
Improving the Productivity of Scalable Application Development

with TotalView

Chris Gottbrath TotalView Technologies, a Rogue Wave Software Company

May 12, 2010

Abstract

Scientists and engineers who set out to solve grand computing challenges need TotalView at their side.
The TotalView debugger provides a powerful and scalable tool for analyzing, diagnosing, debugging and
troubleshooting a wide variety of different problems that might come up in the process of such achieve-
ments. These teams, and teams of scientists pursuing a wide range of computationally complex problems
on Cray XT systems, are frequently diverse and geographically distributed. These groups work collabora-
tively on complex applications in a computational environment that they access through a batch resource
management system. This talk will explore the productivity challenges faced by scientists and engineers
in this environment – highlighting both long standing (but perhaps unfamiliar) and recently introduced
capabilities that TotalView users on Cray can take advantage of to boost their productivity. The list
of capabilities will include the CLI, subset attach, Remote Display Client, TVScript, MemoryScape’s
reporting, and ReplayEngine.

Keywords: Troubleshooting, Debugging, Scalable Debugging, Batch Debugging, Remote Debugging,
Memory Debugging, Reverse Debugging

1 Introduction

1.1 The Productivity Challenges of

HPC Debugging

There has been an effort over the past five to ten
years to shift the focus of discussion in High Per-
formance Computing (HPC) from performance to-
wards productivity. This is a difficult thing to do
because to talk about productivity means focusing
less on bits, bytes and flops and more on the hu-
man element in HPC. For a community of technolo-
gists, computer and computational scientists this is
a challenging thing to do. When we talk about the
productivity of HPC we are drawing our attention to
all of the people who interact with HPC systems and
explicitly focusing on how the system as a whole, or
the component of the system that we choose to focus
on, fits the needs of that group of human beings and
aids them in accomplishing the larger goals.

This paper will look at how this plays out with
scalable debugging. Debugging is something that all
programmers need to do with all codes both in HPC
and in other programming disciplines. This paper

focuses on the specific challenges faced by HPC pro-
grammers writing code for the Cray XT. HPC pro-
grammers are typically physical scientists (or biolog-
ical scientists, mathematicians economists or other
domain specialists), computer scientists, engineers
or software developers., all with different character-
istics and needs.

Debugging plays a key role whenever develop-
ers write, deploy and/or maintain code since unex-
pected defects can turn up at any point. Software,
particularly parallel software, is a complex system
and when things don’t go as expected in the system
someone, often the developer of that software, needs
to sit down and determine out why. This kind of
troubleshooting can be a very time-consuming pro-
cess – sometimes tracking down bugs and under-
standing them can take days or weeks. Debuggers
that are designed with the needs of these users in
mind can reduce these delays and have a very direct
impact on the productivity of the system as a whole.

Three aspects of HPC software development are
particularly relevant to this discussion:

• The distributed nature of development

1

• Dealing with user environments

• Making the best use of a developers attention

The Distributed Nature of Development

Most scalable parallel software is too complex to
have been written by a single developer. Many of
the most prominent applications are collaboratively
developed by quite diverse teams of researchers, sci-
entists and computer scientists. These teams are
frequently geographically distributed across multi-
ple buildings, campuses or even continents. Some
or all of the team then are not co-located with the
supercomputer that they are writing software for.
There are well known techniques for logging in and
using HPC systems across long distances, but many
of them are ill-suited for the kind of interactive, and
graphics heavy approach that is generally most effec-
tive for debugging. A particular challenge for these
teams exists when the team member who can best
troubleshoot a problem somone who can’t easily ac-
cess the system. There are less well known tech-
niques for setting up graphical connections across
long distances but they tend to involve multiple
steps and be somewhat arcane. If we can make it
equally easy for all the developers to access the sys-
tem we can improve the productivity of the team as
a whole.

Once a problem is located in the code other mem-
bers of the team may need to be consulted. While
many scalable applications regularly apply computer
science best practices, such as the use of reusable
components and clear layering and APIs many re-
sources are shared by those components and a de-
veloper working in one area of code may uncover
a defect in another. Making it easier and faster for
teams to collaborate and resolve such issues provides
a clear productivity enhancement.

Dealing with User Environments

There are a wide variety of different ways in which
HPC clusters can be set up for users to access; dif-
ferent vendors provide different tools and many sites
have unique institutional needs or approaches to
managing the computing resources that the cluster
provides. This means that developers who are work-
ing on a given simulation, code or project are likely
to use a variety of different systems. Individual tools
can reduce complexity by abstracting away some of
those details when they are not particularly relevant

to the troubleshooting task itself and by providing
capabilities that work the same regardless of which
system the developer is working with at a given time.

