expected to dominate as we extend to many nodes
and heterogeneous systems with vastly varying memory
access profiles. Secondly, the performance of PGAS
codes is still clearly hindered by issues that encompass all
levels of the programming stack, from the compiler, to the
runtime, to the network API (GASNet over Portals), and
the SeaStar NIC. Improvements must be made along all
these levels to make PGAS languages a competitive
option for large systems. It should be noted that a matrix
multiply example is as simple as it gets in the UPC world,
and it is typically used as a motivating example for
advertising the benefits of UPC as a productive language.

One could argue that writing PGAS applications in
this way would be similar to writing MPI applications
where a code developer is aware of the communication
patterns and make every possible effort to reduce it.
However, since we notice several differences using X2
compilers, especially for microprocessor optimization and
a significantly higher performance for the PGAS
operations, we run optimized versions of the matrix-
multiply and stencil-filter benchmarks implemented in
UPC on the two platforms. The results for the matrix
multiply operation show slowdown for the second version
of the matrix-multiply code since the internal upc_forall
loop prevents vectorization of the outer loop. In the case
of the stencil-filter benchmark, there is no significant
slowdown as the pointer locality is improved on the X2
platform but no significant gains either. On the XT
platform, performance of the alternate version increases
linearly with problem size and number of threads. Hence,
we conclude that in order to achieve and retain
performance for PGAS applications it is imperative to
have a compiler that retains microprocessor level
optimization along with a supporting network hardware
and runtime infrastructure.

4. Productivity Analysis
Our goal for this study is not to define a single metric

for productivity and then attempt to measure it but to
evaluate the useability of the PGAS development and
execution environments and tools (debugging and
performance) that enable code developers to port existing
applications, to gradually introduce PGAS constructs in
their existing parallel applications and to develop code
from scratch where applicable. Unfortunately, at the
Swiss National Supercomputing Center, there are no
production level PGAS applications, therefore we relied
on benchmarks available from PGAS compiler
development teams and developed some of our test codes
from scratch as described in the earlier sections.
Likewise, we developed some synthetic test cases to

analyse productivity of a code when an application team
adopts an incremental approach to PGAS programming,
i.e. to introduce PGAS constructs in the existing MPI
programs. We define this as the hybrid or mix-mode
programming.

The hybrid programming model of intermixing MPI
for inter-node communication with a secondary
programming model for intra-node computation (e.g.
OpenMP) has provided a promising approach for
exploiting ever-increasing system sizes with large
distributed compute nodes containing many-core
processors which share a global address space. It is
pertinent to investigate the extent to which these new
approaches can be made interoperable with the message-
passing paradigm (MPI). We briefly investigate the
ability of the CCE UPC/CAF compiler to support the
intermixing of MPI with CAF/UPC. We describe some of
the pitfalls and show the results of some initial
experiments with this hybrid programming model.

The feasibility of interoperating MPI with UPC/CAF
is determined by the compatibility of the respective
communication layers required by each programming
model. On Cray XT systems, UPC and CAF are
implemented via the GASNet communication library,
which in turn is implemented on top of the native Portals
communication layer and not MPI (thereby improving
performance and minimizing conflict with shared network
resources and MPI data structures). Previous
implementations of GASNet on Cray systems used the
Portals-conduit for GET and PUT operations and the
MPI-conduit for Active Messages. Under certain
conditions (see Table 5) GASNet and MPI are designed to
be compatible and therefore can be used together within
the same network and the same application.

Condition Remark
Initialization The correct order of initialization for

GASNet and MPI must be preserved
Interleaving Interleaving of MPI and GASNet

Blocking calls is prohibited as this can
lead to deadlock

Table 5: Requirements for successful interoperation between MPI
and GASNet

GASNet conduits may or may not initialize MPI
internally, so a recommended strategy is to test for MPI
initialization at the outset of the code, and therefore
ensure correct startup behaviour when porting codes to
different GASNet conduits3.

.

