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ABSTRACT: Coarray Fortran (CAF) and Unified Parallel C (UPC), representatives of 
the Partitioned Global Address Space (PGAS) paradigm, have been introduced over a 
decade ago.  However, a widespread adoption by code developer communities has yet to 
materialize due to a lack of general availability of supported systems and software. 
Emerging Cray machines that include PGAS code development tools for x86 platforms and 
a network infrastructure that is optimized for both message-passing MPI and PGAS 
communication patterns, offer opportunities for code and performance portability across 
Cray systems and other similar cluster platforms.  Therefore, we explore if and how 
scientific applications that are developed for a variety of platforms could target and 
benefit from the PGAS paradigm on systems with commodity and custom hardware and 
software components.  Two Cray platforms, a Cray XT5 machine and a Cray X2 vector 
system, have been targeted for performance and productivity evaluation of PGAS 
compilers, which reveal that critical missing pieces of information such as remote memory 
mapping restrict generation of efficient code, particularly on the XT5 machine, which is 
composed of AMD Opteron multicore processors and a custom communication network. 
Strategies adopted to reduce remote memory accesses for the targeted micro-benchmarks 
and a representative kernel for stencil-based filter operations reduce runtimes on the XT 
platforms but are found to be less effective on the X2 platform.  We conclude that a multi-
platform CCE compiler would be essential for development and tuning of PGAS 
applications for upcoming systems with commodity and custom components. 

KEYWORDS: PGAS, CAF, UPC, Cray XT and X2 systems. 

 

1. Introduction 
The Partitioned Global Address Space (PGAS) 

programming model offers programming flexibility of a 
globally-shared memory programming model while 
introducing the concept of data locality that is similar to a 
distributed-memory model.  In other words, globally 
shared data structures and functions (collectives) that 
access them, as well as data structures representing the 
locality and distribution of data across multiple 
processing elements are two important concepts of the 
programming paradigm.  Part of the global shared data 
structure is available locally and a compiler or interpreter 
could make use of this locality of reference to provide 
improved performance. As a result, a user or code 
developer typically does not need to manually optimize 

and fine-tune the application to reduce accesses to remote 
data structures, while the language constructs could aid in 
the automatic optimization.  Unlike message-passing 
models, these remote accesses are performed without 
explicit messaging i.e. they exploit one-sided 
communication primitives. Unlike globally shared 
programming model instances such as OpenMP, the 
PGAS model and its instances allow code developers to 
articulate locality of shared data types and offer 
mechanisms to control data mapping and distribution.  
Likewise, these restrictions permit the underlying 
compiler and runtime systems to distribute and schedule 
remote memory accesses in an optimal manner without 
maintaining a global, uniform access view of memory on 
a distributed memory system.  Two instances of the 
PGAS model; Coarray Fortran (CAF) and Unified 
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Parallel C (UPC), have been available to the user 
communities for over a decade.  However, there has been 
a lack of adoption in user communities, which is largely 
attributed to the availability of portable code development 
environments for these languages and scalable systems 
that showcase productivity and performance benefits for 
these languages over message-passing and shared-
memory programming paradigms. 

The current Cray Compiler Environment (CCE) 
provides embedded compilers for CAF and UPC 
languages alongside its MPI and OpenMP tools on the 
Cray XT and vector series systems [1][2][3]. Coarray 
Fortran (CAF), which is now integrated into the 
FORTRAN 2008 standard proposal, extends the Fortran 
language syntax with a construct called coarrays, which 
are essentially data structures that are shared between 
different images of a program [14].  Accesses to these co-
arrays result in remote memory accesses that are similar 
to remote memory put and get operations.  Similarly, 
UPC is an extension to the C language offering benefits of 
the PGAS model to programs written primarily in C [9].  
In UPC, program instances are called threads and data is 
divided up between shared and private spaces.  In 
addition, language qualifiers are provided which describe 
whether data is shared and how arrays should be 
distributed among available threads.  The number of 
threads can be specified at both compile and runtime.   

Although the CAF and UPC specifications do not 
address the issue of interoperability with other 
programming paradigms, such as MPI, some compiler 
instances, for example CCE, do not prevent combination 
of the two models.  While it is efficient for an 
evolutionary code development approach, some issues 
remain, which are identified in this paper. 

The primary motivation for evaluating the 
productivity of the PGAS compilers is to assess their 
benefits in terms of usability, execution and potential for 
significantly higher performance on the next-generation 
Cray interconnect.  It is for this reason, even though we 
do not evaluate performance on the SeaStar network 
interface on the XT platforms and the network API called 
Portals [10], we attempt to gain an insight into compiler 
transformations that are likely to impact performance on 
both current and also future generation scalable systems 
that are expected to have Cray XT design characteristics, 
i.e. a processing node based on commodity 
microprocessor technology and a custom network 
interface. Therefore, we attempt to evaluate and analyse 
performance of a subset of test cases on the Cray X2 
vector platform where both the processor and interconnect 
technology are proprietary and identify the factors that 
influence efficient code generation on XT and X2 

platforms1. On the next-generation Cray systems an 
optimized communication API for PGAS languages is 
expected to be available, which could potentially be 
exploited in an optimal manner by the CCE compilers. 