Large supercomputers are valuable resources and
organizations that put them to use or provide them
for others to use quite naturally put systems and
processes in place to make sure that their capabili-
ties are shared fairly and used in an efficient manner.
In most cases this means that access to the HPC
cluster is managed by the use a batch resource man-
agement and queuing system. This encourages users
to break up their computation into jobs that can
be run sequentially and independently by the batch
queuing system itself. Users prepare these jobs and
submit them into some system of queues based on
the policies and practices established by the organi-
zation that is allocating users time on the compute
resource.

There is a bit of a mismatch between the
practices that users develop based around non-
interactive use and the interactive exploration that is
typical of troubleshooting sessions. Troubleshooting
tools that can provide at least some capabilities for
working within this batch workflow may lower the
barrier for tool adoption among developers might
otherwise eschew the use and benefits of advanced
debugging tools. Frequently those programmers will
instead use debugging techniques like adding print
statements to their programs. This labor-intensive
process involves a very slow cycle of recompiling and
rerunning. There is a lot of potential for significant
productivity improvement through the development
of tools specifically for batch debugging.

Making the Best Use of a Developer’s Atten-

tion

The domain scientists, computer scientists, engi-
neers, and others who interact with these large sys-
tems have very specialized training and have many
demands on their time. It is important that we re-
gard any time and effort that they put into trou-
bleshooting as especially valuable. Tools should do
a variety of things to ensure that the developer who
is troubleshooting isn’t overwhelmed and can focus
as clearly as possible on the line of investigation that
is the essence of troubleshooting.

As more and more clusters reach into the petas-
cale range there is a very real question about
whether programmers really want to attach a de-
bugger to hundreds of thousands of separate threads
of execution. Even with scalable architectures and

2

advanced visualization it isn’t clear that developers
are well served by trying to deal with that many
processes or threads. However, there will always be
a class of defects that cannot easily be reproduced
when the job is run at a more modest scale. Tools
need to support the concept of debugging a subset
of the whole scale job.

Parallel applications are complex and it is impor-
tant that debugging tools go beyond simply allow-
ing the developer to step through the program and
look at data. Troubleshooting tools should allow
programmers to query their application, adding as-
sertions and sanity checks – automating the process
of discovering places where the program isn’t doing
what the programmer expects. Once the defect is
located the tool should allow for testing that the de-
veloper has really understood the problem, perhaps
replacing code with a new code fragment. Abstrac-
tions such as templates store data very efficiently
but may do so in a way that makes it hard for the
developer to get a high level logical view of the data
that is important to them. Tools can provide ways
to transform that data into a more readable form.

Fundamentally troubleshooting is about working
backwards from the result of an error towards the
cause of that error. Tools that can provide a way
to work with the application in the same way can
greatly simplify many aspects of troubleshooting.

1.2 Organization of this paper

The remainder of this paper will introduce To-
talView Technologies’ three debugging products and
then highlight specific features and functionality of
these products that address the productivity chal-
lenges outlined above. Section 2 introduces To-
talView, MemoryScape and ReplayEngine. Section
3 discusses features that specifically address the con-
cerns of a distributed team of developers. Section
4 talks about features that help developers work
within a resource-managed environment. Section 5
highlights features that help developers leverage the
attention that they are spending on debugging most
effectively. The paper concludes with some high-
lights of recent progress on the Cray XT platform
specifically.

2 TotalView on the Cray XT

The Cray XT is a highly scalable distributed super-
computer architecture from Cray, Inc. It is a cluster

of compute node based on the x86-64 architecture
with a proprietary high bandwidth, low latency net-
work interconnect. It features a Linux- based front
end for compiling codes and preparing and launching
jobs, and compute nodes that either run a propri-
etary OS called Catamount or an optimized variant
of Linux referred to as the Cray Linux Environment
(CLE). The full system includes various levels of disk
storage and software for managing and administer-
ing the compute resource. These include the aprun
parallel program launch command.

2.1 TotalView

TotalView provides a powerful environment for de-
bugging parallel programs. [9] It allows users to eas-
ily control and inspect applications that are com-
posed of not just a single process but sets of thou-
sands of processes running across the many compute
nodes of a supercomputer. At any time during a
debugging session the user can choose to focus on
any specific process: inspecting individual variables;
looking at the call stack; setting breakpoints, watch-
points, and controlling that process; calling func-
tions; and evaluating expressions within the context
of that process. The user might choose instead to
look at the parallel application as a whole: look-
ing at the call tree graph which represents the func-
tion call stacks of all the processes in a compact and
graphical form; looking at variables across all the
processes (scalar variables are represented as arrays
indexed across the set of processes, 1-d arrays as 2-d
arrays, etc.); setting breakpoints, barrier points, and
watchpoints across the whole application; running,
synchronizing, and controlling the application as a
whole; or looking at characteristics that are specific
to parallel applications, such as the state of the MPI
message queues. Alternately the user can choose to
define, examine and control various sets of related
processes through TotalView’s dynamic process and
thread set mechanism.

