
Petascale Debugging

Chris January, David Lecomber, Mark O’Connor

Allinea Software

{cjanuary,david,mark}@allinea.com

May 11, 2010

Abstract

The need for tools to debug at scale is painfully known to HPC devel-

opers - yet as machine sizes have raced ahead, debuggers have not kept

pace. This has resulted in a large gap between the needs of users and the

range at which full debugging capabilities can work for many years. This

paper outlines major developments to Allinea’s DDT debugging tool to

introduce production-grade petascale debugging on the Oak Ridge Jaguar

Cray XT5 system. The result has raised usability and performance of de-

bugging by multiple orders of magnitude - and has already achieved record

220,000 core debugging at ORNL.

Keywords: Petascale, Debugging, Tools

1 Introduction

Debugging is an essential component
in any software developer’s toolbox. In
parallel computing the additional com-
plexities of interacting processes with
communication, or multi-threaded pro-
cesses with race conditions are frequent
sources of bugs.

Parallel debuggers such as Allinea
DDT offer an alternative to the labori-
ous insertion of print statements into
user code to identify problems. De-
buggers make controlling and observ-
ing program behaviour and diagnosing
a bug simple - bringing features such
as stepping and stopping processes or
the inspection of variables and data at
runtime.

Although the number of cores in
systems has rapidly increased, debug-

gers have lagged orders of magnitude
behind in their capabilities, and also in
where users actually perceive as their
limit.

Concerns with the limitations of de-
bugging at only small thousands of pro-
cesses have been raised on many occa-
sions (eg. [3, 4]) - along with the sen-
timent that something must be done
about it. With a handful of HPC sys-
tems at over 100,000 cores, and many
more at over 8,000 cores clearly there
must be a solution to finding bugs at
these scales.

This paper introduces changes that
Allinea is making which have increased
the proven level of its debugger, Allinea
DDT, to over 220,000 cores. A funda-
mental change in its architecture has
achieved performance at extreme scale
surpassing previously recorded results

1



on only hundreds of cores.1

2 A new Architecture

for Debugging

The traditional architecture of parallel
debuggers consists of a frontend com-
ponent running on a login node, com-
municating directly with each MPI pro-
cess or each node in a job. Debuggers
necessarily communicate commands to
daemons running on each node, and
then process returned messages. These
returned messages can indicate many
results - such as data values, process
state or process stacks.

This architecture places linear per-
formance penalties on every collective
operation during debugging - from set-
ting a common breakpoint, to paus-
ing running processes. There have also
been linear penalties in terms of sys-
tem resource usage, such as file han-
dles, filesystem access or memory.

We have developed a tree architec-
ture that broadcasts commands and ag-
gregates messages between the frontend
and the compute nodes. Many mes-
sages in both directions are easily able
to take advantage of the tree - with
specific merge operators applied to each
response type.

The Cray XT architecture allows
point-to-point TCP communication be-
tween the nodes within the 3D torus
of the system. In particular, the con-
nectivity includes the compute nodes
and therefore allows the debugger to
use these as part of the tree.

Specific features of the XT also en-
able good performance during startup

1This work is paid for as part of the Oak

Ridge Leadership Computing Facility, and

ORNL is managed by UT-Battelle, LLC un-

der Contract No. DE-AC05-00OR22725.

Figure 1: Examining a variable across
all processes

- where the ability to quickly launch
daemons on every node was essential.
Attention was paid to ensure that the
shared (Lustre) filesystem only received
a fixed and constant number of file ac-
cesses - independent of the number of
processes.

The basic tree sees each tree node
having a degree and depth that has
been selected as a result of rough calcu-
lation, and actual verification at scale.
It is difficult to provide a tree that will
be perfect for every debugging opera-
tion as each such operation could in-
volve a different amount of work or mes-
sage traffic - for example merging of
stack traces can vary according to the
application, but some applications such
as setting a breakpoint and returning a
success or failure message always have
an almost trivial merge operation.