Our experiments with a set of micro-benchmarks and 
a stencil-filter operation that has been implemented in 
MPI, OpenMP, CAF and UPC reveal that there is a lack 
of information flow between different levels of the 
compiler and runtime system on the XT platform that 
prevents loop-level transformations for PGAS 
applications.  On the X2 platform however, processor-
level optimization such as vectorization are retained for 
serial and PGAS versions.  To gain further insight into 
code generation and most importantly to explore code 
portability of PGAS code development using CCE 
compilers with other multi-platform compilers, we 
compare and contrast performance on multi-platform 
PGAS compilers such as the GCC Intrepid [5] and an 
alpha release of the Rice CAF compiler [7].   For small 
test cases with simple PGAS constructs, there is 
portability between CCE and other compilers while for 
complex structures, such as the team level 
synchronization operation in CAF and certain memory 
allocation operations, the users have to modify the code 
for different compilers.  Hence, we argue for the 
availability of CCE PGAS compilers for other x86-based 
cluster platforms that would facilitate code development 
for applications by a community of developers and 
targeted for a wide range of x86 systems. 

The layout for this paper is as follows:  in section 2, 
we introduce our target systems and test cases.  Results 
and performance analysis of the test cases are presented in 
section 3.  In section 4 we discuss productivity aspects of 
the code development environment and related tools.  
Summary of our findings, conclusions and future plans 
are outlined in section 5. 

 
2. Test Cases and Target Systems 

 
In addition to micro-benchmarks such as the 

memory-bandwidth STREAM benchmark [13] and a two-
dimensional matrix-multiply code that are included in 
CAF and UPC test suites [7][8], we implemented a two-
dimensional stencil-filter benchmark in CAF, UPC, MPI 
and OpenMP. Many applications using the Swiss National 
Supercomputing Centre computing facilities operate on 
regular grids and perform a local filtering operation, in 
which a given field value is updated with a weighted 
average of neighbourhood values.  This is commonly 
referred to as a stencil operation.  In this benchmark, a 

                                                 
1 On XT series platforms, the GASNet API, which is available for wide 
ranging systems, provides the PGAS communication interface for the 
CCE compilers [11] 
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point-centred square stencil with configurable size (with 
radius n=1, 2, 3 etc.) is applied to all points in a two-
dimensional field i.e. every field value is updated by a 
weighted average of 9, 25, 49 etc. point values.   

In the parallel implementation, the two-dimensional 
field is decomposed into a two-dimensional grid of 
rectangular blocks (see Figure 1).  In the typical 
implementation the local “computational” domains are 
extended by a halo region, a padding of points whose 
values must be updated from domains of neighboring 
images in a halo update.  For the filter update, the local 
domain can be broken down into three distinct subsets2:   

 
1. The exclusive region "E" which is more than N 

layers from the computational region boundary. 
The update for this region requires only point 
values local to the image, and can thus be 
performed without communication. 

2. The computational region "C" which 
encompasses the points which are computed on 
the grid by a given image.  The region C-E (the 
'non-exclusive' part of the computational 
domain) can only be filtered after the halo has 
been updated; it can be further broken up into 
eight sub-regions, conditional on the 
dependences of the eight neighboring images. 

3. The total domain "T" consisting of all points 
allocated on the image.  This will generally 
include a halo consisting of N layers beyond the 
computational domain boundary.  The values at 
these points are kept consistent with the 
corresponding points in neighboring domains 
with the halo update. They are not filtered 
locally. 

 
Figure 1:  Domains for the stencil filter benchmarks 

 
The fundamental filter algorithm is the following: 
 

i. Initiate the non-blocking update of the halo 
regions 

ii. Perform the filter on the exclusive domain on 
each image 

iii. Complete the update of the halo regions 

                                                 
2 Terminology taken from the Earth System Modeling Framework [4] 

iv. Perform the filter on the remainder of the 
computational domain. 

 
The explicit separation of the algorithm into a 

communication-only (halo exchange) and 
communication-free (filter) part was motivated by the 
experiences of [6], which illustrated that current CAF 
compilers have difficulty in aggregating communication 
for coarrays within loops, even for very simple 
constructs.  On the other hand [15] illustrated that 
excellent CAF performance, in comparison to MPI, can 
be obtained for halo exchanges, if the underlying 
communication network offers a hardware-supported 
global address space, such as on the Cray X1 or X2. We 
consider two different synchronization concepts involving 
steps iii) and iv): 

 
a. Wait until all images synchronize, indicating that 

all halo regions have been successfully updated, 
and then proceed to the filtering of C-E. This 
variant is well suited to architectures with an 
efficient global synchronization. 

b. On a given image, synchronize with individual 
neighbors, and update the corresponding 
periphery sub-region as soon as the halo has 
consistent information.  There could be an 
advantage to such local synchronization if global 
synchronization operations are expensive. 

 
With these concepts in mind, we have implemented 

three MPI code variants: 
 
1. MPI "Trivial":  The total region corresponds to 

the computational region of the image's domain, 
but a halo-ed temporary array is used for the 
actual filter operation, using the four steps 
mentioned previously.  Eight non-blocking sends 
and eight receives are posted in step (i), the 
exclusive region is filtered, and step (iii) consists 
of an MPI_WAITALL operation.  After the C-E 
region is filtered in step (iv), the computational 
region of the temporary array is copied back to 
the image domain. 