3 On Cray XT systems, GASNet automatically calls MPI_INIT() and
manages the MPI initialization process.

Cray User Group 2010 Proceedings 10 of 10

integer,allocatable :: A(:)[:]

call MPI_INIT(error)
call MPI_COMM_RANK(MPI_COMM_WORLD,rank,error)
call MPI_COMM_SIZE(MPI_COMM_WORLD,PEs,error)

if (rank.ne.0) then
 allocate(A(10)[*])
end if

call MPI_FINALIZE(error)

integer,allocatable :: A(:)[:]

call MPI_INIT(error)
call MPI_COMM_RANK(MPI_COMM_WORLD,rank,error)
call MPI_COMM_SIZE(MPI_COMM_WORLD,PEs,error)

if (rank.eq.0) then
 print *,"Deadlock"
else
 sync all
end if

call MPI_FINALIZE(error)

Table 6: Trivial Examples of Deadlock in Mixed CAF/MPI codes

The interleaving of MPI and CAF/UPC codes must
be managed carefully to avoid deadlock situations. In
particular, mixing of MPI and UPC/CAF blocking calls
e.g. shared UPC accesses or CAF synchronisations, can
create situations were the servicing of requests from
remote nodes is prevented. In particular, the CCE CAF
compiler has the option of creating blocking or non-
blocking communication calls depending on the
surrounding code within the execution segment (i.e. code
delimited with a SYNC MEMORY instruction). When the
SYNC MEMORY instruction is reached, all outstanding
non-blocking transfers have to complete and under certain
circumstances, where processes are in various states of
MPI or UPC/CAF blocking, this is not achievable

Table 6 demonstrates two examples of mixed-mode
CAF and MPI codes that can lead to trivial deadlock
situations. Both SYNC ALL and ALLOCATE (as well as
DEALLOCATE) of co-arrays are necessarily blocking
among all CAF images. In both cases the master MPI
process prevents the CAF statements from completing, as
it does not partake in the synchronization. To ensure that
deadlock is prevented, it is recommended that mixed
codes utilize UPC or CAF in phases with MPI code i.e. all
CAF (or UPC) statements are executed within a CAF (or
UPC) phase, which is terminated with a CAF (or UPC)
barrier. The following phase includes the MPI statements
which are likewise terminated with a MPI_BARRIER()4.

A further consideration when contemplating mixing
MPI and CAF/UPC codes on Cray XT systems, is that
MPI processes, CAF images and UPC threads are all
mapped to hardware in the same way i.e. each MPI rank,
CAF image and UPC thread is represented as a process to
the OS. MPI ranks and UPC threads are zero-based while
CAF images are (rank+1) based. In this scheme it is
currently impossible therefore to have different number of
MPI processes and CAF images (e.g. request 1 MPI
process for inter-node communication and N CAF images
for on-node computation on a node with N cores).

4 It should be noted that MPI_BARRIER and specific CAF or UPC
barriers do not process the same types of outstanding communication
requests. Therefore they cannot be used interchangeably.

Therefore, two approaches can be undertaken to divide
work amongst MPI and CAF/UPC processes:

1) With the same number of CAF images and MPI

ranks (e.g. 12 each for a 12-core Istanbul
compute node) 1/12th of the MPI ranks (one per
node) can be employed to perform inter-node
communication, while all CAF images can be
used within a compute node for computation. It
is envisaged though that this scheme will
introduce unnecessary redundant MPI resources
as such a strategy is scaled to large system sizes
(> 100,00 cores)

2) Declare coarrays with 2D codimensions where
the leading dimension is equal to the number of
cores per node e.g. A[12,*] for a 12-core
compute node. In this strategy the corresponding
column in the coarray can be used to perform on-
node computations and intra-node
communication can be performed using CAF
assignments. With the implementation of CAF
teams, a team can be created for each node with
high-speed SYNC TEAMS synchronizations
between nodes. Currently, teams are not
implemented within the CCE compiler but
SYNC IMAGES can be used instead albeit with
reduced performance.

Besides these potential issues, overall the code

development experience with the CCE PGAS compiler is
seamless (only an additional compiler flag needed).
However porting code with other multi-platform
compilers can lead to some code modifications.
Particularly, our experience with the Rice CAF compiler
(alpha version) required several modifications to the
synchronization operations. Debugging tools such as
TotalView can launch CAF and UPC jobs but do not
provide any useful information about the language
structures. Likewise the CrayPAT compiler could report
some load balance information but programming
paradigm specific information is lacking. In short, it is

Cray User Group 2010 Proceedings 11 of 11

entirely up to the code developer’s ingenuity and effort to
debug and tune these PGAS applications.