TotalView supports debugging applications writ-
ten in C, C++, Fortran 77 or Fortran 90 and is
compatible with a number of compilers. It sup-
ports applications that make use of MPI[5] and inter-
operates with the aprun launcher mechanism on the
Cray XT Series.

2.2 MemoryScape

MemoryScape is the name for the memory debug-
ging functionality within the TotalView product

3

family.[7] Most but not all license configurations of
TotalView include a copy of MemoryScape, but it
can also be purchased and used separately. Memo-
ryScape provides vital information about the state
of memory in either a highly graphical format or
through a variety of reports that can be stored for
later analysis.. It reports some errors directly as
they occur, provides graphical and interactive maps
of the heap memory within individual processes and
makes information like the set of leaked blocks easy
to obtain.

MemoryScape is designed to be used with paral-
lel and multi-process target applications; it provides
detailed information about individual processes as
well as high level memory usage statistics across all
the processes that make up a large parallel applica-
tion. TotalView’s memory debugging is lightweight
and has a very low run-time performance cost.

At CUG 2007 we presented a technical overview
of our work to port MemoryScape to the Cray XT
platform. [4]

2.3 ReplayEngine

ReplayEngine is an add-on to the TotalView debug-
ger that enables users to do reverse debugging. It is
available for 32- and 64-bit x86-based systems run-
ning Linux, and supports reverse debugging appli-
cations written in C, C++, Fortran 77, Fortran 90
and UPC. [8]

Reverse debugging means working directly back-
wards from the visible sign of a defect (the crash
or incorrect result that you see that lets you know
that there is a bug) through the execution history of
the program to find the root cause of the bug. This
is a radically simpler approach to troubleshooting
because at any point in the process you are able to
take advantage of hindsight: you know exactly which
memory address, variable, allocation or data value
is the problem and the question is just “how did it
get this way”.

At CUG 2008 we presented an introduction to
the technique of reverse debugging and an overview
of the record and replay technology used to imple-
ment it. [2] At that time we had just introduced
the product and while we supported Linux-x86 and
x86-64 clusters we knew (and highlighted in the pa-
per) that there would be problems with applying the
technology to the Cray XT series. However there
was a lot of enthusiasm expressed and since then
we’ve been working on the problem. We expect that
when this paper is published customers will be able

to use ReplayEngine with Cray XT supercomput-
ers that are running up-to-date installations of Re-
playEngine and of the Cray software environment.

3 Working with Distributed

Teams

HPC development is an activity performed by dis-
tributed teams of developers with diverse skills.
Here I highlight two specific ways that we help out
with the challenges that come up in these collabora-
tions.

3.1 Remote Debugging with To-

talView

If scientists or developers who need to debug a prob-
lem on an HPC cluster are not co-located geograph-
ically with the computer they may face a hurdle be-
fore even being able to consider debugging. Many
sites provide either direct or indirect (via some inter-
mediate host) SSH access to their authorized users.
This kind of access is great for working at the level
of the Unix shell. Most users’ interactions with su-
percomputers are mediated by and through a batch
resource management systems of some kind. This
means that users must upload a program, compile it,
upload some data, set up a batch job that specifies
running the program on the data, submit it, wait for
some period of time, and then download the results.
But interactive troubleshooting in the debugger with
its graphical display of data sets and program state
doesn’t fit well into this simple command line us-
age model. TotalView has a feature that automates
and simplifies setting up a graphical connection be-
tween the users’ local workstations and any remote
supercomputer site that they have SSH access to.

This requires the free TotalView Remote Display
Client. It is included within recent versions of To-
talView (beginning with 8.6), so site administrators
can post it to their users, or users can simply down-
load it from the site they plan to log into. It can
also be obtained directly from TotalView Technolo-
gies’ website.