2. MPI "SendRecv": Again the image's total region 
corresponds to the computational region of the 
image's domain but in this case send-receive 
communication pairs are scheduled (e.g., the 
north-west / south-east images exchange halo 
information) and are executed with 
MPI_SendRecv.  After the exclusive region is 
filtered, the MPI_SendRecv pairs are performed, 
and after each pair the corresponding portion of 
exclusive region is filtered.  In this case the 
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communication is synchronous, so step (i) is not 
performed. 

3. MPI "Halo": In this variant the local domain 
already contains the halo region (T-C), but is 
otherwise much like the "Trivial" version.  The 
disadvantage of this version is that the halo 
region is visible in the filter interface, even if the 
caller does not have to perform the halo 
exchange in advance. 
 

Similarly, there are three CAF code variants: 
 
1. CAF "Trivial": Much like MPI "Trivial", the 

computation region is put into a coarray and 
immediately thereafter all images are 
synchronized, thus coalescing steps (i) and (iii). 
  

V(1:m,1:n) = dom(1:m,1:n)  !internal region 
V(1-halo:0,1:n)[EE,myQ] = dom(m-halo+1:m,1:n)   
!to East 
V(m+1:m+halo, 1:n)[WW,myQ] = dom(1:halo,1:n)    
!to West 
V(1:m,1-halo:0)[myP,NN] = dom(1:m,n-halo+1:n) !  
to North 
V(1:m,n+1:n+halo)[myP,SS] = dom(1:m,1:halo)  !  
to South 
V(1-halo:0,1-halo:0)[EE,NN] = dom(m-halo+1:m,n-
halo+1:n) !  to North-East 
V(m+1:m+halo,1-halo:0)[WW,NN] = dom(1:halo,n-
halo+1:n) !  to North-West 
V(1-halo:0,n+1:n+halo)[EE,SS] = dom(m-
halo+1:m,1:halo) !  to South-East 
V(m+1:m+halo,n+1:n+halo)[WW,SS] = 
dom(1:halo,1:halo) ! to South-West 
sync all 

 
Thereafter the entire computational region is filtered, thus 
coalescing steps (ii) and (iv): 

 
2. CAF "Get": emulates a one-way communication 

"get" operation to perform the halo exchange, in 
essence the reverse of the communication in (1) 
above: 

 
dom(1-halo:0, 1:n) = Z(m-halo+1:m,1:n)[WW,myQ] 
!  from West 
dom(m+1:m+halo, 1:n) = Z(1:halo,1:n)[EE,myQ]    
!  from East 
dom(1:m,1-halo:0) = Z(1:m,nhalo+1:n)[myP,SS]   
!  from South 
dom(1:m,n+1:n+halo) = Z(1:m,1:halo)[myP,NN]    
!  from North 
dom(1-halo:0,1-halo:0) = Z(m-halo+1:m,n-
halo+1:n)[WW,SS] !  from South-West 
dom(m+1:m+halo,1-halo:0) = Z(1:halo,n-
halo+1:n)[EE,SS] !  from South-East 
dom(1-halo:0,n+1:n+halo) = Z(m-
halo+1:m,1:halo)[WW,NN] !  from North-West 
dom(m+1:m+halo,n+1:n+halo)  = 
Z(1:halo,1:halo)[EE,NN] !  from North-East 

The array dom is used subsequently on the right-hand side 
of the filter, in which the coarray Z is updated. 

 
3. CAF "Put": pushes the data to the remote image's 

coarray, as done in 'Trivial', but synchronizes 
with an immediate neighbor before updating the 
portion of C-E which requires that neighbor's 
halo data.  We thereby gain experience with local 
synchronization points, as opposed the global 
synchronization imposed by the sync all 
operation. 
 

       sync images( (myQ-1)*p+WW )    ! West 
       do j=1+halo,n-halo 
         do i=1,halo 
          sum = 0. 
          do l=-halo,halo 
             do k=-halo,halo 
               sum = sum+stencil(k,l)*V(i+k,j+l) 
             enddo 
           enddo 
          dom(i,j) = sum 
         enddo 
       enddo 
  

UPC and OpenMP variants of the stencil benchmark 
only implement the trivial filter.  MPI, CAF and UPC 
experiments are run on both target systems, a Cray XT5 
and a Cray X2 platform.  OpenMP results are considered 
as outside the scope of this study since OpenMP cannot 
scale beyond a single node and therefore are not discussed 
here. 

Our target Cray XT5 machine is located at CSCS 
while the Cray X2 access was kindly provided by the 
Edinburgh Parallel Computing Center (EPCC).  Cray XT 
series and X2 systems can coexist as a single system but 
have distinctive processing, networking and programming 
characteristics (compute nodes are shown in Figure 2).   