5. Conclusions and Future Directions
We have identified several shortcomings as well

opportunities for targeting PGAS compilers for
production level application development on the
upcoming GEMINI based systems. First, we need to
explore options for retaining microprocessor, loop-level
optimization for the PGAS code particularly for compilers
for commodity x86 platforms. This may involve
investigation into both compiler and runtime systems and
how the memory dependency information is exchanged
between different layers of software stack. Second, the
dynamic or runtime information, for example, mapping of
CAF images or UPC threads, need to be fed back in such
a way that a local memory copy operation could be
performed instead of a remote one when applicable.
Thirdly, for aiding code development for distributed
application teams targeting multiple platforms (a large
number of applications that are running on the Swiss
National Supercomputing Center XT5 platform) the Cray
compiler environment should be made available for x86
based cluster systems. It may only be a functional
compiler but it will allow code developers to build codes
on systems other than their target Cray platform. Finally,
research and development programming paradigm-aware
tools are lacking and could inhibit tuning and
optimization efforts on the GEMINI based systems.

Acknowledgments
The authors would like to thank Dr Jason Beech-

Brandt from the Cray Centre of Excellence for HECToR
in the UK for providing access to the X2 nodes of the
system. We also appreciate the feedback from Bill Long,
Cray for advice on the CAF development of the stencil
application.

References
[1] Cray Compiler Environment and Cray Performance

Tools (CrayPAT) available at (http://docs.cray.com)
[2] Cray XT series computers

(http://www.cray.com/Products/XT/Systems/)
[3] Cray XT5h System Overview (X2 processors)

available at (http://docs.cray.com)
[4] Earth System Modeling Framework (ESMF),

www.earthsystemmodeling.org
[5] Intrepid UPC compiler (http://www.intrepid.com/)
[6] PRACE Technical Report on the Evaluation of

Promising Architectures for Future multi-Petaflop/s
Systems, www.prace-project.eu/documents/d8-3-
2.pdf

[7] Rice Co-Array Fortran 2.0 compiler,
http://caf.rice.edu/

[8] UPC Benchmarking suite, George Washington
University, http://upc.gwu.edu/download.html

[9] UPC Language Specifications, v1.2. Lawrence
Berkeley National Lab Tech Report LBNL-59208,
2005.

[10] R. Brightwell, B. Lawry, A. B. Maccabe, and R.
Riesen. “Portals 3.0: Protocol building blocks for
low overhead communication,” IPDPS, 2002.

[11] D. Bonachea. GASNet Specification, v1.1 U.C.
Berkeley Tech Report CSD-02-1207.

[12] D. Bonachea, P. H. Hargrove, M. Welcome, and K.
Yelick, “Porting GASNet to Portals: Partitioned
Global Address Space (PGAS) Language Support
for the Cray XT,” CUG 2009.

[13] J. McCalpin , “STREAM: Sustainable Memory
Bandwidth in High Performance Computers,” 2007,
http://www.cs.virginia.edu/stream/.

[14] R.W. Numrich and J.K. Reid, “Co-Array Fortran for
parallel programming,” Fortran Forum, volume 17,
no 2, 1998.

[15] P. H. Worley and J. Levesque, “The Performance
Evolution of the Parallel Ocean Program on the Cray
X1,” CUG, 2004.

About the Authors
Sadaf Alam is a member of the Scientific Computing

research group at the Swiss National Supercomputing
Centre. She can be reached at Via Cantonale 2, 6928
Manno, Switzerland, Email: alam@cscs.ch.

William Sawyer is a member of the Scientific
Computing research group at the Swiss National
Supercomputing Centre. He can be reached at Via
Cantonale 2, 6928 Manno, Switzerland, Email:
wsawyer@cscs.ch.

Tim Stitt is a member of the National
Supercomputing Services group at the Swiss National
Supercomputing Centre. He can be reached at Via
Cantonale 2, 6928 Manno, Switzerland, Email:
stitt@cscs.ch.

Neil Stringfellow leads the National Supercomputing
Services group at the Swiss National Supercomputing
Centre. He can be reached at Via Cantonale 2, 6928
Manno, Switzerland, Email: nstring@cscs.ch.

Adrian Tineo received PhD in computer science from
the University of Malaga, Spain. He is a member of the
Scientific Computing Research group at CSCS. His
research interests lie in parallel computing and optimizing
compilers. He can be reached via email through
atineo@cscs.ch.