The client is a simple executable that can be
run on Linux, Windows, or Apple Mac OS X. It
provides a GUI with intuitive fields such as “user-
name” and “hostname” and a Connect button. If
users aren’t using SSH’s public-key infrastructure
they will be prompted by the underlying SSH mech-

4

anism for their login password. The client takes care
of the rest, setting up a secure graphical connection
between the HPC server and the user’s desktop.[10]

In some cases the user isn’t permitted to log di-
rectly into the HPC machine but must instead con-
nect to one or more intermediate hosts. The client
can handle that situation as well. The user specifies
the sequence and the client connects to the first host,
then connects to the second host via the first. The
system doesn’t store or even directly handle pass-
words and can work with cryptographic token tech-
nologies like SecureID.

Once the user has configured a connection they
can store it as a profile for easy reuse. Individual
users may have multiple profiles if they log into dif-
ferent supercomputers and profiles can be shared
between users or distributed by site administrators,
simplifying setup even further.

The remote display feature is architected to pre-
serve the network security of the HPC resource. In
particular it does not create listening ports of any
kind on the HPC system. The graphical connection
is established via a single outgoing connection from
the HPC center machine where TotalView is running
back through SSH to a non-privileged listening port
on the user’s workstation.

3.2 MemoryScape Reporting

MemoryScape supports multiple modes of usage. A
key feature is its capability to create reports of var-
ious characteristics such as the amount of memory
used by data structures in different parts of the pro-
gram, and the amount of memory that has been
leaked and where that memory was allocated within
the program. These reports are generated based on
the analysis of a running instance of the program
and are structured to present information hierarchi-
cally; developers can start with an overview of the
memory usage and “drill down” on sections of the
code that seem to have many or unexpectedly large
leaks or allocations. MemoryScape also provides ex-
tremely flexible filtering capabilities to help devel-
opers either focus on a specific set of data based on
a specified characteristic (such as only allocations
that are bigger than a defined size) or to exclude
allocations and leaks that are uninteresting because
they are in vendor libraries that the developer can’t
control.

Memory is a resource that is shared by all the
different parts of the program. An error in one part
of the program can lead to corrupted data in an-

other part of the program, so often the developer
who discovers a memory error or comes to suspect
that memory isn’t being used in an efficient way may
not be the same developer who is in the best posi-
tion to understand how to change the code to correct
the error or improve efficiency. We’ve therefore fo-
cused some significant effort in making sure that it
is easy for developers who use MemoryScape to dis-
cover such issues to clearly communicate what they
find with their colleagues.

MemoryScape can package information on a
given target in two ways. First, it can generate a re-
port of the data in one of two formats. These reports
provide a way to highlight the results of analyzing
a program with MemoryScape. If filtering has been
selected before the report is generated, information
will be filtered in or out of the report based on those
settings.

The most helpful format for many users when
they simply want to notify a collaborator about a
leak in a section of code is the active-HTML report, a
javascript-enhanced HTML page that is a simplified
form of MemoryScape’s source or backtrace heap al-
location or leak report. It features a high-level view
of the memory usage, organizing memory allocations
or leaks by program location and providing aggre-
gated statistical information at each level of the hier-
archy. The report can be reviewed in any javascript-
enabled HTML browser, from the summary view to
drilling down to individual allocations.

MemoryScape can also generate a text report
with the same information. Due to the static na-
ture of plain text the recipient would have to nav-
igate the hierarchical listing to find the allocations
of interest (instead of being able to start with the
collapsed tree and pick elements to explore). On
the other hand. the text report is perfect for in-
put to any kind of scripted or automated processing
that the user might want to do. Both of these ex-
port formats allow developers with MemoryScape to
effectively communicate with colleagues without re-
quiring those colleagues to use MemoryScape.

The second way MemoryScape can package in-
formation is via an export of raw data on the tar-
get process memory state to a binary file that can
be reloaded and reanalyzed later by the same or a
different instance of MemoryScape. This allows a
developer to set aside the state of the process for
more intensive analysis for a more convenient time.
One capability that this opens up is the ability to
do a detailed comparison of the state of heap mem-

5

ory within a single program at two different points in
time or between two different runs of an application.
For users who are concerned about maintaining code
quality this comparison technique opens the door for
some very powerful validation techniques.

4 Working with User Environ-

ments

The richness and diversity of parallel cluster config-
urations can be an issue for HPC programmers and
users. Here I highlight ways that TotalView helps
to deal with that complexity and some of the issues
that can come up in batch environments.

4.1 Cross Platform and Indirect

Launch

One challenge for developers is that there is fre-
quently a non-trivial amount of complexity to just
getting jobs running and launched on the various dif-
ferent HPC resources that they may use. This com-
plexity is the result of both the number of systems
and the variety of batch management systems, us-
age policies, filesystem configurations, sets of appro-
priate commands for the architecture, various local
configurations and customization used on each large
system. A variety of different tools have been cre-
ated to try to manage this complexity, from modules
that shield users from having to be cognizant of lo-
cal environmental settings for library and executable
search paths, to extensive web service enablement
of computational science work-flows such as ADIOS
and Kepler. [6, 1]

In this context TotalView provides a very
straightforward advantage for users. It supports a
wide range of platforms with a very uniform set of
capabilities and the same look and feel for scientists
and developers who may be moving back and forth
between various machines and architectures.