For instance, the Cray XT5 system is composed of 
2.4 GHz dual-socket, hex-core AMD Opteron processors 
while the X2 processing node is a 4-way SMP node 
sharing a global address space (the CPU is a 1.4 GHz 
vector processors with 8 vector pipes).  The memory 
bandwidth of the X2 system is considerably higher.  On 
the XT5 system, the aggregate memory bandwidth is 25.6 
GB/s while on the X2 system there are four 28.5 GB/s 
channels with two levels of cache.  The XT5 processor 
has three cache levels and access to memory is not 
uniform unlike the X2 node.  The network interface is 
also different on the two systems.  The Cray XT5 system 
has a Cray proprietary SeaStarII network interface card 
and the nodes are connected in a three-dimensional mesh 
topology.  The X2 system on the other hand has Cray 
proprietary YARC router chip connecting nodes in a fat 
tree topology.    
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Figure 2: Cray XT5 node (left). Cray X2 node (right) 
 
The programming environments also have distinct 
features, for example, the Cray XT5 system runs Cray 
Linux Environment (CLE), while the X2 system has a 
different variant of Linux.  Although the Cray Compiler 
Environment (CCE) is used on both platforms, on the 
XT5 system version 7.2.x was available while on the X2 
system version 6.0.0.x of C and Fortran compilers were 
available. 

3. Performance Evaluation and Analysis of 
Generated Code 

The 2D stencil-filter CAF and UPC implementations 
were run on both the Cray XT5 and X2 using a 3x3 
stencil and various domain sizes.  On the Cray XT5, the 
code was compiled with "-O3 -h cpu=istanbul" flags. All 
algorithmic variants executed and passed consistency 
checks.  On the X2, all MPI variants and the CAF 
"Trivial" variant ran successfully, but CAF variants "Put" 
and "Get" hang.  

 
Figure 3: Runtime for the filter benchmark on the XT platform 

The results on 72 cores (6 nodes) of the XT5 are 
shown in Figure 3 and the X2 results are shown in Figure 
4. The local domain on each core was a square with edge 
size varying from 64 to 8192.  The MPI 'Trivial' version, 
in which only the intermediate buffers contain the halo, 
performs the poorest for larger problem sizes.  The 
"SendRecv" variant, which implements pair-wise 
communication, is somewhat better than "trivial" for 
larger domain sizes.   The best performing MPI variant is 
always the "halo" version, in which the domain contains 
the halo region from the onset.  Up to a local edge size 
2048, all MPI variants perform better than any of the CAF 
variants.  However, at edge size 4096, the CAF "Trivial" 
version starts to outperform MPI "Trivial", after 5000, it 
outperforms also MPI "SendRecv", and at 7000 it seems 
to be approaching the MPI "Halo" performance. 
Unfortunately, larger problem sizes would not run on the 
XT5.  The CAF "Get" and "Put" variants consistently 
performed less well than the "Trivial" version. 

 
Figure 4: Runtime for the filter benchmark on the X2 platform 
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 Copy Scale Add Triad 

c(1:n)=a(1:n) b(1:n) = 
scalar*c(1:n) 

c(1:n) = a(1:n) + 
b(1:n) 

a(1:n) = b(1:n) + 
scalar*c(1:n) 

Pattern-matched Vectorized and 
unrolled x4 

Vectorized and 
unrolled x4 

Vectorized and 
unrolled x4 

Local array 
(a, b, and c are 
regular Fortran 
arrays)  

8524.85 MB/s 8450.93 MB/s 8792.65 MB/s 8716.84 MB/s 
c(1:n)=a(1:n) 
b(1:n) = 
scalar*c(1:n) 

b(1:n) = 
scalar*c(1:n) 

c(1:n) = a(1:n) + 
b(1:n) 

a(1:n) = b(1:n) + 
scalar*c(1:n) 

Pattern-matched Unrolled x8 Unrolled x8 Unrolled x8 

Local coarray (a, b, 
and c are coarrays) 

8390.11 MB/s 5766.99 MB/s 6225.04 MB/s 6191.07 MB/s 
c(1:n)=a(1:n)[2] b(1:n) = 

scalar*c(1:n)[2] 
c(1:n) = a(1:n)[2] + 
b(1:n)[2] 

a(1:n) = b(1:n)[2] + 
scalar*c(1:n)[2] 

Pattern-matched Unrolled x8 Unrolled x8 Unrolled x8 

Remote coarray, 
same node 

3372.67 MB/s 1.42 MB/s 1.50 MB/s 1.50 MB/s 
c(1:n)=a(1:n)[2] b(1:n) = 

scalar*c(1:n)[2] 
c(1:n) = a(1:n)[2] + 
b(1:n)[2] 

a(1:n) = b(1:n)[2] + 
scalar*c(1:n)[2] 

Pattern-matched Unrolled x8 Unrolled x8 Unrolled x8 

Remote coarray, 
different node 

2673.65 MB/s 5.10 MB/s 4.03 MB/s 4.03 MB/s 
Table 1: Language construct, optimization applied, and operation throughput for the 4 basic operations used in the STREAM benchmark, over 4 
different access patterns 

In view of the fact that GASNet calls are being 
invoked for the communication, the positive CAF results 
were a relative surprise.  When the code is run on the X2, 
with hardware support for the global address space, the 
CAF "Trivial" version performs as well as the MPI "halo" 
version for larger problem sizes, and 5-20% better than 
the MPI "Trivial" version. 