3 Usability for Petas-

cale Debugging

The second requirement of a petascale
debugger is a usable interface through
which the user will find bugs. There is
a clear difference between what is suf-
ficient and desireable for a handful of
processes and the needs at a few hun-
dred, or a few thousand processes.

DDT has been providing scalable
components that reach such numbers

2



Figure 2: Examining stacks of all pro-
cesses

for some time, as we note that - at scale
- a debugger’s job is to point out dif-
ferences - something that becomes im-
practical to do manually when the user
can no longer realistically click through
each process in turn.

This difference highlighting is seen
in features such as comparison of vari-
ables on multiple processes as shown in
Figure 1, or in the parallel stack view
of Figure 2 which groups the processes
together in a tree by their current stack
trace.

One innovation in this area made
possible by the massive improvement
in performance is that DDT will now
automatically highlight when a vari-
able changes or when its value is not
the same across all processes - as the
cost of doing this check is so insignifi-
cant.

4 Performance

Real HPC codes were involved in test-
ing the performance of DDT - includ-
ing S3D, GTC, MVH3/VH1 and POP
- on the 12-core Jaguar XT5. Mea-
surements were taken up to at least
131,072 cores in all cases - and also
at larger sizes where machine availabil-
ity permitted. Times recorded are the
elapsed time until the GUI had com-
pleted updating.

Figure 3: Time to add breakpoint or
step all processes

Figure 4: Time to gather data

Figure 3 shows both the time taken
to step all processes including gather-
ing all stacks, and the time to set a
common breakpoint across all processes.

Figure 4 shows the time taken to
compare data across all processes in
two different scenarios - one whereby
all the data is identical, representing a
best case, and the second, where data
is all different. In this latter case the
variable evaluated was the MPI rank.

As is shown in both graphs - the
approach has led to demonstrable scal-
ability that will feel responsive to the
user.

5 Other Approaches

The previous limitations led to sugges-
tions that achieving scale could require
fundamental changes in the process of
debugging.

3



Relative debugging[5] involves user-
specified verification points at which
program state is compared between one
instance of an application and another,
running at different scales or on differ-
ent architectures.

Lightweight debugging seeks to min-
imize the overhead of debugging but to
retain some of the most important as-
pects of it - STAT from LLNL[2] is one
of the most well known examples. This
tool extracts process stacks at scale us-
ing a tree architecture and then iden-
tifies equivalence classes of processes
based on these stacks. STAT can then
invoke a full debugger such as Allinea
DDT, on an appropriate subset of MPI
processes.

Approaches such as lightweight de-
bugging or comparative debugging, and
other techniques can help the debug-
ging process, but a strong benefit could
be obtained using tools together. Cur-
rent levels of interoperability are use-
ful for examining the situation when a
problem is detected - but it could be
even more powerful if such tools be-
come available as both interactive and
non-integrated/off-line tools.

6 Conclusions

We have shown that full strength de-
bugging can scale to the largest sys-
tems available today - and, given the
logarithmic performance experienced,
we can expect this form of debugging
will reach significantly higher scales.

In each of the usual operations of
debugging we have taken performance
to a level that is required for using a
tool to be seen as comfortable and us-
able.

Having broken previous debugging
records, and established that petascale

debugging is feasible - we are now ac-
tively considering options for increased
automation and new features to add to
this truly scalable debugging.

References

[1] Allinea Software, The DDT User
Guide, http://www.allinea.com.

[2] Lee G., Ahn D. et al, Lessons
learned at 208K: towards de-
bugging millions of cores, in
SC’08: Proceedings of the 2008
ACM/IEEE conference on Super-
computing, 2008.

[3] Report of the Workshop on Petas-
cale Systems Integration for Large
Scale Facilities, Lawrence Berkeley
National Laboratory, Jan 2007.

[4] Report of Workshop on Software
Development Tools for Petascale
Computing, Aug 2007, Washing-
ton, DC

[5] Abramson D., Foster I., Micha-
lakes J., and Sosič R., Relative de-
bugging: a new methodology for
debugging scientific applications,
Communications of the ACM, vol-
ume 39, number 11, 1996.

4