Until fairly recently however the startup com-
mand for TotalView on a parallel job was a point
of potential confusion. One of the key features that
TotalView provides is the ability to issue a single
command and have the debugger attach to not just
one process but all the processes (or an arbitrary
subset, see below) that make up a parallel job. This
requires a significant degree of integration with the
mechanism that is used on that particular cluster
and with that particular MPI. Because some MPI

launch mechanisms are scripts and others binaries,
users needed to remember different ways of start-
ing TotalView on different systems. A few years
ago we introduced indirect launch, allowing users
to start up the debugger in the same way regardless
of the system, with the exception of the BlueGene
platform. Users simply start up TotalView on the
application they wish to debug, select the MPI li-
brary they would like to use, specify the number of
MPI ranks and other options, and click Continue.
They have an opportunity to inspect their code and
set breakpoints in their program. They launch their
program with the Go button, and TotalView takes
care of the details.

4.2 TVScript for Batch Debugging

The traditional use of a debugger involves a devel-
oper actively interacting with the debugging tool
while the program is running. While that is a great
way to explore program behavior, developers might
prefer a different approach for a number of reasons.
First, they are often used to batch submissions when
working with the supercomputer and they may wish
to fit their debugging into that mode rather than
work out how to do an interactive session. Second,
at some sites there is either no provision for an inter-
active session or provision only for small-scale runs.
Third, they may want to survey the behavior of a
slice of their program over time. Fourth, they may
want to do a parametric study of a defect, running
the program while varying an input parameter to
understand how the program behaves differently.

TotalView supports non-interactive debugging
with a feature called TVScript. TVScript allows the
developer to define a set of points of interest within
the program, perhaps functions or lines within a
function. Each time any process or thread within the
program reaches these points an event is generated.
Events can also be generated in response to other
program behavior such as segmentation faults and
memory errors. For each event the developer can
define an action to be taken. The action typically
logs information of interest such as the backtrace or
the value of a variable. A log file is generated with
all the information from all the events. The devel-
oper can then submit all of this as a batch queue
submission and examine the logfile generated when
it is complete.

Here is a usage example which will generate a log-
file with a backtrace each time a.out enters funcA()
or line 187 of funcB().

6

tvscript \
-create actionpoint "funcA" \
-create actionpoint "funcB#187" \
-event action "any event=display backtrace" \

./a.out
Use the command tvscript without any argu-

ments on any recent installation of TotalView for
a detailed list of all the arguments and options that
it provides.

TVScript is especially useful if you want to detect
memory type errors. You can enable memory de-
bugging functionality such as guard blocks and have
the debugger trigger events when it detects that a
chunk of memory that has had its guard blocks vi-
olated is being freed. At that point you can print
out information about the event, such as the time
and location within the program, and store detailed
heap memory information files for later analysis.

TVScript support for the Cray required an ef-
fort beyond that required for traditional Linux clus-
ters. Interested readers can contact the author for a
pre-release version that will work on the Cray XT.
General availability is anticipated in the near future.

5 Making the Best Use of a

Developer’s Attention

Over the years we have developed many capabilities
in TotalView that make it possible for developers
to do more with the attention and time that they
put into troubleshooting and debugging. I’d like to
highlight a few of these here.

5.1 Subset Attach

TotalView provides a mechanism to focus on an ar-
bitrary subset of the program. The subset attach
mechanism can be engaged either when the parallel
job is launched or at any point after the debugger is
already attached to the parallel program. If it is used
during start up the whole job will launch but those
processes that are not selected will run freely with-
out any debugger intervention. The debugger, which
is typically licensed by users based on the number of
processes they intend to debug, will count for licens-
ing purposes only those processes that it is attached
to. At any later point the user can reopen the subset
attach dialog and select a different subset. The de-
bugger will attach to new processes that are selected
and detach from processes that are deselected.

The basic mechanism of the subset attach GUI
is a list of processes from which users can select
the ones they want to attach to. Filters make it
easy to specify subsets based on communication pat-
terns observed within the program. When working
with a subset of processes it is possible that one of
those processes is communicating, perhaps receiving
a message from, a process that is part of the job but
not part of the subset. The GUI makes it easy to
expand the set of processes based on this relation-
ship.