To investigate the performance characteristics of the 
compiler-generated code and impact of remote 
communication operations, we select the CAF version of 
the STREAM benchmark to understand if and how 
remote memory accesses are scheduled, overlapped and 
synchronized by the compiler and the runtime systems. 
The STREAM benchmark gives the data throughput for a 
set of 4 basic operations on large coarrays (larger than 
cache size), on the same image and across different 
images. Table 1 offers some results collected for these 
operations against 4 different access patterns: local array 
(as a baseline measure of the operation cost), local 
coarray (as a baseline measure of the PGAS construct), 
remote coarray in the same node, and remote coarray in a 
different node. For each case, three pieces of information 
are displayed: (i) the language construct, (ii) the 
optimization applied by the compiler, and (iii) the 
operation throughput in MB/s. All tests were performed 
on the Cray XT5 available at CSCS. 

In every case, the copy operation is pattern-matched, 
and replaced by an optimized library call, offering good 
performance overall. We could take the performance 
degradation that occurs when accessing another image 
(around 60% for a coarray in the same node and nearly 

70% if it is in a different node) as the baseline cost of a 
remote versus a local access. 

More interesting though is the disabling of 
vectorization for any construct that contains a coarray, 
even if it is only referenced locally (i.e. no brackets in the 
expression). This causes unnecessary performance 
degradation (~30%) for the local access with respect to 
the vectorized version. In the absence of vectorization, the 
compiler opts for loop unrolling for all operations that do 
not match a predefined pattern. Even so, the performance 
of scale, add or triad operation is about 1000 times slower 
when accessing a different image, which goes well 
beyond the baseline degradation exhibited by the library 
calls used for the copy operation.  

We checked the code generated for these operations 
for potential problems. We were able to identify the 
networking API calls performed by the runtime, which 
are based on the GASNet conduit for Portals [10][12]. 
These include 2 ways of retrieving data: (i) blocking gets, 
and (ii) non-blocking gets, which are later synched. Even 
when unrolling the loop the ‘gets’ are issued either in a 
blocking fashion or synched early on. This means that the 
possibility of hiding remote access latency, by issuing 
non-blocking gets as early as possible and then synching 
to them as late as possible, is neglected. To get some 
insight into the effect of this statement reordering, we 
conducted a simple test. An alternate version of the 
benchmark was created, where the loop for the scaling 
operation was manually unrolled and the operations 
ordered so that all data needed in the unrolled body is 
fetched at the beginning, in a non-blocking fashion. Then, 
data is synchronized for completion of the data transfers.  
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upc_forall iteration statement using an integer as 
affinity expression 

upc_forall iteration statement using a shared 
pointer as affinity expression 

shared int arr[N]; 
[...] 
upc_forall(i=0; i<N ;i++; i) 
    arr[i] = get_value(i); 

shared int arr[N]; 
[...] 
upc_forall(i=0; i<N ;i++; &arr[i]) 
    arr[i] = get_value(i); 

Table 2: Two equivalent alternatives to distribute the iterations for array arr between threads according to data locality 
 
This offered a two-folds improvement over the 

automatically unrolled version, which shows the potential 
for hiding network latency by reordering the definitions 
and uses of shared variables, even for such a simple case. 
This test could not be performed for the other operations 
though, as the compiler would synch for the non-blocking 
gets even with the statements reordered. 

Whatever the case, it is clear that the significant 
performance degradation observed for the operations that 
could not be replaced by an optimized library call cannot 
be solely attributed to the inability to hide network 
latency by reordering statements. It is unclear what the 
underlying reason is for such a gap in performance, be it 
runtime overheads, networking shortcomings, or some 
other issue. 

On a secondary note, it can be observed that an 
improved throughput occurs for access to an image in a 
different node, than an image in the same node, between 
2.5 and 3.5 times faster. At this stage, the reason for this 
counter-intuitive result is unclear. Since the compiler’s 
inability to retain the microprocessor-level optimization, 
such as SSE vector, is a serious limitation, we ran similar 
set of experiments on the Cray X2 vector platform to find 
if these limitations exist on a vector system.  Potentially, 
benefits of PGAS communication optimization could be 
offset by un-optimized code generated for the 
microprocessor.  The X2 CAF compiler however retains 
the vector instruction optimization as shown below and 
the runtime data presented in Table 3 also confirms our 
findings.   

 
On X2 system 
791. 1 Vr------<      DO  j = 1,n 
792. 1 Vr                b(j) = scalar*c(j)[2] 
793. 1 Vr------>      end DO 

 
 Single image Two images 
Copy 81.25 37.57 
Scale 85.63 37.48 
Add 57.54 34.95 
Triad 60.37 34.95 

Table 3:  CAF STREAM results (GB/s) on X2 
 
We therefore conclude that there is a limitation in the 

CCE x86 CAF compiler or some compiler dependency 
checks that fail on an x86 system preventing the compiler 

from vectorizing or retaining microprocessor-level 
optimization.  If unresolved, this issue is likely to severely 
limit performance on a GEMINI based system where an 
x86 commodity multi-core processor will constitute a 
processing node. 