Debugger operations after launch have a run-
time performance and responsiveness that scale with
the number of attached processes, rather than the
whole job size. Certain debugger operations involve
coordinating all the processes, which can take more
than a few seconds if the user is asking for that co-
ordination across thousands of processes.

Processes that are not attached are not under
the control of the debugger, and will run without
interruption. The MPI communication mechanisms
don’t time out, so any detached process will simply
wait when it gets to the point at which it needs in-
formation from an attached process that might be
paused. If a detached process encounters a fatal er-
ror the debugger will not be in a position to “catch”
it for analysis and the error will cause the process to
exit. Generally the MPI run-time will detect the exit
and terminate the session as a whole. This behavior
means that if a different process is failing each time
that a program is run the best strategy may be to
attach to all the processes.

5.2 Evaluation Points

Evaluation points provide a way to associate code
fragments, typically written in C, C++ or Fortran,
with breakpoints and watchpoints. These code frag-
ments are interpreted within the context or scope of
the evaluation point and can also make use of ad-
ditional context and functionality provided by the
debugger. This allows for a significant reduction in
time in getting to the bottom of issues when trou-
bleshooting.

Many of the codes that run on the Cray XT
feature numerous loop operations, making it im-
practical to “step” through the code, since it may
take an extremely large number of “steps” to get
to a point of interest. Setting a regular breakpoint
can be used to run the program into the next it-
eration of the loop, but when loops are going to
be executed thousands or millions of times, get-

7

ting to the next loop may not be particularly help-
ful. In this case evaluation points can be used
to run the program to an integration of interest.
In a loop over the integer i putting the expression
if (i == 49553) { $stop; }
in a breakpoint on a line of code in the loop is all
that is needed to stop the application for inspection
at the 49553rd iteration of the loop. The expression
can get as nuanced as the necessary to select the
point at which to stop; for example, multiple vari-
ables can be compared, functions can be called that
operate on the data and temporary variables can be
created to store intermediate values. This means
that the expression point can be used as a sort of
assertion or sanity check. Many times troubleshoot-
ing is about testing a hypothesis about the state of
the program, so this kind of assertion checking di-
rectly automates one of the common operations of
debugging and troubleshooting.

TotalView provides a way to view array data
in graphical format and an evaluation point can be
added with a $visualize(array) directive (where ar-
ray is the name of the array to be displayed). If
this is placed within a loop and the program is run
the debugger will display an animation of the data
within that array as it is transformed by the pro-
gram. This may help in understanding what is go-
ing on with the data in the program. This differs
from standard scientific visualization in that the ar-
ray data that is displayed can be any intermediate
data within the program; it doesn’t have to be the
final output data from the program. It is worth not-
ing that this functionality should not be attempted
using the remote display client as the rapid graphical
changes will overwhelm the connection.

Typically once developers understand the prob-
lem they will exit the debugger, change their code,
recompile it and rerun the application to see if their
change fixes the error. If the problem was one that
required a delicate set up to examine in detail this
can be very tedious. Here again evaluation points
can be used to greatly simplify the debugging pro-
cess. Instead of recompiling and restarting the appli-
cation the user can prototype the change in the de-
bugger using evaluation points and either rerun the
application from the beginning or rerun part of the
application, and verify that the new code changes
the behavior in the desired way.

5.3 TTF and C++View

Modern languages such as C++ and Fortran 90 pro-
vide developers with ways to create various kinds of
abstractions that allow data to be stored in a way
that is compact or efficient and operate on that data
in a simplified way. Generally debuggers present the
user with a very direct representation of the data as
it is stored within the program’s memory. This di-
rect representation can itself be a significant hurdle
because it can make it hard for the developer to fol-
low the flow of the program, and sometimes makes
it extremely tedious to get at the data that the user
wants to see. For example, frequently a linked list
construct is used for variable collections of data with
a variable of unknown length. A raw display of the
data may take a series of dive operations equal to
the number of items in the list just to see the values
in the collection.

TotalView provides several facilities that are
helpful. Many C++ programmers use a facility
called the Standard Template Library which con-
tains a generic implementation of a list (along with
numerous other standard ways to work with collec-
tions of data) which is implemented very similarly
to what I just described. TotalView automatically
transforms these objects and displays them in a way
that transparently represents the data that has been
placed in the collection. This makes it easier for de-
velopers to focus on how they are using the STL
collection object in their application as opposed to
how the STL collection object is itself implemented.