For UPC, we considered a synthetic micro-
benchmark to analyze the compiler's ability to apply 
optimizations automatically. For that we tested some 
variants of the upc_forall construct over statically defined 
shared arrays. A upc_forall loop is an iteration statement 
where the iteration space is subdivided between the 
threads running the program [9]. For this purpose, besides 
the typical initialization, condition, and update terms of a 
C for loop, there is a fourth term, known as the affinity 
expression, which defines which thread should execute 
which iteration. The affinity expression can be chosen so 
that each thread operates on the maximum amount of 
local shared data and the minimum amount of remote 
shared data, to deliver performance. This expression can 
be either an integer, which defines the loop indices to 
execute for each thread through a simple module 
operation, or it can be a shared pointer, in which case the 
iteration is performed by the thread whose pointed data is 
local. These two alternatives are shown for a simple array 
in Table 2. 

Analyzing the generated code, we realize that, just as 
happened with the Fortran compiler, the loop cannot be 
vectorized even when accessing only local data. This 
causes the unoptimized version to perform ~60 times 
slower than a vectorized version operating on a private 
array of the same size. In addition, loop unrolling can 
only be performed for upc_forall loops with an integer  
affinity expression. In the case of a shared pointer affinity 
expression, the compiler is confused by a runtime 
function call to translate the pointer, which disables loop 
optimizations altogether, resulting in the unrolled version 
running twice as fast as the un-optimized version. Even 
when using different blocking factors, including the 
default round-robin shared array distribution, the compiler 
is still unable to recognize the contiguous chunk in a 
thread's shared space, to apply some sort of optimization. 
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Original matrix multiply Alternative matrix multiply 
shared [N*P/THREADS] int a[N][P],c[N][M]; 
shared [M/THREADS] int b[P][M]; 
[…] 
upc_forall (i=0; i<N; i++; &c[i][0]) { 
    for (j=0; j<M; j++) { 
        c[i][j]=0; 
        for (l=0; l<P; l++) 
            c[i][j]+=a[i][l]*b[l][j]; 
    } 
} 

shared [N*P/THREADS] int a[N][P],c[N][M]; 
shared [M/THREADS] int b[P][M]; 
[…]  
for(j=0;j<M;j++){ 
    for(l=0;l<P;l++){  
        b_val = b[l][j]; 
        upc_forall(i=0;i<N;i++;&c[i][0]) 
            c[i][j]+=a[i][l]*b_val; 
    }     
} 

Table 4: Two versions of a dense matrix multiply in UPC. The b_val variable must be manually hoisted to benefit from reduced communication, as 
the compiler is unable to perform this operation automatically 

 
Since we observed different optimization patterns on 

the X2 platform as compared to the XT platform for the 
CAF code, we experimented using the canonical UPC 
matrix-multiply example on the X2 platforms with the 
UPC compiler.  The compiler listings for the UPC code 
are shown below and correspond to our findings for the 
CCE CAF compiler.  On the X2 platform, the compiler 
retains the vectorization and unrolling optimization while 
on the XT5 system only the loops were interchanged.  
Note that the serial version of the matrix-multiply code is 
vectorized by the Cray C compiler on the XT5 platform. 

 
On X2 
1------<   upc_forall (i=0; i<N; i++; &c[i][0]) 
{ 
1 V----<     for (j=0; j<M; j++) { 
1 V            c[i][j]=0; 
1 V r--<       for (l=0; l<P; l++) 
1 V r-->         c[i][j]+=a[i][l]*b[l][j]; 
1 V---->     } 
 
On XT5 
1------<  upc_forall (i=0; i<N; i++; &c[i][0]) { 
1 i----<    for (j=0; j<M; j++) { 
1 i            c[i][j]=0; 
1 i 3--<       for (l=0; l<P; l++) 
1 i 3-->          c[i][j]+=a[i][l]*b[l][j];    
1 i---->       } 
1------>    } 

 
To sum up, on the XT5 platform, the C compiler 

suffers the same limitations for UPC that were observed 
for the Fortran compiler with coarrays (including failure 
to adequately schedule network operations), plus new 
limitations related to unrecognized UPC runtime calls that 
disable loop level optimization completely. 

To further test the performance with a more stringent 
communication pattern, we tested MatrixMult, a 
straightforward implementation of a typical dense matrix 
product, AxB=C. Matrixes are represented as statically 
defined shared arrays, and blocking factors are chosen so 
that each thread accesses only the local portion of matrix 
A and C, but all of the B matrix. The data decomposition 
is depicted in Figure 5. 

 

 
Figure 5:  Data decomposition of the matrix multiplication in UPC 

 
We have implemented 2 variations of this product, 

detailed in Table 4. The original version loops first on 
index i (upc_forall), then j, then l. In that case, each 
thread must access (M-M/TH)*P*N/TH remote elements, 
i.e., the whole of the B matrix that is not local, N/TH 
times. The alternative version loops first on the j, then on 
l, finally on i (upc_forall). This distributes the iterations 
of the inner loop rather than those from the outer loop, 
increasing the loop overhead but reducing the remote 
accesses per thread by N/TH, i.e., (M-M/TH)*P.  

Figure 6 presents the speedup collected for both the 
original and the alternative version. The original version 
presents consistent slowdowns, whereas the alternative 
version scales to about half the linear speedup for a 
sufficiently large matrix (N=1000). 

 

 
Figure 6: Speedups, with respect to the 1-threaded version, 
measured for the original and alternative matrix multiplication code 
in UPC, with square matrixes of 500x500 and 1000x1000 

 
Two observations can be derived from this 

experiment. First, given the large increment in accessing 
remote data in another node, it is advisable to check the 
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algorithm to communicate as less as possible, even 
incurring the extra runtime overheads. This situation can 
only be expected to dominate as we extend to many nodes 
and heterogeneous systems with vastly varying memory 
access profiles. Secondly, the performance of PGAS 
codes is still clearly hindered by issues that encompass all 
levels of the programming stack, from the compiler, to the 
runtime, to the network API (GASNet over Portals), and 
the SeaStar NIC. Improvements must be made along all 
these levels to make PGAS languages a competitive 
option for large systems. It should be noted that a matrix 
multiply example is as simple as it gets in the UPC world, 
and it is typically used as a motivating example for 
advertising the benefits of UPC as a productive language. 

One could argue that writing PGAS applications in 
this way would be similar to writing MPI applications 
where a code developer is aware of the communication 
patterns and make every possible effort to reduce it.  
However, since we notice several differences using X2 
compilers, especially for microprocessor optimization and 
a significantly higher performance for the PGAS 
operations, we run optimized versions of the matrix-
multiply and stencil-filter benchmarks implemented in 
UPC on the two platforms.  The results for the matrix 
multiply operation show slowdown for the second version 
of the matrix-multiply code since the internal upc_forall 
loop prevents vectorization of the outer loop.  In the case 
of the stencil-filter benchmark, there is no significant 
slowdown as the pointer locality is improved on the X2 
platform but no significant gains either.  On the XT 
platform, performance of the alternate version increases 
linearly with problem size and number of threads.  Hence, 
we conclude that in order to achieve and retain 
performance for PGAS applications it is imperative to 
have a compiler that retains microprocessor level 
optimization along with a supporting network hardware 
and runtime infrastructure. 

4. Productivity Analysis 
Our goal for this study is not to define a single metric 

for productivity and then attempt to measure it but to 
evaluate the useability of the PGAS development and 
execution environments and tools (debugging and 
performance) that enable code developers to port existing 
applications, to gradually introduce PGAS constructs in 
their existing parallel applications and to develop code 
from scratch where applicable.  Unfortunately, at the 
Swiss National Supercomputing Center, there are no 
production level PGAS applications, therefore we relied 
on benchmarks available from PGAS compiler 
development teams and developed some of our test codes 
from scratch as described in the earlier sections.  
Likewise, we developed some synthetic test cases to 

analyse productivity of a code when an application team 
adopts an incremental approach to PGAS programming, 
i.e. to introduce PGAS constructs in the existing MPI 
programs.  We define this as the hybrid or mix-mode 
programming.   

The hybrid programming model of intermixing MPI 
for inter-node communication with a secondary 
programming model for intra-node computation (e.g. 
OpenMP) has provided a promising approach for 
exploiting ever-increasing system sizes with large 
distributed compute nodes containing many-core 
processors which share a global address space. It is 
pertinent to investigate the extent to which these new 
approaches can be made interoperable with the message-
passing paradigm (MPI).  We briefly investigate the 
ability of the CCE UPC/CAF compiler to support the 
intermixing of MPI with CAF/UPC. We describe some of 
the pitfalls and show the results of some initial 
experiments with this hybrid programming model. 

The feasibility of interoperating MPI with UPC/CAF 
is determined by the compatibility of the respective 
communication layers required by each programming 
model. On Cray XT systems, UPC and CAF are 
implemented via the GASNet communication library, 
which in turn is implemented on top of the native Portals 
communication layer and not MPI (thereby improving 
performance and minimizing conflict with shared network 
resources and MPI data structures). Previous 
implementations of GASNet on Cray systems used the 
Portals-conduit for GET and PUT operations and the 
MPI-conduit for Active Messages. Under certain 
conditions (see Table 5) GASNet and MPI are designed to 
be compatible and therefore can be used together within 
the same network and the same application. 

 
Condition Remark 
Initialization The correct order of initialization for 

GASNet and MPI must be preserved 
Interleaving Interleaving of MPI and GASNet 

Blocking calls is prohibited as this can 
lead to deadlock 

Table 5:  Requirements for successful interoperation between MPI 
and GASNet 
 

GASNet conduits may or may not initialize MPI 
internally, so a recommended strategy is to test for MPI 
initialization at the outset of the code, and therefore 
ensure correct startup behaviour when porting codes to 
different GASNet conduits3.  

. 
 