TotalView provides two additional ways for users
themselves to create transformations for objects that
they define. A user can create a type transform us-
ing the Type Transform Facility (TTF). These trans-
formations can either transform structures to other
structures (omitting, reorganizing, renaming fields
to bring the relevant data to the foreground), or ag-
gregate data together into array-like types (a walk-
ing list and other data structures to create some-
thing that looks like an array object). These trans-
formations occur entirely in the debugger and can be
used on corefiles and programs that are hung. The
main limitation of these transforms is that they can
only display data that already exists in the objects
to be transformed; they can’t make use of existing
or new functionality in the target program to de-
rive new data. The TTF transforms are written in a
simple stack- based addressing language and coded
in the TCL scripting language.

In addition we’ve recently developed a technique

8

to allow developers to define type transformations
using a C++ call-back mechanism. This feature
is called C++View and is currently in experimen-
tal pre-release.[11] The first advantage that this ap-
proach provides is that developers can work in C++,
which is frequently more familiar and comfortable
than TCL and the TotalView addressing language.
It may also be shorter; many useful transforms are
only a few lines of C++ code. The second advan-
tage is that transformations can be more expansive.
Summary data can be generated and decisions about
what data to represent can be made on the fly. The
third advantage is that the transforms can be made
a part of the user’s application. This is a big benefit
for large HPC teams because a single member of the
team can define the transformations, make them a
part of the HPC application itself and the entire col-
laboration can benefit from easier debugging with-
out having to take any action. The biggest disadvan-
tage of this technique is that it requires the target
program to run in order to perform the transforma-
tion. This means that it does not provide any benefit
when the user is debugging corefiles and hung jobs.
Users can visit the TotalView Technologies website
to obtain more information about this feature, and
register interest in and download the interface files
required to take advantage of the feature.

5.4 ReplayEngine

Much of the frustration and complexity of debugging
with current tools comes from the fact that program-
mers have to work in a very indirect way to make the
connection between the result of a bug and its cause.
The general nature of troubleshooting is that errors
in programs may not be immediately evident; the
program continues to evolve forward until such time
that it generates an error, either an invalid operation
or a bit of output that is obviously wrong. That’s
the point where we get involved with a debugger.

ReplayEngine allows developers to analyze the
program directly from that point where the error is
visible “backwards in time” to the point where the
error actually occurred. This can radically simplify
the debugging process in two ways. First, it can
greatly simplify the process of isolating the defect.
Second, in troubleshooting, a developer no longer
needs to work through a series of careful steps punc-
tuated by restarting the job and running it to an
earlier point.

In the parallel context a program may fail in such
a way that the defect occurs on different MPI pro-

cesses each time the program runs. This makes it
very difficult (though not impossible) to use tra-
ditional forward debugging techniques because the
developer has to carefully run all processes forward
together (which may be easier or harder depending
on how the parallel code is structured) and watch
each process for signs of the one that is going to
exhibit the crash. With ReplayEngine developers
can run an application on the cluster and trace the
behavior of each process, and when one crashes or
generates output data that is clearly incorrect, fo-
cus their attention on just that process. They can
examine execution history to discover where the er-
ror occurred. It is possible that the process they
initially focus on as the site of the crash actually
crashes because it got bad data from a second pro-
cess. In that case they can switch their attention
to this second process, run it back to the point of
interest (where it sent the bad data) and continue
debugging backwards towards the root cause.

The advantage of not having to restart the ap-
plication numerous times is that developers can fo-
cus on following one clue to the next clue and so on
back to the root cause. In troubleshooting using tra-
ditional forward debugging they frequently need to
step aside from the problem they are chasing and fo-
cus on re-running the application to an earlier state.
Even with tools like evaluation points this can be a
critical distraction, taking a lot of time and intro-
ducing other activity that can distract from seeing
the clue they were looking for when they restarted.

This product was discussed in greater depth in a
previous presentation here at CUG 2008 and an up-
date was given a year later at the EuroPVM/MPI
2009. [2, 3] Since these papers were presented we
have matured the product to the point that it can
now be used within the Cray XT environment (when
the compute nodes run CLE; it does not work with
Catamount). This requires ReplayEngine 1.7 (dis-
tributed along with TotalView 8.8) and the Cray
TotalView Support module version 1.1.

Several other significant improvements have been
made to ReplayEngine since that presentation.
First, we’ve introduced support for long-running
programs. ReplayEngine defines a limit (user-
adjustable) for the recorded history to consume.
When data necessary to store recorded history ex-
ceeds that amount the oldest data is discarded
and execution continues. Previous versions simply
stopped the program from running when the limit
was reached. This means that for a short program

9

the developer may be able to run all the way back
to the very start of the program but with a long-
running program there will be some limit to how far
back the developer will be able to explore.

The second major improvement is support for a
Backwards Continue command. This is the analog
of the go command and runs the program to the
nearest breakpoint or watchpoint in the backwards
direction. It is important to note that the user can
freely set, modify, enable and disable breakpoints
and watchpoints before hitting Backwards Continue.
So the developer can let the program run to a crash,
select a variable of interest (generally one that has
an unexpected value), set a watchpoint on that vari-
able and run to the point in the execution history
when the variable was set. This can be repeated to
follow bad data back to its source.

Finally, the performance and stability of Re-
playEngine, especially when used in conjunction
with multiple threads, has been steadily improved
over time.

6 Conclusion

This paper has reviewed eight major features and
areas of functionality within the TotalView debug-
ger product family that directly address the kinds

of concerns that sometimes limit the productivity of
scientists, engineers and software developers working
on HPC software. Some of these features are brand
new and I’ve highlighted where users need to look
at the latest version of TotalView to gain these ben-
efits. Other features have been part of TotalView
for a long time. TotalView is a comprehensive and
rich product and I encourage users to explore its fea-
tures both in the documentation and the product it-
self, talk to one another using our user forums, and
speak to us here at TotalView Technologies about
any questions, comments, and suggestions that they
might have. [12]

Acknowledgements

Thanks in particular to Gayle Procopio and to my
colleagues at TotalView Technologies and Rogue
Wave Software.

About the Author

Chris Gottbrath is Principal Product Manager
at TotalView Technologies, a Rogue Wave Soft-
ware Company. He can be reached at 24
Prime Park Way, Natick, MA 01760. Email:
Chris.Gottbrath@totalviewtech.com.

References

[1] National Center for Computational Sciences. Adios adaptable io system. http://www.nccs.gov/

user-support/center-projects/adios/, 2010.

[2] Chris Gottbrath. Reverse debugging with the totalview debugger. Proc. Cray Users

Group, 30, 2008.

[3] Chris Gottbrath. Bringing reverse debugging to hpc. In Proceedings, 16th European

PVM/MPI Users’ Group Meeting, Espoo, Finland, September 2009.

[4] Chris Gottbrath, Ariel Burton, Robert Moench, and Luiz DeRose. Debugging memory

problems on cray xt supercomputers with totalview debugger. Proc. Cray Users Group,

2007.

[5] Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of

Supercomputing ’93, pages 878--883. IEEE Computer Society Press, November 1993.

[6] Kepler Project Team. Kepler project. https://kepler-project.org/, 2010.

[7] TotalView Technologies. MemoryScape. http://www.totalviewtech.com/products/

memoryscape.html, 2009.

[8] TotalView Technologies. ReplayEngine. http://www.totalviewtech.com/products/

replayengine.html, 2009.

10

http://www.nccs.gov/user-support/center-projects/adios/
http://www.nccs.gov/user-support/center-projects/adios/
https://kepler-project.org/
http://www.totalviewtech.com/products/memoryscape.html
http://www.totalviewtech.com/products/memoryscape.html
http://www.totalviewtech.com/products/replayengine.html
http://www.totalviewtech.com/products/replayengine.html

[9] TotalView Technologies. TotalView Debugger. http://www.totalviewtech.com/products/

totalview.html, 2009.

[10] TotalView Technologies. Using the Remote Display Client. http://www.totalviewtech.

com/support/documentation/totalview/remote display.pdf, 2009.

[11] TotalView Technologies. TotalView C+View feature web page. http://www.totalviewtech.

com/forms/cppview.html, 2010.

[12] TotalView Technologies. TotalView Technologies User Forum. http://forum.

totalviewtech.com/, 2010.

11

http://www.totalviewtech.com/products/totalview.html
http://www.totalviewtech.com/products/totalview.html
http://www.totalviewtech.com/support/documentation/totalview/remote_display.pdf
http://www.totalviewtech.com/support/documentation/totalview/remote_display.pdf
http://www.totalviewtech.com/forms/cppview.html
http://www.totalviewtech.com/forms/cppview.html
http://forum.totalviewtech.com/
http://forum.totalviewtech.com/

	Introduction
	The Productivity Challenges of HPC Debugging
	Organization of this paper

	TotalView on the Cray XT
	TotalView
	MemoryScape
	ReplayEngine

	Working with Distributed Teams
	Remote Debugging with TotalView
	MemoryScape Reporting

	Working with User Environments
	Cross Platform and Indirect Launch
	TVScript for Batch Debugging

	Making the Best Use of a Developer's Attention
	Subset Attach
	Evaluation Points
	TTF and C++View
	ReplayEngine

	Conclusion