                                                 
3 On Cray XT systems, GASNet automatically calls MPI_INIT() and 
manages the MPI initialization process. 
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integer,allocatable :: A(:)[:] 
 
call MPI_INIT(error) 
call MPI_COMM_RANK(MPI_COMM_WORLD,rank,error) 
call MPI_COMM_SIZE(MPI_COMM_WORLD,PEs,error) 
 
if (rank.ne.0) then 
  allocate(A(10)[*]) 
end if 
 
call MPI_FINALIZE(error) 

integer,allocatable :: A(:)[:] 
 
call MPI_INIT(error) 
call MPI_COMM_RANK(MPI_COMM_WORLD,rank,error) 
call MPI_COMM_SIZE(MPI_COMM_WORLD,PEs,error) 
 
if (rank.eq.0) then 
  print *,"Deadlock" 
else 
  sync all 
end if 
 
call MPI_FINALIZE(error) 

Table 6: Trivial Examples of Deadlock in Mixed CAF/MPI codes 
 

The interleaving of MPI and CAF/UPC codes must 
be managed carefully to avoid deadlock situations. In 
particular, mixing of MPI and UPC/CAF blocking calls 
e.g. shared UPC accesses or CAF synchronisations, can 
create situations were the servicing of requests from 
remote nodes is prevented. In particular, the CCE CAF 
compiler has the option of creating blocking or non-
blocking communication calls depending on the 
surrounding code within the execution segment (i.e. code 
delimited with a SYNC MEMORY instruction). When the 
SYNC MEMORY instruction is reached, all outstanding 
non-blocking transfers have to complete and under certain 
circumstances, where processes are in various states of 
MPI or UPC/CAF blocking, this is not achievable 

Table 6 demonstrates two examples of mixed-mode 
CAF and MPI codes that can lead to trivial deadlock 
situations. Both SYNC ALL and ALLOCATE (as well as 
DEALLOCATE) of co-arrays are necessarily blocking 
among all CAF images. In both cases the master MPI 
process prevents the CAF statements from completing, as 
it does not partake in the synchronization. To ensure that 
deadlock is prevented, it is recommended that mixed 
codes utilize UPC or CAF in phases with MPI code i.e. all 
CAF (or UPC) statements are executed within a CAF (or 
UPC) phase, which is terminated with a CAF (or UPC) 
barrier. The following phase includes the MPI statements 
which are likewise terminated with a MPI_BARRIER()4.  

A further consideration when contemplating mixing 
MPI and CAF/UPC codes on Cray XT systems, is that 
MPI processes, CAF images and UPC threads are all 
mapped to hardware in the same way i.e. each MPI rank, 
CAF image and UPC thread is represented as a process to 
the OS. MPI ranks and UPC threads are zero-based while 
CAF images are (rank+1) based. In this scheme it is 
currently impossible therefore to have different number of 
MPI processes and CAF images (e.g. request 1 MPI 
process for inter-node communication and N CAF images 
for on-node computation on a node with N cores). 
                                                 
4 It should be noted that MPI_BARRIER and specific CAF or UPC 
barriers do not process the same types of outstanding communication 
requests. Therefore they cannot be used interchangeably. 

Therefore, two approaches can be undertaken to divide 
work amongst MPI and CAF/UPC processes: 

 
1) With the same number of CAF images and MPI 

ranks (e.g. 12 each for a 12-core Istanbul 
compute node) 1/12th of the MPI ranks (one per 
node) can be employed to perform inter-node 
communication, while all CAF images can be 
used within a compute node for computation. It 
is envisaged though that this scheme will 
introduce unnecessary redundant MPI resources 
as such a strategy is scaled to large system sizes 
(> 100,00 cores) 

2) Declare coarrays with 2D codimensions where 
the leading dimension is equal to the number of 
cores per node e.g. A[12,*] for a 12-core 
compute node. In this strategy the corresponding 
column in the coarray can be used to perform on-
node computations and intra-node 
communication can be performed using CAF 
assignments. With the implementation of CAF 
teams, a team can be created for each node with 
high-speed SYNC TEAMS synchronizations 
between nodes. Currently, teams are not 
implemented within the CCE compiler but 
SYNC IMAGES can be used instead albeit with 
reduced performance.  

 
Besides these potential issues, overall the code 

development experience with the CCE PGAS compiler is 
seamless (only an additional compiler flag needed).  
However porting code with other multi-platform 
compilers can lead to some code modifications.  
Particularly, our experience with the Rice CAF compiler 
(alpha version) required several modifications to the 
synchronization operations.  Debugging tools such as  
TotalView can launch CAF and UPC jobs but do not 
provide any useful information about the language 
structures.  Likewise the CrayPAT compiler could report 
some load balance information but programming 
paradigm specific information is lacking.  In short, it is 
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entirely up to the code developer’s ingenuity and effort to 
debug and tune these PGAS applications. 

5. Conclusions and Future Directions 
We have identified several shortcomings as well 

opportunities for targeting PGAS compilers for 
production level application development on the 
upcoming GEMINI based systems.  First, we need to 
explore options for retaining microprocessor, loop-level 
optimization for the PGAS code particularly for compilers 
for commodity x86 platforms.  This may involve 
investigation into both compiler and runtime systems and 
how the memory dependency information is exchanged 
between different layers of software stack.  Second, the 
dynamic or runtime information, for example, mapping of 
CAF images or UPC threads, need to be fed back in such 
a way that a local memory copy operation could be 
performed instead of a remote one when applicable.  
Thirdly, for aiding code development for distributed 
application teams targeting multiple platforms (a large 
number of applications that are running on the Swiss 
National Supercomputing Center XT5 platform) the Cray 
compiler environment should be made available for x86 
based cluster systems.  It may only be a functional 
compiler but it will allow code developers to build codes 
on systems other than their target Cray platform.  Finally, 
research and development programming paradigm-aware 
tools are lacking and could inhibit tuning and 
optimization efforts on the GEMINI based systems. 
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